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Foreword

Biological structures can be seen as collections of special devices coordinated by a
matrix of organization. Devices are difficult to evolve and are meticulously conserved
through the eons. Organization is a fluid medium capable of rapid adaptation. The
brain carries organizational fluidity to the extreme. In its context, typical devices
are ion channels, transmitters and receptors, signaling pathways, whole individual
neurons or specific circuit patterns. The border line between what is to be called
device and what a feat of organization is flowing, given that in time organized sub-
systems solidify into devices. In spite of the neurosciences’ traditional concentration
on devices, their aiming point on the horizon must be to understand the principles
by which the nervous system ties vast arrays of internal and external variables into
one coherent purposeful functional whole — to understand the brain’s mechanism of
organization.

For that purpose a crucial methodology is in silico experimentation. Computer
simulation is a convenient tool for testing functional ideas, a sharp weapon for dis-
tinguishing those that work from those that don’t. To be sure, many alternatives can
only be decided by direct experiment on the substrate, not by modeling. However, if
a functional idea can be debunked as flawed once tried in silico it would be a waste
to make it the subject of a decade of experimentation or discussion.

The venture of understanding the function and organization of the visual system
illustrates this danger. Without much exaggeration it can be said that none of the
academically formulated functional ideas could be shown to work on just any visual
input. There is at present growing awareness that that is not due to lack of ingenuity
but rather to a matter of principle: given the tremendous variability of the visual envi-
ronment, no simple, intellectually coherent device can work in all situations. Object
contours cannot be found solely by local contrast detection, the obvious direct mech-
anism, but only by coordination with other subsystems. The ambiguity plaguing the
subsystems individually can be reduced only by global coordination between them.
Thus, without understanding the phenomenon of organization we will not understand
vision.

There is an even stronger reason to study organization. When trying to model
brain function in silico, we have the tendency to first understand and solve the spe-
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cific problem at hand in our own head and then create specific circuits and devices
accordingly. This approach has long dominated the venture of artificial intelligence,
and certainly also the field of computer vision. However, what may in the brain act
like a fixed device may be an artifact of standardized experimental conditions and
may in reality be the result of spontaneous organization. The devices (algorithms) in
our computers are created by a separate process, in the mind of programmers. For
the brain, there is no independent programmer (and evolution should not lightly be
invoked as such). For the brain, there is no clear-cut separation between generation
and execution of “algorithms.” The interdigitated processes of evolution, ontogen-
esis, learning, brain state organization and, in the case of man at least, culture and
education, are autonomously organizing the brain’s functionality. The work of sci-
ence will only have been done once we understand the principles of organization that
not only coordinate subsystems but also create them. Only these principles are fixed,
what they produce may to a large extent be due to accidents and circumstances.
This book is highly relevant to the goal of understanding organization. It summa-
rizes and integrates an important body of work, accumulated over decades, aimed at
describing and understanding the organization of the vertebrate visual system. Maps
and columnar structures are a dominant theme of cortical organization. Due to an im-
portant wealth of experimental work on the substrate and in silico the mechanisms
by which these structures are organized seem now before our eyes. The riddle of
how less than 10? bits of genetic information are able to determine the arrangement
of 10'* synaptic connections in ontogenesis is resolved by the demonstration that
a relatively simple, genetically determined and controlled repertoire of cellular be-
havior is sufficient to understand the ontogenesis of regular connection patterns. The
fundamental motivation behind hundreds of experimental studies of the ontogene-
sis of retinotopic connection patterns and also a sizable part of the work on cortical
maps (on which this book concentrates) is the hope to elucidate the general mech-
anisms behind the development of the brain’s wiring patterns. This work has led to
very clear-cut conclusions painting a convincing and coherent picture. There is a re-
grettable reluctance of neurobiology to broadcast such conclusions as the message of
fundamental importance that they constitute, so that there is a mission still to be ac-
complished here. This book is an important step in that direction. It employs the tool
of computer simulation to show the validity of the principles that have emerged, to
teach them, to develop them further and prepare them for application to novel cases.
Physics has found an ultimate receptacle and means of transmission of its results,
in the form of mathematical descriptions and paradigmatic experiments. In distinc-
tion, biology still has to find the mode of knowledge formulation with which to cap-
ture the essence of the tremendous wealth of detailed results it has produced and is
producing at a prodigious rate, a mode of formulation that makes it possible to close
chapters and transmit conclusions to next generations of biologists. Theoretical bi-
ology is routinely applying mathematics to what I am calling here devices, but these
individual mathematical formulations do not add up to a coherent canon, are rather
as disparate as the devices to which they apply. There is, however, definite hope that
a mathematical framework can be found for the phenomenon of organization. It has
often been remarked that physics is deliberately studying the simple and that biol-
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ogy by force is concerned with the complex. But then, what is irreducibly complex?
Seen under the right perspective even complex matters may come under the sway
of relatively simple conceptual frameworks. Where this is not possible there can be
no science and art must reign. No doubt, there are domains of irreducible complex-
ity, but I doubt that the mechanisms of organization form one. Meticulous study of
paradigmatic cases is necessary to penetrate that domain, and the study of vision at
the cortical level, the focus of a tremendous body of scientific work, is sure to play a
central role here.

The eternal discussion of nature vs. nurture, of prenatal vs. postnatal organiza-
tion, has taken a very interesting turn in the context of cortical map formation. As
will be discussed in these pages, neither side can possibly win. The methods that
life has chosen here give the intriguing feeling that they contain a message of great
importance for organization in general, if only we found the right perspective. It all
gives the impression that evolution, far from having labored to develop and genet-
ically encode specific devices for specific purposes, is just lightly playing its usual
games, that just new tunes are played on a long-existing piano, the behavioral reper-
toire of living cells. Ocularity stripes evidently are not a tremendously clever and
hard-won trick of evolution to exploit some complex vision problem, but turn out to
naturally result from the collision of two retinotopic mappings trying to carve out
common territory. This message is forcefully brought home by the famous experi-
ment of Constantine-Paton and Law, in which this situation was artificially created
in a frog, promptly resulting in ocularity stripes on the tectum for the first time in the
evolution of that frog.

All that organization is about is the coordination of subsystems under a purpose.
It is interesting to see how the conclusions propagated in this book perfectly illus-
trate and concretize that general theme. The function of the primary cortices is not
constructed in isolation, with afferents to be plugged in later, like a fully constructed
computer to which peripherals are connected, but structuring the cortices is more
of an exercise in adaptation to the periphery and to other subsystems. Purpose of a
specific kind may be brought in by the prenatal simulation (within the retina, or in
the pontine region, if the PGO hypothesis advanced here is correct) of biologically
significant stimuli. Here, evolution has to labor and make it clear to the new-born
human baby, for instance, that the face of the mother is a most interesting and im-
portant stimulus. But evolution does so in a parsimonious fashion, laying down a
mere schema of the face, which together with filter properties of the immature visual
system and simple behavioral patterns of the mother suffice to identify examples as
soon as the eyes are open. A possibly very general principle of learning may lie here.
In order to extract essential structure from the environment in learning, it is first nec-
essary to identify and separate from the background what is biologically significant.
The general principle to identify significant patterns might be based on schematic
descriptions of significant structures in the learning brain and its ability to map them
into the environment, schemas being defined by evolution (or as the result of previous
learning). When a pattern has been recognized, it is separated from the background.
The brain thus avoids being swamped by masses of irrelevant information. A likely
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candidate mechanism for this separation is synchrony coding discussed here in the
chapters on perceptual grouping.

It is my impression that the time is ripe for a major attack on the general problem
of organization. Molecular biology and information technology are both hitting a
serious complexity barrier. This can only be overcome by a shift of attention from
the details of large systems to their organizing principles. Science can only conquer
this domain with the help of insight gained on paradigmatic cases. The organization
of visual cortex in perinatal ontogenesis may prove decisive in this role.

Bochum, Christoph von der Malsburg
July 2004 Institut fiir Neuroinformatik, Ruhr-Universitat Bochum;
Departments of Computer Science and Neurobiology,

University of Southern California



Preface

For several decades, the visual cortex has been the source of new theories and ideas
about how the brain processes information. The visual cortex is easily accessible
through a number of recording and imaging techniques and allows mapping high-
level behavior relatively directly to neural mechanisms. It has also been the focal
point in the emerging field of computational neuroscience. Several key ideas, such
as input-driven self-organization, representing information on topographic maps, and
temporal coding, originate from the mechanisms observed in the visual cortex. Un-
derstanding the computations in the visual cortex is therefore an important step to-
ward a general computational brain theory.

Although computational theories of the visual cortex have existed for about 30
years, it has been difficult to test these theories experimentally and computationally.
In the last 10 years or so the situation has finally started to change, for two reasons.
First, it has become technically possible to measure how the visual cortex develops
in response to external input, and how visual functions depend on low-level cortical
mechanisms. Second, the available computational power has increased by several or-
ders of magnitude. This technological confluence makes it possible for the first time
to constrain and test precise computational models about how the visual cortex de-
velops and functions, and why it has the organization it does. Computational models
have gradually become an integral part of neuroscience theory.

The research in this area is far from unified. Several models exist to explain
phenomena such as how ocular dominance and orientation preferences develop, how
visual illusions and aftereffects arise, and how binding and segmentation take place,
but it is not possible to see how they could function together in the visual cortex.
Also, much of the research involves reimplementing ideas that have been around for
several decades. There is no common overview of the field, nor is there a software
framework on which future research could be based. This book is intended to fill
these gaps: It presents a comprehensive, unified computational theory of the visual
cortex as a laterally connected self-organizing map, it puts the theory in the context
of past and current research in the area, and it is accompanied by a major software
tool, Topographica, for modeling computational maps in the cortex in general.
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For more than a decade, our research group at the University of Texas at Austin
has worked on computational modeling of the visual cortex. Our perspective is to
focus not only on the map-like structure of the cortex, but also take into account the
dynamical processes that take place through lateral interaction and synchronization.
It turns out that many developmental and functional phenomena depend on such pro-
cesses, giving the model a unique explanatory power. This level of explanation is
highly appropriate for understanding many visual processing phenomena; it is also
a level where the theories are verifiable, leading to many predictions and proposals
for future biological experiments. The book demonstrates how a number of phenom-
ena follow from these principles, including columnar map organization and patchy
connectivity, recovery from retinal and cortical injury, psychophysical phenomena
such as tilt aftereffects and contour integration, and newborn preference for faces.
Computational models are used to gain a precise understanding of existing data, and
to make specific predictions for future experimental and theoretical research.

Our aim is to use the theory as a launching point to promote further research
in this area. The principles of the models are described in detail, as are the tech-
niques that make them work in practice, including parameter settings and scaling
to different sizes and purposes. Most significantly, the book is accompanied by
software, animations and demonstrations freely available on the Internet through
http://topographica.org. Topographica is a general software tool for simulating cor-
tical maps that allows neuroscientists to put together sophisticated computational
experiments of their own design. As examples, the site contains specific models and
demos described in this book. In this way, the book and the software are designed
to complement each other, serving as a practical and a theoretical foundation for fu-
ture research in computational neuroscience. Such a contribution, we believe, will
significantly facilitate research in this area in the future.

The LISSOM project and the development of Topographica have benefited from
the suggestions and contributions of many researchers, in fact too many to be listed
here. We would especially like to thank Bill Geisler, Teuvo Kohonen, and Christoph
von der Malsburg for substantial contributions of both ideas and critique over the
years. Les Cohen, Larry Cormack, Joydeep Ghosh, Ben Kuipers, Bruce McCormick,
Ray Mooney, Bruce Porter, Eyal Seidemann, Peter Stone, Chris Williams, and David
Willshaw provided inspiration and guidance as doctoral committee members and as
colleagues. Many research ideas were refined in discussions with Mike Arbib, Tony
Bell, David Brainard, Dan Butts, Cara Cashon, Dmitri Chklovskii, Gary Cottrell,
Jack Cowan, Michael Crair, Yang Dan, Peter Dayan, Scania de Schonen, Eizaburo
Doi, Dawei Dong, Shimon Edelman, Steven Eglen, James Elder, Jeff Elman, Jerry
Feldman, David Field, Peter Fox, Uli Frauenfelder, Nigel Goddard, Geoff Good-
hill, Anatoli Gorchetchnikov, Steve Grossberg, Seung Kee Han, Seong-Whan Lee,
Mike Hasselmo, Robert Hecht-Nielsen, Mike Hines, Geoff Hinton, David Horn,
Fred Howell, Patrik Hoyer, Aapo Hyvarinen, Risto Ilmoniemi, Masumi Ishikawa,
Naoum Issa, Mark Johnson, George Kalarickal, Pentti Kanerva, Sami Kaski, Krista
Lagus, Pat Langley, Daniel Lee, Soo-Young Lee, Christian Lehmann, Ping Li, Jyh-
Charn Liu, Xiuwen Liu, Jay McClelland, Brian MacWhinney, Gary Marcus, De-
nis Mareschal, Vinod Menon, Ken Miller, Klaus Obermayer, Erkki Oja, Bruno Ol-
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shausen, Remus Osan, Larry Parsons, Jim Reggia, Pamela Reinagel, Helge Ritter,
Adrian Roberts, Eytan Ruppin, Terry Sejnowski, Lokendra Shastri, Harel Shouval,
Hava Siegelmann, Michael Stryker, Mriganka Sur, John Taylor, Simon Thorpe, Dave
Touretzky, David van Essen, Rufin VanRullen, Thomas Wachtler, DeLiang Wang,
Mike Weliky, and Len White. Several former and current members of the University
of Texas Neural Networks Research Group contributed to the design and implemen-
tation of the models and experiments, including Gautam Agarwal, Justine Black-
more, Judah De Paula, Igor Farkas, Andrea Haessly, Stefanie Jegelka, Amol Kelkar,
Jeff Provost, Joe Reisinger, Yaron Silberman, Yiu Fai Sit, Tal Tversky, and Vinod
Valsalam.

The research was supported in part by the National Institute of Mental Health
(under Human Brain Project grant 1R01-MH66991 through Steven Koslow and
Michael Hirsch), the National Science Foundation (under grants EIA-0303609, IIS-
9811478, and IRI-9309273 through Darleen Fisher, Larry Reeker, and Su-Shing
Chen, as well as by supercomputer grants IRI-94000P and IRI-930005P), and the
College of Natural Sciences, the University of Texas at Austin (under a Dean’s Re-
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Austin, Edinburgh, College Station, San Diego, Risto Miikkulainen
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