
Causal Message Sequence Charts�

Thomas Gazagnaire1, Blaise Genest2, Löic Hélouët3, P.S. Thiagarajan4, and
Shaofa Yang3

1 IRISA/ENS Cachan, Campus de Beaulieu, 35042 Rennes Cedex, France
thomas.gazagnaire@irisa.fr

2 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
blaise.genest@irisa.fr

3 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
{loic.helouet, shaofa.yang}@irisa.fr
4 School of Computing, NUS, Singapore

thiagu@comp.nus.edu.sg

Abstract. Scenario languages based on Message Sequence Charts
(MSCs) and related notations have been widely studied in the last
decade [14, 13, 2, 9, 6, 12, 8]. The high expressive power of scenarios ren-
ders many basic problems concerning these languages undecidable. The
most expressive class for which several problems are known to be decid-
able is one which possesses a behavioral property called “existentially
bounded”. However, scenarios outside this class are frequently exhibit-
ed by asynchronous distributed systems such as sliding window proto-
cols. We propose here an extension of MSCs called Causal Message Se-
quence Charts, which preserves decidability without requiring existential
bounds. Interestingly, it can also model scenarios from sliding window
protocols. We establish the expressive power and complexity of decision
procedures for various subclasses of Causal Message Sequence Charts.

1 Introduction

Scenario languages based on Message Sequence Charts (MSCs) have met con-
siderable interest in the last ten years. The attractiveness of this notation can
be explained by two major characteristics. Firstly, from the engineering point of
view, MSCs have a simple and appealing graphical representation based on just a
few concepts: processes, messages and internal actions. Secondly, from a mathe-
matical standpoint, scenario languages admit an elegant formalization: they can
be defined as languages generated by finite state automata over an alphabet of
MSCs. These automata are usually called High-level Message Sequence Charts
(HMSCs) [10].

An MSC is a restricted kind of labelled partial order and an HMSC is a
generator of a (usually infinite) set of MSCs, that is, a language of MSCs. For
example, the MSC M shown in Figure 2 is a member of the MSC language
generated by the HMSC of Figure 1 while the MSC N shown in Figure 2 is not.
� Work supported by the INRIA-NUS Associated Team CASDS and the ANR projects

DOTS.

M1

p q p q

M2

M1

M2
Q A

H

Fig. 1. An HMSC over two MSCs

HMSCs are very expressive and hence a number of basic problems associated
with them cannot be solved effectively. For instance, it is undecidable whether
two HMSCs generate the same collection of MSCs [14], or whether an HMSC
generates a regular MSC language (an MSC language is regular if the collection of
all the linearizations of all the MSCs in the language is a regular string language
in the usual sense). Consequently, subclasses of HMSCs have been identified [13,
2, 6] and studied.

On the other hand, a basic limitation of HMSCs is that their MSC languages
are finitely generated. More precisely, each MSC in the language can be defined as
the sequential composition of elements chosen from a fixed finite set of MSCs [12].
However, the behaviours of many protocols constitute MSC languages that are
not finitely generated. This occurs for example with scenarios generated by the
alternating bit protocol. Such protocols can induce a collection of braids like N
in Figure 2 which cannot be finitely generated.

One way to handle this is to work with so called safe (realizable) Composi-
tional HMSCs (CHMCs, for short) in which message emissions and receptions
are decoupled in individual MSCs but matched up at the time of composition,
so as to yield a (complete) MSC. CHMSCs are however notationally awkward
and do not possess the visual appeal of HMSCs. Furthermore, several positive
results on HMSCs rely on a decomposition of MSCs into atoms (the minimal
non-trivial MSCs) [9, 12, 6], which does not apply for CHMSCs, and results in a
higher complexity [5]. It is also worth noting that without the restriction to safety
(realizability), compositional HMSC languages embed the full expressive power
of communicating automata [3] and consequently inherit all their undecidability
results.

This paper proposes another approach to extend HMSCs in a tractable man-
ner. The key feature is to allow the events belonging to a lifeline to be partially
ordered. More specifically, we extend the notion of an MSC to that of causal
MSC in which the events belonging to each lifeline (process), instead of being
linearly ordered, are allowed to be partially ordered. To gain modelling power,
we do not impose any serious restrictions on the nature of this partial order.
Secondly, we assume a suitable Mazurkiewicz trace alphabet [4] for each lifeline
and use this to define a composition operation for causal MSCs. This leads to
the notion of causal HMSCs which generate tractable languages of causal MSCs.

p q

Q

A

Q

A

Q

A

p q

A
Q

Q

A

Q

Q

AQ

NM

Fig. 2. Two MSCs M and N

A causal HMSC is a priori not existentially bounded in the sense defined in
[5]. Informally, this property of an MSC language means that there is a uniform
upper bound K such that for every MSC in the language there exists an execution
along which—from start to finish—all FIFO channels remain K-bounded. Since
this property fails, in general, for causal MSC languages, the main method used
to gain decidability for safe CMSCs [5] is not applicable. Instead, to characterize
regularity and decidability of certain subclasses of causal HMSCs, we need to
generalize the method of [13] and of [6] in a non-trivial way.

In the next section we introduce causal MSCs and causal HMSCs. We also
define the means for associating an ordinary MSC language with a causal HM-
SC. In the subsequent section we develop the basic theory of causal HMSCs. In
section 4, we identify the property called “window-bounded”, an important ingre-
dient of the “braid”-like MSC languages generated by many protocols. Basically,
this property bounds the number of messages a process p can send to a process
q without waiting for an acknowledgement to be received. We then show that
one can decide if a given causal HMSC generates a window-bounded MSC lan-
guage. In section 5 we compare the expressive power of languages based on causal
HMSCs with other known HMSC-based language classes.

2 MSCs, causal MSCs and causal HMSCs

Through the rest of the paper, we fix a finite nonempty set P of process names
with |P| > 1. For convenience, we let p, q range over P and drop the subscript
p ∈ P when there is no confusion. We also fix finite nonempty sets Msg , Act
of message types and internal action names respectively. We define the alpha-
bets Σ! = {p!q(m) | p, q ∈ P, p �= q,m ∈ Msg}, Σ? = {p?q(m) | p, q ∈ P,
p �= q,m ∈ Msg}, and Σact = {p(a) | p ∈ P, a ∈ Act}. The letter p!q(m)
means the sending of message m from p to q; p?q(m) the reception of message
m at p from q; and p(a) the execution of internal action a by process p. Let
Σ = Σ! ∪ Σ? ∪ Σact . We define the location of a letter α in Σ, denoted loc(α),

by loc(p!q(m)) = p = loc(p?q(m)) = loc(p(a)). For each process p in P, we
set Σp = {α ∈ Σ | loc(α) = p}. In order to define a concatenation operation
for causal MSCs, we fix a family of Mazurkiewicz trace alphabets {(Σp, Ip)}p∈P
([4]), one for each p. That is, Ip ⊆ Σp × Σp is an irreflexive and symmetric
relation, called the independence relation. We denote the dependence relation
(Σp×Σp)−Ip by Dp. Following the usual definitions of Mazurkiewicz traces, for
each (Σp, Ip), the associated trace equivalence relation ∼p over Σ�

p is the least
equivalence relation such that, for any u, v in Σ�

p and α, β in Σp, α Ip β implies
uαβv ∼p uβαv. Equivalence classes of ∼p are called traces. For u in Σ�

p , we let
[u]p denote the trace containing u.

Definition 1. A causal MSC over (P, Σ) is a structure
B = (E, λ, {�p}p∈P ,�), where E is a finite nonempty set of events, λ : E → Σ
is a labelling function. And the following conditions hold:

– For each process p, �p ⊆ Ep × Ep is a partial order, where Ep = {e ∈ E |
λ(e) ∈ Σp}. We let �̂p ⊆ Ep × Ep denote the least relation such that �p is
the reflexive and transitive closure of �̂p.

– � ⊆ E! × E? is a bijection, where E! = {e ∈ E | λ(e) ∈ Σ!} and E? = {e ∈
E | λ(e) ∈ Σ?}. For each (e, e′) ∈ �, λ(e) = p!q(m) iff λ(e′) = q?p(m).

– The transitive closure of the relation
(⋃
p∈P

�p

)∪ �, denoted ≤, is a partial

order.

For each p, the relation �p dictates the “causal” order in which events of
Ep may be executed. The relation � identifies pairs of message-emission and
message-reception events. We say �p respects the trace alphabet (Σp, Ip) if-
f for any e, e′ ∈ Ep, the following hold: (i) λ(e) Dp λ(e′) implies e �p e′;
(ii) e �̂p e′ implies λ(e) Dp λ(e′). The causal MSC B is said to respect {(Σp, Ip)}
iff �p respects (Σp, Ip) for every p. In order to gain modelling power, we allow
each �p to be any partial order, not necessarily respecting (Σp, Ip). We say
that the causal MSC B is FIFO1 iff for any (e, f) ∈ �, (e′, f ′) ∈ � such that
λ(e) = λ(e′) = p!q(m) (and thus λ(f) = λ(f ′) = q?p(m)), we have either e �p e′

and f �q f ′; or e′ �p e and f ′ �q e′. Note that we do not demand a priori that
a causal MSC must be FIFO.

Let B = (E, λ, {�p},�) be a causal MSC. A linearization of B is a word
a1a2 . . . a� over Σ such that E = {e1, . . . , e�} with λ(ei) = ai for each i; and
ei ≤ ej implies i ≤ j for any i, j. We let Lin(B) denote the set of linearizations
of B. Clearly, Lin(B) is nonempty. We set Alph(B) = {λ(e) | e ∈ E}, and
Alphp(B) = Alph(B) ∩ Σp for each p.

The leftmost part of Figure 3 depicts a causal MSC M . In this diagram, we
enclose events of each process p in a vertical box and show the partial order �p

in the standard way. In case �p is a total order, we place events of p along a

1 There are two notions of FIFOness for MSCs in the literature. One allows overtaking
of messages with different message types via the same channel, while the other does
not. As our results hold for both notions, we choose the more permissive one.

vertical line with the minimum events at the top and omit the box. In particular,
in M , the two events on p are not ordered (i.e. �̂p is empty) and �q is a total
order. Members of � are indicated by horizontal or downward-sloping arrows
labelled with the transmitted message. Both words p!q(Q).q!p(A).q?p(Q).p?q(A)
and q!p(A).p?q(A).p!q(Q).q?p(Q) are linearizations of M .

An MSC B = (E, λ, {�p}p∈P ,�) is defined in the same way as a causal
MSC except that every �p is required to be a total order. In an MSC B, the
relation �p must be interpreted as the visually observed order of events in one
sequential execution of p. Let B′ = (E′, λ′, {�′

p},�′) be a causal MSC. Then
we say the MSC B is a visual extension of B′ if E′ = E, λ′ = λ, �′

p ⊆ �p and
�′ = �. We let Vis(B′) denote the set of visual extensions of B′. In Figure 3,
Vis(M) consists of MSCs M1,M2.

Q

A

p q

Q

A

p q p q

A

Q

M M1 M2

Fig. 3. A causal MSC M and its visual extensions M1, M2.

We shall now define the concatenation operation of causal MSCs using the
trace alphabets {(Σp, Ip)}.
Definition 2. Let B = (E, λ, {�p},�) and B′ = (E′, λ′, {�′

p},�′) be causal
MSCs. We define the concatenation of B with B′, denoted by B � B′, as the
causal MSC B′′ = (E′′, λ′′, {�′′

p},�′′) where

– E′′ is the disjoint union of E and E′. λ′′ is given by: λ′′(e) = λ(e) if e ∈ E
and λ′′(e) = λ′(e) if e ∈ E. And �′′ = � ∪ �′.

– For each p, �′′
p is the transitive closure of

�p

⋃
�′

p

⋃
{(e, e′) ∈ Ep × E′

p | λ(e) Dp λ′(e′)} .

Clearly � is a well-defined and associative operation. Note that in case B and
B′ are MSCs and Dp = Σp × Σp for every p, then the result of B � B′ is the
asynchronous concatenation (also called weak sequential composition) of B with
B′ [15], which we denote by B ◦ B′. We also remark that the concatenation of
causal MSCs is different from the concatenation of traces. The concatenation of
trace [u]p with [v]p is the trace [uv]p. However, a causal MSC B need not respect
{(Σp, Ip)}. Consequently, for a process p, Lin(B) may contain a word u such
that the projection of u on Alphp(B) is not a trace.

We can now define causal HMSCs.

Definition 3. A causal HMSC over (P, {(Σp, Ip)}) is a structure
H = (N,Nin ,B,−→, Nfi) where N is a finite nonempty set of nodes, Nin ⊆ N
the set of initial nodes, B a finite nonempty set of causal MSCs, −→ ⊆ N×B×N
the transition relation, and Nfi ⊆ N the set of final nodes.

A path in the causal HMSC H is a sequence ρ = n0
B1−→ n1

B2−→ · · · B�−→ n� . If
n0 = n�, then we say ρ is a cycle. The path ρ is accepting iff n0 ∈ Nin and n� ∈
Nfi . The causal MSC generated by ρ, denoted �(ρ), is B1 � B2 � · · ·� B�. Note
that the concatenation operation � is associative. We let CaMSC (H) denote the
set of causal MSCs generated by accepting paths of H. We also set Vis(H) =⋃{Vis(M) | M ∈ CaMSC (H)} and Lin(H) =

⋃{Lin(M) | M ∈ CaMSC (H)}.
Obviously, Lin(H) is also equal to

⋃{Lin(M) | M ∈ Vis(H)}. We shall refer
to CaMSC (H), Vis(H), Lin(H), respectively, as the causal language, visual
language and linearization language of H.

An HMSC H = (N,Nin ,B,−→, Nfi) is defined in the same way as a causal
HMSC except that B is a finite set of MSCs and every MSC in B is FIFO.
A path ρ of H generates an MSC by concatenating the MSCs along ρ. We
let Vis(H) denote the set of MSCs generated by accepting paths of H with ◦,
and call Vis(H) the visual language of H. Recall that an MSC language (i.e. a
collection of MSCs) L is finitely generated [12] iff there exists a finite set X of
MSCs satisfying the condition: for each MSC B in L, there exist B1, . . . , B� in
X such that B = B1 ◦ · · · ◦ B�. Many protocols exhibit scenario collections that
are not finitely generated. For example, sliding window protocols can generate
arbitarily large MSCs repeating the communication behaviour shown in MSC
N of Figure 2. One basic limitation of HMSCs is that their visual languages
are finitely generated. In contrast, the visual language of a causal HMSC is not
necessarily finitely generated. For instance, suppose we view H in Figure 1 as a
causal HMSC by considering M1,M2 as causal MSCs and associating H with
the independence relations given by: Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))}
and Iq = ∅. Then clearly Vis(H) is not finitely generated, as it contains infinitely
many MSCs similar to N of Figure 2.

3 Regularity and Model-Checking for causal HMSCs

3.1 Semantics for causal HMSCs

As things stand, a causal HMSC H defines three syntactically different lan-
guages, namely its linearization language Lin(H), its visual language (MSC)
language Vis(H) and its causal MSC language CaMSC (H). The next proposi-
tion shows that they are also semantically different in general. It also identifies
the restrictions under which they match semantically.

Proposition 1. Let H,H ′ be causal HMSCs over the same family of trace al-
phabets {(Σp, Ip)}. Consider the following three hypotheses: (i) CaMSC (H) =
CaMSC (H ′); (ii) Vis(H) = Vis(H ′); and (iii) Lin(H) = Lin(H ′). Then we
have:

– (i) =⇒ (ii) and (ii) =⇒ (iii); but the converses do not hold in general.
– If every causal MSC labelling transitions of H,H ′ respects {(Σp, Ip)}, then

(ii) =⇒ (i).
– If every causal MSC labelling transitions of H,H ′ is FIFO, then (iii) =⇒

(ii).

Proof. – The implications (i) =⇒ (ii) and (ii) =⇒ (iii) follow from
the definitions. However, as shown in Figure 4, Vis(G1) = Vis(H1) but
CaMSC (G1) �= CaMSC (H1). And Lin(G2) = Lin(H2) but Vis(G2) �=
Vis(H2). Note that the independence relation is immaterial in these ex-
amples.

– This follows from the observation that, for any MSCs M1,M2 in
Vis(H)

⋃
Vis(H ′), we have that M1 �= M2 iff Lin(M1) ∩ Lin(M2) = ∅.

– This follows from the observation that, for any causal MSCs B1, B2 in
CaMSC (H)

⋃
CaMSC (H ′), we have that B1 �= B2 iff Vis(B1)∩Vis(B2) = ∅.

��

M

G1

m

p q p q p q

M M1 M2

m m

m

m

m

H1

M1

G2

M2

H2

M1 M2

Fig. 4. Relations between linearizations, visual extensions and causal orders

For most purposes, the relevant semantics for a causal HMSC seems to be
its visual language.

3.2 Regular sets of linearizations

It is undecidable in general whether an HMSC has a regular linearization lan-
guage [13]. In the literature, a subclass of HMSCs called regular [13] (or

bounded [2]) HMSCs, has been identified. The linearization language of every
regular HMSC is regular. And one can effectively whether an HMSC is in the
subclass of regular HMSCs. We extend these results to causal HMSCs. First,
let us recall the notions of connectedness from Mazurkiewicz traces theory [4],
and of communication graphs [2, 13, 6]. Let p ∈ P, and B = (E, λ, {�p},�) be
a causal MSC. We say that Γ ⊆ Σp is Dp-connected iff the (undirected) graph
(Γ,Dp ∩ (Γ × Γ)) is connected. Moreover, we define the communication graph
of B, denoted by CGB , to be the directed graph (Q,�), where Q = {p ∈ P |
Ep �= ∅} and � ⊆ Q × Q is given by (p, q) ∈ � iff � ∩ (Ep × Eq) �= ∅. Now we
say the causal MSC B is tight iff its communication graph CGB is connected
and for every p, Alphp(B) is Dp-connected. We say the causal MSC B is rigid iff
(i) B is FIFO; (ii) CGB is strongly connected; and (iii) for every p, Alphp(B) is
Dp-connected. We will focus here on rigidity and study the notion of tightness
in section 3.3.

Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. We say that H is regular
iff for every cycle ρ in H, the causal MSC �(ρ) is rigid. For instance, the simple
protocol modeled by the causal HMSC of Figure 5, is regular, since the only
cycle is labeled by two local events a, b, one message from p to q and one message
from q to p. The communication graph associated to this cycle is then strongly
connected, p!q(m) − b − p?q(n) on process p is connected, and q!p(n) − a −
q?p(m) on process q is connected. Equivalently, H is regular iff for every strongly
connected subgraph G of H with {B1, . . . , B�} being the set of causal MSCs
appearing in G, we have B1�. . .�B� is rigid. Note that the rigidity of B1�. . .�B�

does not depend on the order in which B1, . . . , B� are listed. This leads to a co-
NP-complete algorithm to test whether a causal HMSC is regular.

In the same way, we say that H is globally-cooperative iff for every strongly
connected subgraph G of H with {B1, . . . , B�} being the set of causal MSCs
appearing in G, we have that B1 � . . . � B� is tight.

Ip

Iq

m a

qp p q

nb

= { (p?q(n), p!q(m)), (p!q(m), p?q(n)) }

= { (q?p(m), q!p(n)), (q!p(n), q?p(m)) }

Fig. 5. A regular causal HMSC which is not finitely generated

Theorem 1. Let H = (N,Nin ,B,−→, Nfi) be a regular causal HMSC. Then
Lin(H) is a regular subset of Σ�, that is, we can build a finite state automaton
AH over Σ that recognizes Lin(H). Furthermore, AH has at most

(
|N |2 · 2|Σ| ·

2|N |·|Σ|·2m
)|N |·|Σ|·2m

states, where m = max{|B| | B ∈ B} with |B| denoting the
number of events in B.

In [11], the regularity of linearization languages of regular HMSC was proved
by using an encoding into connected traces and building a finite state automaton
which recognizes such connected traces. In our case, finding such embedding into
Mazurkiewicz traces seems impossible due to the fact that causal MSCs need
not be FIFO. Instead, we shall use techniques from the proof of regularity of
trace closures of loop-connected automata from [4, 13].

The rest of this subsection is devoted to the proof of Theorem 1. We fix a
regular causal HMSC H as in the theorem, and show the construction of the
finite state automaton AH over Σ which accepts Lin(H).

First, we establish some technical results.

Lemma 1. Let ρ = θ1 . . . θ2 . . . θ|Σ| be a path of H, where for each i = 1, . . . , |Σ|,
the subpath θi = ni,0

Bi,1−→ ni,1 . . . ni,�i−1

Bi,�i−→ ni,0 is a cycle (these cycles need
not be contiguous). Suppose further that the sets B̂i = {Bi,1, . . . , Bi,�i

}, i =
1, . . . , |Σ|, are equal. Let e be an event in �(θ1) and e′ an event in �(θ|Σ|). Let
�(ρ) = (E, λ, {�p},�). Then we have e ≤ e′.

Proof. We consider two cases.
—Case (i): loc(λ(e)) = loc(λ(e′)).
Let p = loc(λ(e)). Let us recall that H is regular, thus Alphp(�(θ1)) =

. . . = Alphp(�(θK)) is Dp-connected. Consequently, we can find a set of events
{ej}j=1,...,t, where t ≤ |Σp|−2, each ej is in �(θj+1), and such that λ(e)Dpλ(e1)
Dp . . . Dp λ(et) Dp λ(e′). Thus e ≤ e1 ≤ . . . ≤ et ≤ e′.

—Case (ii): loc(λ(e)) �= loc(λ(e′)). Let p1p2 . . . pt be a path from loc(λ(e))
to loc(λ(e′)) in the communication graph of �(ρ), where p1 = loc(λ(e)), pt =
loc(λ(e′)). In view of the arguments in Case (i), it is easy to see that we can pick
events ei, fi in �(θui

), i = 1, . . . , t − 1, where for each i, ui = |Σp1 | + |Σp2 | +
. . . + |Σpi

|, loc(ei) = pi, loc(fi) = pi+1 and ei � fi. Thus e ≤ e1 � f1 ≤ e2 �
f2 ≤ . . . ≤ et−1 � ft−1 ≤ e′. ��

Let ρ = n0
B1−→ · · · B�−→ n� be a path in H, where Bi = (Ei, λi, {�i

p},�i) for
i = 1, . . . , 	. Let �(ρ) = (E, λ, {�p},�,≤). A configuration of ρ is a ≤-closed
subset of E. Let C be a configuration of ρ. A C-subpath of ρ is a maximal subpath

 = nu
Bu+1−→ . . .

Bu′−→ nu′ , such that C ∩ Ei �= ∅ for each i = u, . . . , u′. For such a
C-subpath
, we define its C-residue to be the set (Eu+1 ∪Eu+2 ∪ · · ·∪Eu′)−C.
Figure 6 illustrates these notions. Each causal MSC is represented by a rectangle.
Events in the configuration C are indicated by small filled circles, while events
not in C are indicated by small blank circles. The two C-subpaths identified on

C−subpath C−subpath

Configuration C

Fig. 6. Events in C-subpaths are indicated by small filled circles. Events in C-residues
are indicated by small blank circles.

Figure 6 are the sequences of transitions that provide the events appearing in
C.

Lemma 2. Let ρ be a path in H and C be a configuration of ρ. Then,

(i) The number of C-subpaths of ρ is at most Ksubpath = |N | · |Σ| · 2|B|.
(ii) Let
 be a C-subpath of ρ. Then the number of events in the C-residue of

is at most Kresidue = |N | · |Σ| · 2|B| · max{|B| | B ∈ B}.
Proof. (i) Suppose the contrary. Let K = |Σ| · 2|B|. We can find K + 1 C-

subpaths whose ending nodes are equal. Let the indices of these K+1 ending
nodes be i1 < i2 < . . . < iK+1. For h = 1, . . . ,K, let θh be the subpath of
ρ from nih

to nih+1 ; and let B̂h be the set of causal MSCs appearing in
θh. Hence we can find θj1 , θj2 , . . ., θj|Σ| , j1 < j2 < . . . < j|Σ|, such that
B̂j1 = B̂j2 = . . . = B̂j|Σ| . Pick an event e from �(θj1) with e /∈ C. Such
an e exists, since, for example, none of the events in the first causal MSC
appearing in θj1 is in C. Pick an event e′ from �(θj|Σ|) with e′ ∈ C. Applying
Lemma 1 yields that e < e′. This leads to a contradiction, since C is ≤-closed.

(ii) Let
 = ni
Bi+1−→ . . .

Bi′−→ ni′ . Let Êj = Ej −C for j = i + 1, . . . , i′. By similar
arguments as in (i), it is easy to show that among Êi+1, . . ., Êi′ , at most
|N | · |Σ| · 2|B| of them are nonempty. The claim then follows.

We are now ready to define the finite state automaton AH = (S, Sin , Σ, Sfi ,
=⇒) which accepts Lin(H). As usual, S will be the set of states, Sin ⊆ S
the initial states, =⇒ ⊆ S × Σ × S the transition relation, and Sfi ⊆ S the
final states. Fix Ksubpath , Kresidue to be the constants defined in Lemma 2. If
B = (E, λ, {�p},�) is a causal MSC and E′ a subset of E, then we define the
restriction of B to E′ to be the causal MSC B′ = (E′, λ′, {�′

p},�′) as follows.
As expected, λ′ is the restriction of λ to E′; for each p, �′

p is the restriction of
�p to (E′ ∩ Ep) × (E′ ∩ Ep); and �′ is the restriction of � to E′.

Intuitively, for a word σ in Σ�, AH guesses an accepting path ρ of H and
checks whether σ is in Lin(�(ρ)). After reading a prefix σ′ of σ, AH memorizes a
sequence of subpaths from which σ′ was “linearized” (i.e the C-subpath of a path

ρ such that C is a configuration reached after reading σ′ and �(ρ) contains C).
With Lemma 2, it will become clear later that at any time, we should remember
at most Ksubpath such subpaths. Moreover, for each subpath, we need to know
only a bounded amount of information, which will be stored in a data structure
called “segment”.

A causal MSC Bi = (Ei, λ, {�p},�) is K-bounded if |E| ≤ K. A segment is
a tuple (n, Γ,W, n′), where n, n′ ∈ N , Γ is a nonempty subset of Σ, and W is
either a non-empty Kresidue -bounded causal MSC, or the special symbol ⊥. The
state set S of AH is the collection of finite sequences θ1θ2 . . . θ�, 0 ≤ 	 ≤ Ksubpath ,
where each θi is a segment. Intuitively, a segment (n, Γ,W, n′) keeps track of a
subpath
 of H which starts at n and ends at n′. Γ is the collection of letters of
events in �(
) that have been “linearized”. Finally, W is the restriction of �(
)
to the set of events in �(
) that are not yet linearized. In case all events in �(
)
have been linearized, we set W = ⊥. For convenience, we extend the operator �
by: W � ⊥ = ⊥ � W = W for any causal MSC W ; and ⊥ � ⊥ = ⊥.

We define AH = (S, Sin , Σ, Sfi ,=⇒) as follows:

– As mentioned above, S is the collection of finite sequence of at most Ksubpath

segments.
– The initial state set is Sin = {ε}, where ε is the null sequence.
– A state is final iff it consists of a single segment θ = (n, Γ,⊥, n′) such that

n ∈ Nin and n′ ∈ Nfi (and Γ is any nonempty subset of Σ).
– The transition relation =⇒ of AH is the least set satisfying the following

conditions.
—Condition (i):
Suppose n

B−→ n′ where B = (E, λ, {�p},�,≤). Let e be a minimal event in
B (with respect to ≤) and let a = λ(e). Let θ = (n, Γ,W, n′) where Γ = {a}.
Let R = E − {e}. If R is nonempty, then W is the restriction of B to R;
otherwise we set W = ⊥. Suppose s = θ1 . . . θkθk+1 . . . θ� is a state in S
where θi = (ni, Γi,Wi, n

′
i) for each i. Suppose, for every e′ ∈ E with e ≤ e′,

it is the case that λ(e′)Ipγ for any γ ∈ Σp∩(
⋃

k+1≤i≤� Γi), where p = loc(e′).
• (“create a new segment”) Let ŝ = θ1 . . . θkθθk+1 . . . θ�. If ŝ is in S, then

s
a=⇒ ŝ. In particular, for the initial state ε, we have ε

a=⇒ θ.
• (“add to the beginning of a segment”) Suppose n′ = nk+1. Let θ̂ = (n, Γ∪

Γk+1, Ŵ , n′
k+1), where Ŵ = W � Wk+1. Let ŝ = θ1 . . . θkθ̂θk+2 . . . θ�. If

ŝ is in S, then s
a=⇒ ŝ.

• (“append to the end of a segment”) Suppose n = n′
k. Let θ̂ = (nk, Γk ∪

Γ, Ŵ , n′), where Ŵ = Wk � W . Let ŝ = θ1 . . . θk−1θ̂θk+1 . . . θ�. If ŝ is in
S, then s

a=⇒ ŝ.
• (“glue two segments”) Suppose n = n′

k and n′ = nk+1. Let θ̂ = (nk, Γk ∪
Γ ∪ Γk+1, Ŵ , n′

k+1), where Ŵ = Wk � W � Wk+1. Let ŝ be
θ1 . . . θk−1θ̂θk+2 . . . θ�. If ŝ is in S, then s

a=⇒ ŝ.
—Condition (ii):
Suppose s = θ1 . . . θkθk+1 . . . θ� is a state in S where θi = (ni, Γi,Wi, n

′
i)

for i = 1, 2, . . . , 	. Suppose Wk �= ⊥. Let Wk = (Rk, λk, {�k
p},�k,≤k). Let

e be a minimal event in Wk and a = ηk(e). Suppose, for every e′ ∈ Rk

with e ≤ e′, it is the case that ηk(e′) Ip γ for any γ ∈ Σp ∩ (
⋃

k+1≤i≤� Γi),

where p = loc(e′). Let θ̂ = (nk, Γk ∪ {a}, Ŵ , n′
k), where Ŵ is as follows:

Let R̂ = Rk − {e}. If R̂ is nonempty, then Ŵ is the restriction of W to R̂;
otherwise Ŵ = ⊥. Let ŝ = θ1 . . . θk−1θ̂θk+1 . . . θ�. Then we have s

a=⇒ ŝ.
(Note that ŝ is guaranteed to be in S.)

We have now completed the construction of AH . It remains to show that AH

recognizes Lin(H).

Lemma 3. Let σ ∈ Σ�. Then σ is accepted by AH iff σ is in Lin(H).

Proof. Let σ = a1a2 . . . ak. Suppose σ is in Lin(H). Let ρ = n0
B1−→ . . .

B�−→ n�

be an accepting path in H such that σ is a linearization of �(ρ). Hence we
may suppose that �(ρ) = (E, λ, {�p},�,≤) where E = {e1, e2, . . . , ek} and
λ(ei) = ai for i = 1, . . . , k. And ei ≤ ej implies i ≤ j for any i, j in {1, . . . , k}.
Consider the configurations Ci = {e1, e2, . . . , ei} for i = 1, . . . , k. For each Ci,
we can associate a state si in AH as follows. Consider a fixed Ci. Let ρ =
. . .
1 . . .
2 . . .
h . . . where
1,
2, . . .,
h are the Ci-subpaths of ρ. Then we set
si = θ1 . . . θh where θj = (nj , Γj ,Wj , n

′
j) with nj being the starting node of

j , and Γj the collection of all λ(e) for all events e that are in both �(
j) and
Ci. Let Rj be the Ci-residue of
j . If Rj is nonempty, Wj is the causal MSC
(Rj , λj , {�j

p},�j ,≤j) where λj is the restriction of λ to Rj ; �j
p is the restriction

of �p to those events in Rj that belong to process p, for each p; and �j the
restriction of � to Rj . If Rj is empty, then set Wj = ⊥. Finally, n′

j is the ending
node of
j .

Now it is routine (though tedious) to verify that ε
a1=⇒ s1 . . . sk−1

ak=⇒ sk is
an accepting run of AH . Conversely, given an accepting run of AH over σ, it is
straightforward to build a corresponding accepting path of H.

��
With Lemma 3, we establish Theorem 1. As for complexity, the bound on

the number of states in AH stated in Theorem 1 is clear from the construction
of AH .

3.3 Inclusion and intersection non-emptiness of causal HMSCs

As the linearization languages of regular causal HMSCs are regular, verification
for regular causal HMSCs can be effectively solved. It is natural to ask whether
we can still obtain positive results of verification beyond the subclass of regular
causal HMSCs. As for HMSCs, one can show that for a suitable choice of K, the
set of K-bounded linearizations of any globally cooperative HMSC is regular,
and this is sufficient for effective verification [5]. Unfortunately, this result uses
Kuske’s encoding [11] into traces that is based on the existence of an (existen-
tial) bound on communication. Consequently, this technique does not apply to

globablly cooperative causal HMSCs, as the visual language of a causal HMSC
needs not be existentially bounded. For instance, consider the causal HMSC H
of Figure 7. It is globally cooperative (but not regular), and its visual language
contains MSCs shown in the right part of Figure 7: in order to receive the first
message from p to r, the message from p to q and the message from q to r have
to be sent and received. Hence every message from p to r has to be sent before
receiving the first message from p to r, which means that H is not existentially
bounded.

It is known that problems of inclusion, intersection non-emptiness and equali-
ty of visual languages of HMSCs are undecidable [13]. Clearly, these undecidabil-
ity results also apply to causal HMSCs. In [13], decidability results for inclusion
and intersection non-emptiness of globally cooperative HMSCs are established.
Our goal here is to extend these results to globally cooperative causal HMSCs.

Ip

Iq

= { (p!q(m), p!r(o)), (p!r(o), p!q(m)) } n
m

o

o

qp r

r

o

pr

n

q
m

p

= { } = { }Ir

Fig. 7. A globally-cooperative causal HMSC that is not existentially bounded

We shall adapt the notion of atoms [1, 9] and the techniques from [6]. Let us
first introduce a notion of decomposition of causal MSCs into basic parts.

Definition 4. A causal MSC B is a basic part (w.r.t. the trace alphabets
{(Σp, Ip)}) if there do not exist causal MSCs B1, B2 such that B = B1 � B2.

Note that we require that the set of events of a causal MSC is not empty. Now
for a causal MSC B, we define a decomposition of B to be a sequence B1 · · ·B� of
basic parts such that B = B1� · · ·�B�. For a set B of basic parts, we associate a
trace alphabet (B, IB) (w.r.t. the trace alphabets {(Σp, Ip)}) where IB is given by:
B IB B′ iff for every p, for every α ∈ Alphp(B), for every α′ ∈ Alphp(B′), it is the
case that α Ip α′. We let ∼B be the corresponding trace equivalence relation and
denote the trace containing a sequence u = B1.B� in B� by [u]B (or simply
[u]). For a language L ⊆ B�, we define its trace closure [L]B =

⋃{[u]B | u ∈ L}.
Proposition 2. For a given causal MSC B, we can effectively construct the
smallest finite set of basic parts, denoted Basic(B), such that every decomposition
of B is in Basic(B)�. Further, the set of decompositions of B forms a trace of
(Basic(B), IBasic(B)).

Proof. We describe the construction of Basic(B), which is analogous to the
technique in [9]. The claim will then be clear from this construction. Let B =
(E, λ, {�p},�). We consider the undirected graph (E,R), where R is the sym-
metric closure of � ∪(⋃

p∈P R′
p ∪ R′′

p

)
. Here,

R′
p = {(e, e′) ∈ Ep × Ep | e �p e′ and λ(e) Ip λ(e′)} ,

R′′
p = {(e, e′) ∈ Ep × Ep | e ��p e′ and e′ ��p e and λ(e) Dp λ(e′)} .

For each connected component of (E,R) with E′ being its set of vertices, we
associate a basic part (E′, λ′, {�′

p},�′), where λ′ is the restriction of λ to E′,
�′

p is the restriction of �′
p to E′, and �′ is the restriction of � to E′. The

set Basic(B) is then the collection of basic parts obtained from the connected
components of (E,R). Note that Basic(B) can be constructed in quadratic time.

��
In view of Proposition 2, we assume through the rest of this section that

every transition of a causal HMSC H is labelled by a basic part. Clearly this
incurs no loss of generality, since we can simply decompose each causal MSC in
H into basic parts and decompose any transition of H into a sequence of tran-
sitions labeled by these basic parts. Given a causal HMSC H, we let Basic(H)
be the set of basic parts labelling transitions of H. Proposition 2 implies that
a causal MSC is uniquely defined by its basic part decomposition. Then in-
stead of the linearization language we can use the basic part language of H,
denoted by BP(H) = {B1 . . . B� ∈ Basic(H)� | B1 � . . . � B� ∈ CaMSC (H)}.
Notice that BP(H) = [BP(H)] by Proposition 2, that is, BP(H) is closed by
commutation. We can also view H as a finite state automaton over the alpha-
bet Basic(H), and denote by LBasic(H) = {B1 · · ·B� ∈ Basic(H)� | n0

B1−→
n1 · · · B�−→ n� is an accepting path of H.} its associated (regular) language. We
now relate BP(H) and LBasic(H).

Proposition 3. Let H be a causal HMSC. Then BP(H) = [LBasic(H)].

Proof. Immediate from Proposition 2. ��
Assuming we know how to compute the trace closure of the regular language

LBasic(H), we can obtain BP(H) with the help of Proposition 3. In general, we
cannot effectively compute this language. However if H is globally cooperative,
then [LBasic(H)] is regular and a finite state automaton recognizing [LBasic(H)]
can be effectively constructed [4, 13]. Considering globally cooperative causal
HMSCs as finite state automata over basic parts, we can apply [13] to obtain
the following decidability and complexity results:

Theorem 2. Let H,H ′ be causal HMSCs over the same family of trace alphabets
{(Σp, Ip)}. Suppose H ′ is globally cooperative. Then we can build a finite state
automaton A′ over Basic(H ′) such that LBasic(A′) = [LBasic(H ′)]. And A′ has
at most 2O(n·b) states, where n is the number of nodes in H and b is the number
of basic parts in Basic(H). Consequently, the following problems are decidable:

(i) Is CaMSC (H) ⊆ CaMSC (H ′)?
(ii) Is CaMSC (H) ∩ CaMSC (H ′) = ∅?
Furthermore, the complexity of (i) is PSPACE-complete and that of (ii) is
EXPSPACE-complete.

The above theorem shows that we can model check a causal HMSC against a
globally cooperative causal HMSC specification. Note that we can only apply
Theorem 2 to two causal HMSCs over the same family of trace alphabets. If the
causal HMSCs H,H ′ in theorem 2 satisfy the additional condition that every
causal MSCs labeling the transitions of H and H ′ respects {(Σp, Ip)}, then we
can compare the visual languages Vis(H) and Vis(H ′), thanks to Proposition 1.
On the other hand, when two causal HMSCs are defined with different families
of trace alphabets, the only possible comparison between them seems to be on
their linearization languages. Consequently, we would need to work with regular
causal HMSCs.

4 Window-bounded causal HMSCs

One of the chief attractions of causal MSCs is they enable the specification
of behaviors containing braids of arbitrary size such as those generated by s-
liding windows protocols. Very often, sliding windows protocols appear in a
situation where two processes p and q exchange bidirectional data. Messages
from p to q are of course used to transfer information, but also to acknowl-
edge messages from q to p. If we abstract the type of messages exchanged, these
protocols can be seen as a series of query messages from p to q and answer
messages from q to p. Implementing a sliding window means that a process
may send several queries in advance without needing to wait for an answer to
each query before sending the next query. Very often, these mechanisms tol-
erate losses, i.e. the information sent is stored locally, and can be retransmit-
ted if needed (as in the alternating bit protocol). To avoid memory leaks, the
number of messages that can be sent in advance is often bounded by some in-
teger k, that is called the size of the sliding window. Note however that for
scenario languages defined using causal HMSCs, such window sizes do not al-
ways exist. This is the case for example for the causal HMSC depicted in Fig-
ure 1 with independence relations Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))}
and Iq = {((q?p(Q), q!p(A)), (q!p(A), q?p(Q))}. The language generated by this
causal HMSC contains scenarios where an arbitrary number of messages from
p to q can cross an arbitrary number of messages from q to p. A question that
naturally arises is to know if the number of messages crossings is bounded by
some constant in all the executions of a protocol specified by a causal HMSC.
In what follows, we define these crossings, and show that their boundedness is a
decidable problem.

Definition 5. Let M = (E, λ, {�p},�) be an MSC For a message (e, f) in
M , that is, (e, f) ∈ �, we define the window of (e, f), denoted WM (e, f),

A

A

A

Q

Q m1

p q
Q

Fig. 8. Window of message m1

as the set of messages {(e′, f ′) ∈ �| loc(λ(e′)) = loc(λ(f)) and loc(λ(f ′)) =
loc(λ(e)) and e ≤ f ′ and e′ ≤ f}.

We say that a causal HMSC H is K-window-bounded iff for every M ∈ Vis(H)
and for every message (e, f) of M , it is the case that |WM (e, f)| ≤ K. H is said
to be window-bounded iff H is K-window-bounded for some K.

Figure 8 illustrates notion of window, where the window of the message m1

is symbolized by the area delimited by dotted lines. It consists of all but the
first message Q from p to q. Clearly, the causal HMSC H of Figure 1 is not
window-bounded. We now describe an algorithm to effectively check whether
a causal HMSC is window bounded. It builds a finite state automaton whose
states remember the labels of events that must appear in the future of messages
(respectively in the past) in any MSC of Vis(H).

Formally, for a causal MSC B = (E, λ, {�p},�) and (e, f) ∈� a message of
B, we define the future and past of (e, f) in B as follows:

FutureB(e, f) = {a ∈ Σ | ∃x ∈ E, f ≤ x ∧ λ(x) = a}
PastB(e, f) = {a ∈ Σ | ∃x ∈ E, x ≤ e ∧ λ(x) = a}

In Figure 8, PastB(m1) = {p!q(Q), q?p(Q), q!p(A)}.

Proposition 4. Let B = (E, λ, {�p},�) and B′ = (E′, λ′, {�′
p},�′) be two

causal MSCs, and let m ∈� be a message of B. Then we have:

FutureB�B′(m) = FutureB(m) ∪ {a′ ∈ Σ | ∃x, y ∈ E′

∃a ∈ FutureB(m) s.t. λ(y) = a′ ∧ x ≤′ y ∧ a Dloc(a) λ(x)}
Proof. Follows from definition. ��

Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Consider a path ρ of H
with �(ρ) = B1 � · · · � B� and a message m in B1. Then Proposition 4 implies
the sequence of sets FutureB1(m), FutureB1�B2(m), . . ., FutureB1�···�B�

(m) is
non-decreasing. Furthermore, these sets can be computed on the fly, that is with
a finite state automaton. Similar arguments hold for the past sets. Now consider
a message (e, f) in a causal MSC B labelling some transition t of H. With the
above observation on Future and Past , we can show that, if there is a bound
K(e,f) such that the window of a message (e, f) in the causal MSC generated by
any path containing t is bounded by K(e,f), then K(e,f) is at most b|N |(|Σ|+ 1)
where b = max{|B| | B ∈ B}. Further, we can effectively determine whether
such a bound K(e,f) exists by constructing a finite state automaton whose states
memorize the future and past of (e, f). Thus we have the following:

Theorem 3. Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Then we have:

(i) If H is window-bounded, then H is K-window-bounded, where K is at most
b|N |(|Σ| + 1) with b = max{|B| | B ∈ B}.

(ii) Further, we can effectively determine whether H is window-bounded in time
O(s · |N |2 · 2|Σ|), where s is the sum of the sizes of causal MSCs in B.

The rest of this subsection is devoted to the proof of Theorem 3. We fix H
as in Theorem 3.

Proof (of Theorem 3(i)). Suppose the contrary. That is, H is window-bounded,
but not k-window-bounded, where k = |B||N |(|Σ| + 1). Let B ∈ B be a causal
MSC in CaMSC (H), and let the pair (e, f) be a message of B. Let ρ be a path
of H, and V ∈ Vis(�(ρ)) be an MSC such that the message (e, f) is crossed
by k + 1 messages in V . Then, there exists a causal MSC B′ ∈ B containing a
message m′ that crosses (e, f) at least 2|N |(|Σ|+ 1) times in V . Without loss of
generality, we can consider that B′ is repeated at least |N |(|Σ|+1) times after B
in ρ (symmetric proof holds when considering repetitions of B′ occurring before
B). That is, ρ has the form

· · · B→ · · ·n1
B1→ · · ·n2

B2→ · · ·nt
Bt→ · · ·

where t = |N |(|Σ| + 1) and B′ = B1 = B2 = . . . = Bt. Hence, we can find
j1 . . . j|Σ|+1 such that nj1 = . . . = nj|Σ|+1 . Consider the sequence of sets Fi =
FutureB1�...�Bji

(e, f), i = 1, 2, . . . , |Σ| + 1. Each Fi is a subset of Σ and the
sequence F1, F2, . . . , F|Σ|+1 is non-decreasing. Hence, we can find 	 ≤ |Σ| such
that F� = F�+1 which does not contain labels of m′. This means that path ρ′,
which is computed from path ρ by repeating twice the loop between nj�

and
nj�+1 , has the same Future, and have at least one more m′ which can cross m.
Thus, we can exhibit a new execution V ′ ∈ Vis(�(ρ′)) such that (e, f) is crossed
by at least k + 2 messages. As we can iterate this construction, it means that H
is not window-bounded. ��

We next establish Theorem 3(ii), We shall show that one can decide in an
efficient way whether the maximal window bound for a given message m can

be reached, by constructing a finite state automaton that memorizes Future(m)
and Past(m).

For a given causal HMSC H = (N,Nin ,B, Nfi ,−→) and a message (e, f), we
build the following automaton: A(e,f) = (Q,Qin ,B, Qfi , δ) where:

– Q = N × 2Σ .
– Qin = {(n, ∅) | n ∈ Nin} .
– (n,X) ∈ Qfi if and only if n ∈ Nfi .
– δ ⊆ Q × B × Q is the least relation such that:

• (
(n, ∅), B, (n′, ∅)) ∈ δ if n

B−→ n′

• (
(n, ∅), B, (n′,FutureB(e, f))

) ∈ δ if n
B−→ n′ and (e, f) belongs to B.

• (
(n,X), B, (n′,X ′)

) ∈ δ, where B = (E, λ, {�p},�,≤), if n
B−→ n′, and

X �= ∅, and X ′ = X ∪ {a′ ∈ Σ | ∃x, y ∈ E,∃a ∈ FutureB(e, f), λ(y) =
a′ ∧ x ≤ y ∧ a D λ(x)}.

We also build an automaton that computes Past(e, f), by a backward search
in the causal HMSC H. More precisely,

A′
(e,f) = (Q′, Q′

in ,B, Q′
fi , δ′) where

– Q′ = N × 2Σ

– Q′
in = Nfi × {∅}

– Q′
fi = Nin × 2Σ

– δ′ ⊆ Q × B × Q is the least relation such that:
• (

(n, ∅), B, (n′, ∅)) ∈ δ if n′ B−→ n

• (
(n, ∅), B, (n′,PastB(e, f))

) ∈ δ if n′ B−→ n and (e, f) belongs to B.

• (
n,X), B, (n′,X ′)

) ∈ δ, where B = (E, λ, {�p},�,≤), if n′ B−→ n, and
X �= ∅, and X ′ = X ∪ {a′ ∈ Σ | ∃x, y ∈ E,∃a ∈ PastB(e, f), λ(y) =
a′ ∧ y ≤ x ∧ a D λ(x)}

More intuitively, a state q = (n,X) in A(e,f) represents a possible set X of la-
bels in Future�(ρ)(e, f) for some path ρ that ends at node n in H, and contains a
message (e, f). Slightly abusing the notation, we will denote by Future(q) the set
X. The second rule in the transition relation δ (resp. δ′) is important, as it allows
to chose nondeterministically an occurrence of (e, f), and to start memorizing
the labels appearing in its future (resp. in its past). Note that in any strongly
connected subset C = {q1, . . . , qk} of A(e,f) (respectively A′

(e,f)), Future(q1) =
Future(q2) = · · · = Future(qk) (resp. Past(q1) = Past(q2) = · · · = Past(qk)).
Hence, we will denote by Future(C) (resp. Past(C)) the set of observed labels
on any state of C.

We observe the following properties of the finite state automata A(e,f) and
A′

(e,f).

Lemma 4. Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Let B be a causal
MSC in B and (e, f) a message in B with the label of e being p!q(m). Consider
the finite state automata A(e,f) and A′

(e,f) as constructed above. Then, H is
window-bounded iff both of the following conditions hold:

– There does not exist a strongly connected component C in A(e,f) and a letter
q!p(m′) ∈ Σ such that q!p(m′) is in Alph(B) − Future(C) for some causal
MSC B labelling a transition in C.

– There does not exist a strongly connected component C in A′
(e,f) and a letter

q!p(m′) ∈ Σ such that q!p(m′) is in Alph(B)−Past(C) for some causal MSC
B labelling a transition in C.

Proof. One direction is straightforward. If any of these strongly connected com-
ponents exists (either before or after m), then there is an unbounded number
of path generating an unbounded number of occurrences of q!p(m′) that are not
causally related to m. Hence, for each of these path, there is a visual extension
where all m′ generated by occurrences of the cycle cross m, and the window
size of m is not bounded. The other direction is a direct consequence of Theo-
rem 3(i). ��

Thus Theorem 3(ii) follows from Lemma 4. It remains to establish the com-
plexity claim in Theorem 3(ii). The automaton A(e,f) has at most |N | × 2|Σ|

states, and we have to analyze strongly connected components of A(e,f). How-
ever, as noticed before, every strongly connected component of A(e,f) enjoys the
property to have a second component which is constant. Hence we need to test
the property only for maximal strongly connected components. Indeed, if C is
a strongly connected component of A(e,f) such that q!p(m′) is the label of an
event in a causal MSC labeling a transition of C but that is not in Future(C),
then we can consider the maximal strongly connected component D of A(e,f)

containing C (it exists since the union of two non disjoint strongly connected
components is again a strongly connected component). Since D it is a strong-
ly connected component, its second component Future(D) is constant, hence
Future(D) = Future(C). Since C ⊆ D, we have that q!p(m′) is a label of an
event of D and is not in Future(C) = Future(D).

Using Tarjan’s algorithm [16], we can compute in quadratic time the partition
of A(e,f) into maximal strongly connected components (for each set X ⊆ 2Σ ,
we partition the subpart of A(e,f) with a constant second component being
X). Then for each maximal strongly connected component (C,X), it suffices
to compute λ(C) and to compare it with X, which is linear in n. Hence, the
overall complexity of the algorithm is in O(|N |22|Σ|). Then, we construct these
automaton for each message of each label of H.

5 Relationship with Other Scenario Models

We compare here the expressive power of other HMSC-based scenario languages
with causal HMSCs in terms of their visual languages. We consider first HMSCs.
Two important strict HMSC subclasses are (i) regular [13] (also called bounded
in [2]) HMSCs which ensure that the linearizations form a regular set and (ii)
globally-cooperative HMSCs [6], which ensure that for a suitable choice of K,
the set of K-bounded linearizations form a regular set. By definition, causal

HMSCs, regular causal HMSCs and globally-cooperative causal HMSCs extend
respectively HMSCs, regular HMSCs and globally-cooperative HMSCs.

Figure 7 shows a globally-cooperative causal HMSC which is not in the
subclass of regular causal HMSCs. Thus, regular causal HMSCs form a strict
subclass of globally-cooperative causal HMSCs. Trivially, globally-cooperative
causal HMSCs are a strict subclass of causal HMSCs. Figure 5 displays a regu-
lar causal HMSC whose visual language is not finitely generated. It follows that
(regular/globally-cooperative) causal HMSCs are strictly more powerful than
(regular/globally-cooperative) HMSCs.

Another extension of HMSCs is Compositional HMSCs [7], or CHMSCs
for short. CHMSCs generalize HMSCs by allow dangling message-sending and
message-reception events, i.e. where the message pairing relation � is only a par-
tial non-surjective mapping contained in E!×E?. The concatenation of two Com-
positional MSCs M ◦M ′ performs the instance-wise concatenation as for MSCs,
and computes a new message pairing relation �′′ defined over (E!∪E′

!)×(E?∪E′
?)

extending � ∪ �′, and preserving the FIFO ordering of messages of the same
content (actually, in the definition of [7], there is no channel content).

A CHMSC H generates a set of MSCs, denoted Vis(H) by abuse of notation,
obtained by concatenation of MSCs along a path of the graph. With this defini-
tion, some path of a CHMSC may not generate any correct MSC. Moreover, a
path of a CHMSC generates at most one MSC. The class of CHMSC for which
each path generates exactly one MSC is called safe CHMSC, still a strict exten-
sion over HMSCs. Regular and globally cooperative HMSCs have also their strict
extensions in terms of safe CHMSCs, namely as regular CHMSC and globally
cooperative CHMSCs.

It is not hard to build a regular Compositional HMSC H with Vis(H) =
{Mi | i = 0, 1, . . .} where each Mi consists of an emission event e from p to r,
then a sequence of i blocks of three messages: a message from p to q followed by a
message from q to r then a message from r to p. And at last the reception event on
r from p matching e. That is, H is not finitely generated. A causal HMSC cannot
generate the same language. Assume for contradiction, a causal HMSC G with
Vis(G) = Vis(H). Let k be the number of messages of the biggest causal MSC
which labels a transition of G. We know that Mk+1 is in Vis(G), hence Mk+1 ∈
Vis(�(ρ)) for some accepting path ρ of G. Let N1, . . . , N� be causal MSCs along
ρ, where 	 ≥ 2 because of the size k. It also means that there exist N ′

1 ∈ Vis(N1),
. . ., N ′

� ∈ Vis(N�) such that N ′
1 ◦ · · · ◦N ′

m ∈ Vis(G). Thus, N1 ◦ · · · ◦N� = Mj for
some j, a contradiction since Mj is a basic part (i.e. cannot be the concatenation
of two MSCs). That is (regular) compositional HMSCs are not included into
causal HMSCs. On the other hand, regular causal HMSCs have a regular set
of linearizations (Theorem 1). Also by the results in [8], it is immediate that
the class of visual languages of regular compositional HMSCs captures all the
MSC languages that have a regular set of linearizations. Hence the class of
regular causal HMSCs is included into the class of regular compositional HMSCs.
Last, we already know with Figure 7 that globally-cooperative causal HMSCs
are not necessarily existentially bounded, hence they are not included into safe

r HMSC r CaHMSC r CHMSC

gc HMSC

gc CaHMSC

gc CHMSC

HMSC

CaHMSC

s CHMSC

CHMSC

Causal Compositional

regular

 globally
cooperative

 finitely
generated

Fig. 9. Comparison of Scenario languages

Compositional HMSC. Furthermore, globally-cooperative causal HMSCs are not
included into CHMSCs because the former can generate MSCs that are not
FIFO.

The relationships among these scenario models are summarized by Figure 9,
where arrows denote strict inclusion of visual languages. Two classes are incom-
parable if they are not connected by a transitive sequence of arrows. We use the
abbreviation r for regular, gc for globally-cooperative, s for safe, CaHMSC for
causal HMSCs and CHMSC for compositional HMSCs.

6 Conclusion

We have defined an extension of HMSC called causal HMSC that allows the
definition of braids, such as those appearing in sliding window protocols. We
also identified in this setting, many subclasses of scenarios that were defined for
HMSCs which have decidable verification problems. An interesting class that
emerges is globally-cooperative causal HMSCs. This class is incomparable with
safe Compositional HMSCs because the former can generate scenario collections
that are not existentially bounded. Yet, decidability results of model checking
can be obtained for this class.

An interesting open problem is deciding whether the visual language of a
causal HMSC is finitely generated. Yet another interesting issue is to consider
the class of causal HMSCs whose visual languages are window-bounded. The
set of behaviours generated by these causal HMSCs seems to exhibit a kind of
regularity that could be exploited. Finally, designing suitable machine models

(along the lines of Communicating Finite Automata [3]) is also an important
future line of research.

References

1. M. Ahuja, A.D. Kshemkalyani, and T. Carlson. A basic unit of computation in
distributed sytems. In Proc. of ICDS’90, pages 12–19, 1990.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Proc.
of CONCUR’99, number 1664 in LNCS, pages 114–129. Springer, 1999.

3. D. Brand and P. Zafiropoulo. On communicating finite state machines. Technical
Report RZ1053, IBM Zurich Research Lab, 1981.

4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking for a

class of communicating automata. Information and Computation., 204(6):920–956,
2006.

6. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSC-
s: Model-checking and realizability. Journal of Computer and System Sciences,
72(4):617–647, 2006.

7. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In
Proc. of TACAS’01, number 2031 in LNCS. Springer, 2001.

8. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P.S. Thiagarajan.
A theory of regular MSC languages. Information and Computation, 202(1):1–38,
2005.

9. L. Hélouët and P. Le Maigat. Decomposition of message sequence charts. In Proc.
of SAM’00, 2000.

10. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, 1999.

11. D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187(1):80–109, 2003.

12. R. Morin. Recognizable sets of message sequence charts. In Proc. of STACS’02,
number 2285 in LNCS, pages 523–534. Springer, 2002.

13. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In Proc. of MFCS’99, number 1672 in LNCS. Springer, 1999.

14. A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence charts.
In Proc. of FoSSaCS’98, number 1378 in LNCS, pages 226–242. Springer, 1998.

15. M. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis, Eind-
hoven University of Technology, 1999.

16. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1(2), 1972.

Appendix

We demonstrate the modelling power of causal HMSCs with an example in
Figure 10. The causal HMSC H models a subset of the possible scenarios ex-
hibited by the alternating bit protocol. The letters d0 indicates p sending to q
a data packet with control bit 0, while a0 represents q sending to p an pack-
et with acknowledge bit 0. The internal actions p(b0), q(c0) (displayed sim-
ply as b0,c0 in Figure 10) signifies that p setting its control bit to 0, and

that q verifying a data packet with control bit 0 is correctly transmitted. The
meanings of a1, b1, c1, d1 are analogous. The independence relation Ip is given
by: p(b0) Ip p?q(a1), p(b1) Ip p?q(a0). And Iq is given by: q(c0) Iq q?p(d0),
q(c1) Iq q?p(d1). We note that the causal MSCs Send0 , Send1 , Ack0 , Ack1 , do
not respect the trace alphabets {(Σp, Ip), (Σq, Iq)}. The left part of Figure 11
shows a causal MSC in CaMSC (H), and its right part displays an MSC in
Vis(H). To reduce clutter, some ordering between events of the same label are
omitted in the left part of Figure 11.

p q

d0

c0

Send0

p q

d0

Send0'

p q

a0

b1

Ack0

p q

a0

Ack0'

p q

d1

c1

Send1

p q

d1

Send1'

p q

a1

b0

Ack1

p q

a1

Ack1'

Send0'

Send1

Ack1

Send0 Ack0'

Send1'

Ack1'

Send0

Ack0

Fig. 10. Modelling the alternating bit protocol

a0

q

c0

p

d0

d0
d0
d0

a0
a0

b1
d1
d1
d1
d1

c1

b0
a1

d1
d1
d1
d1

a1

a0

a0

a0

d0
d0

d0
d0

q

c0

c1

p

b1

b0

Fig. 11. Modelling the alternating bit protocol

