Skip to main content

Blum–Goldwasser Public Key Encryption System

  • Reference work entry
  • 182 Accesses

The Blum–Goldwasser public key encryption system combines the general construction of Goldwasser–Micali [5] with the concrete Blum– Blum–Shub pseudorandom bit generator [2] to obtain an efficient semantically secure public key encryption whose security is based on the difficulty of factoring Blum integers. The system makes use of modular arithmetic and works as follows:

  • Key Generation. Given a security parameter τ∈ℤ as input, generate two random τ-bit primes \(p,q\) where \(p=q=3 \bmod 4\). Set \(N=pq \in Z\). The public key is N and private key is \((p,q)\).

  • Encryption. To encrypt a message \(m = m_1 \ldots m_\ell \in \{0,1\}^\ell\):

    1. 1.

      Pick a random x in the group N * N and set x 1=x 2∈ℤ * N .

    2. 2.

      For \(i=1,\ldots,\ell\):

      1. (a)

        View \(x_i\) as an integer in \([0,N-1]\) and let \(b_i \in \{0,1\}\) be the least significant bit of \(x_i\).

      2. (b)

        Set c i =m i =m i b i ∈{0, 1}.

      3. (c)

        Set x i+1=x 2 i ∈ℤ * N .

    3. 3.

      Output (c 1, ..., c , x ℓ+1)∈{0, 1}×ℤ M as the ciphertext.

      ...

This is a preview of subscription content, log in via an institution.

References

  1. Bellare, Mihir and Phillip Rogaway (1996). “The exact security of digital signatures: How to sign with RSA and Rabin.” Advances in Cryptology—EUROCRYPT'96, Lecture Notes in Computer Science, vol. 1070, ed. U. Maurer. Springer-Verlag, Berlin, 399–416.

    Google Scholar 

  2. Blum, L., M. Blum, and M. Shub (1983). “Comparison of two pseudo-random number generators.” Advances in Cryptology—CRYPTO'83, ed. D. Chaum. Springer-Verlag, Berlin, 61–78.

    Google Scholar 

  3. Boneh, Dan (2001). “Simplified OAEP for the RSA and Rabin functions.” Advances in Cryptology—CRYPTO 2001, Lecture Notes in Computer Science, vol. 2139, ed. J. Kilian. Springer-Verlag, Berlin.

    Google Scholar 

  4. Fujisaki, E. and T. Okamoto (1999). “Secure integration of asymmetric and symmetric encryption schemes.” Advances in Cryptology—CRYPTO'99, Lecture Notes in Computer Science, vol. 1666, ed. J. Wiener. Springer-Verlag, Berlin, 537–554.

    Google Scholar 

  5. Goldwasser, S. and S. Micali (1984). “Probabilistic encryption.” Journal of Computer and System Science (JCSS), 28 (2), 270–299.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 International Federation for Information Processing

About this entry

Cite this entry

Boneh, D. (2005). Blum–Goldwasser Public Key Encryption System. In: van Tilborg, H.C.A. (eds) Encyclopedia of Cryptography and Security. Springer, Boston, MA . https://doi.org/10.1007/0-387-23483-7_38

Download citation

Publish with us

Policies and ethics