The Mathematica GuideBook
 for Symbolics

Michael Trott

The Mathematica GuideBook for Symbolics

With 848 Illustrations

Michael Trott
Wolfram Research
Champaign, Illinois

Mathematica is a registered trademark of Wolfram Research, Inc.
Library of Congress Control Number: 2005928496
ISBN-10: 0-387-95020-6 Printed on acid-free paper.
ISBN-13: 978-0387-95020-4
e-ISBN: 0-387-28815-5
© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring St., New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.
(HAM)

987654321

springeronline.com

Preface

> Bei mathematischen Operationen kann sogar eine gänzliche Entlastung des Kopfes eintreten, indem man einmal ausgeführte Zähloperationen mit Zeichen symbolisiert und, statt die Hirnfunktion auf Wiederholung schon ausgeführter Operationen zu verschwenden, sie für wichtigere Fälle aufspart.

When doing mathematics, instead of burdening the brain with the repetitive job of redoing numerical operations which have already been done before, it's possible to save that brainpower for more important situations by using symbols, instead, to represent those numerical calculations.
— Ernst Mach (1883) [45]

Computer Mathematics and Mathematica

Computers were initially developed to expedite numerical calculations. A newer, and in the long run, very fruitful field is the manipulation of symbolic expressions. When these symbolic expressions represent mathematical entities, this field is generally called computer algebra [8]. Computer algebra begins with relatively elementary operations, such as addition and multiplication of symbolic expressions, and includes such things as factorization of integers and polynomials, exact linear algebra, solution of systems of equations, and logical operations. It also includes analysis operations, such as definite and indefinite integration, the solution of linear and nonlinear ordinary and partial differential equations, series expansions, and residue calculations. Today, with computer algebra systems, it is possible to calculate in minutes or hours the results that would (and did) take years to accomplish by paper and pencil. One classic example is the calculation of the orbit of the moon, which took the French astronomer Delaunay 20 years [12], [13], [14], [15], [11], [26], [27], [53], [16], [17], [25]. (The Mathematica GuideBooks cover the two other historic examples of calculations that, at the end of the 19th century, took researchers many years of hand calculations [1], [4], [38] and literally thousands of pages of paper.)

Along with the ability to do symbolic calculations, four other ingredients of modern general-purpose computer algebra systems prove to be of critical importance for solving scientific problems:

- a powerful high-level programming language to formulate complicated problems
- programmable two- and three-dimensional graphics
- robust, adaptive numerical methods, including arbitrary precision and interval arithmetic
- the ability to numerically evaluate and symbolically deal with the classical orthogonal polynomials and special functions of mathematical physics.

The most widely used, complete, and advanced general-purpose computer algebra system is Mathematica. Mathematica provides a variety of capabilities such as graphics, numerics, symbolics, standardized interfaces to other programs, a complete electronic document-creation environment (including a full-fledged mathematical typesetting system), and a variety of import and export capabilities. Most of these ingredients are necessary to coherently and exhaustively solve problems and model processes occurring in the natural sciences [41], [58], [21], [39] and other fields using constructive mathematics, as well as to properly represent the results. Conse-
quently, Mathematica's main areas of application are presently in the natural sciences, engineering, pure and applied mathematics, economics, finance, computer graphics, and computer science.

Mathematica is an ideal environment for doing general scientific and engineering calculations, for investigating and solving many different mathematically expressable problems, for visualizing them, and for writing notes, reports, and papers about them. Thus, Mathematica is an integrated computing environment, meaning it is what is also called a "problem-solving environment" [40], [23], [6], [48], [43], [50], [52].

Scope and Goals

The Mathematica GuideBooks are four independent books whose main focus is to show how to solve scientific problems with Mathematica. Each book addresses one of the four ingredients to solve nontrivial and real-life mathematically formulated problems: programming, graphics, numerics, and symbolics. The Programming and the Graphics volume were published in autumn 2004.

The four Mathematica GuideBooks discuss programming, two-dimensional, and three-dimensional graphics, numerics, and symbolics (including special functions). While the four books build on each other, each one is self-contained. Each book discusses the definition, use, and unique features of the corresponding Mathematica functions, gives small and large application examples with detailed references, and includes an extensive set of relevant exercises and solutions.

The GuideBooks have three primary goals:

- to give the reader a solid working knowledge of Mathematica
- to give the reader a detailed knowledge of key aspects of Mathematica needed to create the "best", fastest, shortest, and most elegant solutions to problems from the natural sciences
- to convince the reader that working with Mathematica can be a quite fruitful, enlightening, and joyful way of cooperation between a computer and a human.

Realizing these goals is achieved by understanding the unifying design and philosophy behind the Mathematica system through discussing and solving numerous example-type problems. While a variety of mathematics and physics problems are discussed, the GuideBooks are not mathematics or physics books (from the point of view of content and rigor; no proofs are typically involved), but rather the author builds on Mathematica's mathematical and scientific knowledge to explore, solve, and visualize a variety of applied problems.

The focus on solving problems implies a focus on the computational engine of Mathematica, the kernel-rather than on the user interface of Mathematica, the front end. (Nevertheless, for a nicer presentation inside the electronic version, various front end features are used, but are not discussed in depth.)

The Mathematica GuideBooks go far beyond the scope of a pure introduction into Mathematica. The books also present instructive implementations, explanations, and examples that are, for the most part, original. The books also discuss some "classical" Mathematica implementations, explanations, and examples, partially available only in the original literature referenced or from newsgroups threads.

In addition to introducing Mathematica, the GuideBooks serve as a guide for generating fairly complicated graphics and for solving more advanced problems using graphical, numerical, and symbolical techniques in cooperative ways. The emphasis is on the Mathematica part of the solution, but the author employs examples that are not uninteresting from a content point of view. After studying the GuideBooks, the reader will be able to solve new and old scientific, engineering, and recreational mathematics problems faster and more completely with the help of Mathematica-at least, this is the author's goal. The author also hopes that the reader will enjoy
using Mathematica for visualization of the results as much as the author does, as well as just studying Mathematica as a language on its own.

In the same way that computer algebra systems are not "proof machines" [46], [9], [37], [10], [54], [55], [56] such as might be used to establish the four-color theorem ([2], [22]), the Kepler [28], [19], [29], [30], [31], [32], [33], [34], [35], [36] or the Robbins ([44], [20]) conjectures, proving theorems is not the central theme of the GuideBooks. However, powerful and general proof machines [9], [42], [49], [24], [3], founded on Mathematica' s general programming paradigms and its mathematical capabilities, have been built (one such system is Theorema [7]). And, in the GuideBooks, we occasionally prove one theorem or another theorem.

In general, the author's aim is to present a realistic portrait of Mathematica: its use, its usefulness, and its strengths, including some current weak points and sometimes unexpected, but often nevertheless quite "thought through", behavior. Mathematica is not a universal tool to solve arbitrary problems which can be formulated mathematically-only a fraction of all mathematical problems can even be formulated in such a way to be efficiently expressed today in a way understandable to a computer. Rather, it is often necessary to do a certain amount of programming and occasionally give Mathematica some "help" instead of simply calling a single function like Solve to solve a system of equations. Because this will almost always be the case for "real-life" problems, we do not restrict ourselves only to "textbook" examples, where all goes smoothly without unexpected problems and obstacles. The reader will see that by employing Mathematica's programming, numeric, symbolic, and graphic power, Mathematica can offer more effective, complete, straightforward, reusable, and less likely erroneous solution methods for calculations than paper and pencil, or numerical programming languages.

Although the Guidebooks are large books, it is nevertheless impossible to discuss all of the 2,000+ built-in Mathematica commands. So, some simple as well as some more complicated commands have been omitted. For a full overview about Mathematica's capabilities, it is necessary to study The Mathematica Book [60] in detail. The commands discussed in the Guidebooks are those that an scientist or research engineer needs for solving typical problems, if such a thing exists [18]. These subjects include a quite detailed discussion of the structure of Mathematica expressions, Mathematica input and output (important for the human-Mathematica interaction), graphics, numerical calculations, and calculations from classical analysis. Also, emphasis is given to the powerful algebraic manipulation functions. Interestingly, they frequently allow one to solve analysis problems in an algorithmic way [5]. These functions are typically not so well known because they are not taught in classical engineering or physics-mathematics courses, but with the advance of computers doing symbolic mathematics, their importance increases [47].

A thorough knowledge of:

- structural operations on polynomials, rational functions, and trigonometric functions
- algebraic operations on polynomial equations and inequalities
- process of compilation, its advantages and limits
- main operations of calculus-univariate and multivariate differentiation and integration
- solution of ordinary and partial differential equations is needed to put the heart of Mathematica-its symbolic capabilities-efficiently and successfully to work in the solution of model and real-life problems. The Mathematica GuideBooks to Symbolics discusses these subjects.

The current version of the Mathematica GuideBooks is tailored for Mathematica Version 5.1.

Content Overview

The Mathematica GuideBook for Symbolics has three chapters. Each chapter is subdivided into sections (which occasionally have subsections), exercises, solutions to the exercises, and references.

This fourth and last volume of the GuideBooks deals with Mathematica's symbolic mathematical capabilities-the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful. In addition, this volume discusses and employs the classical orthogonal polynomials and special functions of mathematical physics. To demonstrate the symbolic mathematics power, a variety of problems from mathematics and physics are discussed.

Chapter 1 starts with a discussion of the algebraic functions needed to carry out analysis problems effectively. Contrary to classical science/engineering mathematics education, using a computer algebra system makes it often a good idea to rephrase a problem-including when it is from analysis-in a polynomial way to allow for powerful algorithmic treatments. Gröbner bases play a central role in accomplishing this task. This volume discusses in detail the main functions to deal with structural operations on polynomials, polynomial equations and inequalities, and expressions containing quantified variables. Rational functions and expressions containing trigonometric functions are dealt with next.

Then the central problems of classical analysis-differentiation, integration, summation, series expansion, and limits-are discussed in detail. The symbolic solving of ordinary and partial differential equations is demonstrated in many examples.

As always, a variety of examples show how to employ the discussed functions in various mathematics or physics problems. The Symbolics volume emphasizes their main uses and discusses the specialities of these operations inside a computer algebra system, as compared to a "manual" calculation. Then, generalized functions and Fourier and Laplace transforms are discussed. The main part of the chapter culminates with three examples of larger symbolic calculations, two of them being classic problems. This chapter has more than 150 exercises and solutions treating a variety of symbolic computation examples from the sciences.

Chapters 2 and 3 discuss classical orthogonal polynomials and the special functions of mathematical physics. Because this volume is not a treatise on special functions, it is restricted to selected function groups and presents only their basic properties, associated differential equations, normalizations, series expansions, verification of various special cases, etc. The availability of nearly all of the special functions of mathematical physics for all possible arbitrary complex parameters opens new possibilities for the user, e.g., the use of closed formulas for the Green's functions of commonly occurring partial differential equations or for "experimental mathematics". These chapters focus on the use of the special functions in a number of physics-related applications in the text as well as in the exercises. The larger examples deal with are the quartic oscillator in the harmonic oscillator basis and the implementation of Felix Klein's method to solve quintic polynomials in Gauss hypergeometric functions ${ }_{2} F_{1}$.

The Symbolics volume employs the built-in symbolic mathematics in a variety of examples. However, the underlying algorithms themselves are not discussed. Many of them are mathematically advanced and outside of the scope of the GuideBooks.

Throughout the Symbolics volume, the programming and graphics experience acquired in the first two volumes is used to visualize various mathematics and physics topics.

The Books and the Accompanying DVDs

Each of the GuideBooks comes with a multiplatform DVD. Each DVD contains the fourteen main notebooks, the hyperlinked table of contents and index, a navigation palette, and some utility notebooks and files. All notebooks are tailored for Mathematica 5.1. Each of the main notebooks corresponds to a chapter from the printed books. The notebooks have the look and feel of a printed book, containing structured units, typeset formulas, Mathematica code, and complete solutions to all exercises. The DVDs contain the fully evaluated notebooks corresponding to the chapters of the corresponding printed book (meaning these notebooks have text, inputs, outputs and graphics). The DVDs also include the unevaluated versions of the notebooks of the other three GuideBooks (meaning they contain all text and Mathematica code, but no outputs and graphics).

Although the Mathematica GuideBooks are printed, Mathematica is "a system for doing mathematics by computer" [59]. This was the lovely tagline of earlier versions of Mathematica, but because of its growing breadth (like data import, export and handling, operating system-independent file system operations, electronic publishing capabilities, web connectivity), nowadays Mathematica is called a "system for technical computing". The original tagline (that is more than ever valid today!) emphasized two points: doing mathematics and doing it on a computer. The approach and content of the GuideBooks are fully in the spirit of the original tagline: They are centered around doing mathematics. The second point of the tagline expresses that an electronic version of the GuideBooks is the more natural medium for Mathematica-related material. Long outputs returned by Mathematica, sequences of animations, thousands of web-retrievable references, a 10,000-entry hyperlinked index (that points more precisely than a printed index does) are space-consuming, and therefore not well suited for the printed book. As an interactive program, Mathematica is best learned, used, challenged, and enjoyed while sitting in front of a powerful computer (or by having a remote kernel connection to a powerful computer).

In addition to simply showing the printed book's text, the notebooks allow the reader to:

- experiment with, reuse, adapt, and extend functions and code
- investigate parameter dependencies
- annotate text, code, and formulas
- view graphics in color
- run animations.

The Accompanying Web Site

Why does a printed book need a home page? There are (in addition to being just trendy) two reasons for a printed book to have its fingerprints on the web. The first is for (Mathematica) users who have not seen the book so far. Having an outline and content sample on the web is easily accomplished, and shows the look and feel of the notebooks (including some animations). This is something that a printed book actually cannot do. The second reason is for readers of the book: Mathematica is a large modern software system. As such, it ages quickly in the sense that in the timescale of $10^{1 . \text { smallhnteger }}$ months, a new version will likely be available. The overwhelmingly large majority of Mathematica functions and programs will run unchanged in a new version. But occasionally, changes and adaptations might be needed. To accommodate this, the web site of this book-http://www.MathematicaGuideBooks.org-contains a list of changes relevant to the GuideBooks. In addition, like any larger software project, unavoidably, the GuideBooks will contain suboptimal implementations, mistakes, omissions, imperfections, and errors. As they come to his attention, the author will list them at
the book's web site. Updates to references, corrections [51], hundreds of pages of additional exercises and solutions, improved code segments, and other relevant information will be on the web site as well. Also, information about OS-dependent and Mathematica version-related changes of the given Mathematica code will be available there.

Evolution of the Mathematica GuideBooks

A few words about the history and the original purpose of the GuideBooks: They started from lecture notes of an Introductory Course in Mathematica 2 and an advanced course on the Efficient Use of the Mathematica Programming System, given in 1991/1992 at the Technical University of Ilmenau, Germany. Since then, after each release of a new version of Mathematica, the material has been updated to incorporate additional functionality. This electronic/printed publication contains text, unique graphics, editable formulas, runable, and modifiable programs, all made possible by the electronic publishing capabilities of Mathematica. However, because the structure, functions and examples of the original lecture notes have been kept, an abbreviated form of the GuideBooks is still suitable for courses.

Since 1992 the manuscript has grown in size from 1,600 pages to more than three times its original length, finally "weighing in" at nearly 5,000 printed book pages with more than:

- 18 gigabytes of accompanying Mathematica notebooks
- 22,000 Mathematica inputs with more than 13,000 code comments
- 11,000 references
- 4,000 graphics
- 1,000 fully solved exercises
- 150 animations.

This first edition of this book is the result of more than eleven years of writing and daily work with Mathematica. In these years, Mathematica gained hundreds of functions with increased functionality and power. A modern year-2005 computer equipped with Mathematica represents a computational power available only a few years ago to a select number of people [57] and allows one to carry out recreational or new computations and visualizations-unlimited in nature, scope, and complexity- quickly and easily. Over the years, the author has learned a lot of Mathematica and its current and potential applications, and has had a lot of fun, enlightening moments and satisfaction applying Mathematica to a variety of research and recreational areas, especially graphics. The author hopes the reader will have a similar experience.

Disclaimer

In addition to the usual disclaimer that neither the author nor the publisher guarantees the correctness of any formula, fitness, or reliability of any of the code pieces given in this book, another remark should be made. No guarantee is given that running the Mathematica code shown in the GuideBooks will give identical results to the printed ones. On the contrary, taking into account that Mathematica is a large and complicated software system which evolves with each released version, running the code with another version of Mathematica (or sometimes even on another operating system) will very likely result in different outputs for some inputs. And, as a consequence, if different outputs are generated early in a longer calculation, some functions might hang or return useless results.

The interpretations of Mathematica commands, their descriptions, and uses belong solely to the author. They are not claimed, supported, validated, or enforced by Wolfram Research. The reader will find that the author's view on Mathematica deviates sometimes considerably from those found in other books. The author's view is more on the formal than on the pragmatic side. The author does not hold the opinion that any Mathematica input has to have an immediate semantic meaning. Mathematica is an extremely rich system, especially from the language point of view. It is instructive, interesting, and fun to study the behavior of built-in Mathematica functions when called with a variety of arguments (like unevaluated, hold, including undercover zeros, etc.). It is the author's strong belief that doing this and being able to explain the observed behavior will be, in the long term, very fruitful for the reader because it develops the ability to recognize the uniformity of the principles underlying Mathematica and to make constructive, imaginative, and effective use of this uniformity. Also, some exercises ask the reader to investigate certain "unusual" inputs.

From time to time, the author makes use of undocumented features and/or functions from the Developer` and Experimental` contexts (in later versions of Mathematica these functions could exist in the System context or could have different names). However, some such functions might no longer be supported or even exist in later versions of Mathematica.

Acknowledgements

Over the decade, the GuideBooks were in development, many people have seen parts of them and suggested useful changes, additions, and edits. I would like to thank Horst Finsterbusch, Gottfried Teichmann, Klaus Voss, Udo Krause, Jerry Keiper, David Withoff, and Yu He for their critical examination of early versions of the manuscript and their useful suggestions, and Sabine Trott for the first proofreading of the German manuscript. I also want to thank the participants of the original lectures for many useful discussions. My thanks go to the reviewers of this book: John Novak, Alec Schramm, Paul Abbott, Jim Feagin, Richard Palmer, Ward Hanson, Stan Wagon, and Markus van Almsick, for their suggestions and ideas for improvement. I thank Richard Crandall, Allan Hayes, Andrzej Kozlowski, Hartmut Wolf, Stephan Leibbrandt, George Kambouroglou, Domenico Minunni, Eric Weisstein, Andy Shiekh, Arthur G. Hubbard, Jay Warrendorff, Allan Cortzen, Ed Pegg, and Udo Krause for comments on the prepublication version of the GuideBooks. I thank Bobby R. Treat, Arthur G. Hubbard, Murray Eisenberg, Marvin Schaefer, Marek Duszynski, Daniel Lichtblau, Devendra Kapadia, Adam Strzebonski, Anton Antonov, and Brett Champion for useful comments on the Mathematica Version 5.1 tailored version of the GuideBooks.

My thanks are due to Gerhard Gobsch of the Institute for Physics of the Technical University in Ilmenau for the opportunity to develop and give these original lectures at the Institute, and to Stephen Wolfram who encouraged and supported me on this project.

Concerning the process of making the Mathematica GuideBooks from a set of lecture notes, I thank Glenn Scholebo for transforming notebooks to $T_{E} X$ files, and Joe Kaiping for $T_{E} X$ work related to the printed book. I thank John Novak and Jan Progen for putting all the material into good English style and grammar, John Bonadies for the chapter-opener graphics of the book, and Jean Buck for library work. I especially thank John Novak for the creation of Mathematica 3 notebooks from the $T_{E} X$ files, and Andre Kuzniarek for his work on the stylesheet to give the notebooks a pleasing appearance. My thanks go to Andy Hunt who created a specialized stylesheet for the actual book printout and printed and formatted the $4 \times 1000+$ pages of the Mathematica GuideBooks. I thank Andy Hunt for making a first version of the homepage of the GuideBooks and Amy Young for creating the current version of the homepage of the GuideBooks. I thank Sophie Young for a final check of the English. My largest thanks go to Amy Young, who encouraged me to update the whole book over the years and who had a close look at all of my English writing and often improved it considerably. Despite reviews by
many individuals any remaining mistakes or omissions, in the Mathematica code, in the mathematics, in the description of the Mathematica functions, in the English, or in the references, etc. are, of course, solely mine.

Let me take the opportunity to thank members of the Research and Development team of Wolfram Research whom I have met throughout the years, especially Victor Adamchik, Anton Antonov, Alexei Bocharov, Arnoud Buzing, Brett Champion, Matthew Cook, Todd Gayley, Darren Glosemeyer, Roger Germundsson, Unal Goktas, Yifan Hu, Devendra Kapadia, Zbigniew Leyk, David Librik, Daniel Lichtblau, Jerry Keiper, Robert Knapp, Roman Mäder, Oleg Marichev, John Novak, Peter Overmann, Oleksandr Pavlyk, Ulises Cervantes-Pimentel, Mark Sofroniou, Adam Strzebonski, Oyvind Tafjord, Robby Villegas, Tom Wickham-Jones, David Withoff, and Stephen Wolfram for numerous discussions about design principles, various small details, underlying algorithms, efficient implementation of various procedures, and tricks concerning Mathematica. The appearance of the notebooks profited from discussions with John Fultz, Paul Hinton, John Novak, Lou D’Andria, Theodore Gray, Andre Kuzniarek, Jason Harris, Andy Hunt, Christopher Carlson, Robert Raguet-Schofield, George Beck, Kai Xin, Chris Hill, and Neil Soiffer about front end, button, and typesetting issues.

It was an interesting and unique experience to work over the last 12 years with five editors: Allan Wylde, Paul Wellin, Maria Taylor, Wayne Yuhasz, and Ann Kostant, with whom the GuideBooks were finally published. Many book-related discussions that ultimately improved the GuideBooks, have been carried out with Jan Benes from TELOS and associates, Steven Pisano, Jenny Wolkowicki, Henry Krell, Fred Bartlett, Vaishali Damle, Ken Quinn, Jerry Lyons, and Rüdiger Gebauer from Springer New York.

The author hopes the Mathematica GuideBooks help the reader to discover, investigate, urbanize, and enjoy the computational paradise offered by Mathematica.

Wolfram Research, Inc.
Michael Trott
April 2005

References

1 A. Amthor. Z. Math. Phys. 25, 153 (1880).
2 K. Appel, W. Haken. J. Math. 21, 429 (1977).
3 A. Bauer, E. Clarke, X. Zhao. J. Automat. Reasoning 21, 295 (1998).
4 A. H. Bell. Am. Math. Monthly 2, 140 (1895).
5 M. Berz. Adv. Imaging Electron Phys. 108, 1 (2000).
6 R. F. Boisvert. arXiv:cs.MS/0004004 (2000).
7 B. Buchberger. Theorema Project (1997). ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1997/97-34/ed-media.nb
8 B. Buchberger. SIGSAM Bull. 36, 3 (2002).
9 S.-C. Chou, X.-S. Gao, J.-Z. Zhang. Machine Proofs in Geometry, World Scientific, Singapore, 1994.
10 A. M. Cohen. Nieuw Archief Wiskunde 14, 45 (1996).
11 A. Cook. The Motion of the Moon, Adam-Hilger, Bristol, 1988.
12 C. Delaunay. Théorie du Mouvement de la Lune, Gauthier-Villars, Paris, 1860.
13 C. Delaunay. Mem. de l'Acad. des Sc. Paris 28 (1860).
14 C. Delaunay. Mem. de l'Acad. des Sc. Paris 29 (1867).
15 A. Deprit, J. Henrard, A. Rom. Astron. J. 75, 747 (1970).
16 A. Deprit. Science 168, 1569 (1970).
17 A. Deprit, J. Henrard, A. Rom. Astron. J. 76, 273 (1971).
18 P. J. Dolan, Jr., D. S. Melichian. Am. J. Phys. 66, 11 (1998).
19 S. P. Ferguson, T. C. Hales. arXiv:math.MG/9811072 (1998).
20 B. Fitelson. Mathematica Educ. Res. 7, n1, 17 (1998).
21 A. C. Fowler. Mathematical Models in the Applied Sciences, Cambridge University Press, Cambridge, 1997.
22 H. Fritsch, G. Fritsch. The Four-Color Theorem, Springer-Verlag, New York, 1998.
23 E. Gallopoulus, E. Houstis, J. R. Rice (eds.). Future Research Directions in Problem Solving Environments for Computational Science: Report of a Workshop on Research Directions in Integrating Numerical Analysis, Symbolic Computing, Computational Geometry, and Artificial Intelligence for Computational Science, 1991. http://www.cs.purdue.edu/research/cse/publications/tr/92/92-032.ps.gz
24 V. Gerdt, S. A. Gogilidze in V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (eds.). Computer Algebra in Scientific Computing, Springer-Verlag, Berlin, 1999.
25 M. C. Gutzwiller, D. S. Schmidt. Astronomical Papers: The Motion of the Moon as Computed by the Method of Hill, Brown, and Eckert, U.S. Government Printing Office, Washington, 1986.
26 M. C. Gutzwiller. Rev. Mod. Phys. 70, 589 (1998).
27 Y. Hagihara. Celestial Mechanics vII/1, MIT Press, Cambridge, 1972.
28 T. C. Hales. arXiv:math.MG/ 9811071 (1998).
29 T. C. Hales. arXiv:math.MG/ 9811073 (1998).
30 T. C. Hales. arXiv:math.MG/9811074 (1998).
31 T. C. Hales. arXiv:math. $M G / 9811075$ (1998).
32 T. C. Hales. arXiv:math.MG/ 9811076 (1998).
33 T. C. Hales. arXiv:math.MG/9811077 (1998).
T. C. Hales. arXiv:math.MG/9811078 (1998).
T. C. Hales. arXiv:math. $M G / 0205208$ (2002).
T. C. Hales in L. Tatsien (ed.). Proceedings of the International Congress of Mathematicians v. 3, Higher Education Press, Beijing, 2002.
J. Harrison. Theorem Proving with the Real Numbers, Springer-Verlag, London, 1998.
J. Hermes. Nachrichten Königl. Gesell. Wiss. Göttingen 170 (1894).
E. N. Houstis, J. R. Rice, E. Gallopoulos, R. Bramley (eds.). Enabling Technologies for Computational Science, Kluwer, Boston, 2000.
E. N. Houstis, J. R. Rice. Math. Comput. Simul. 54, 243 (2000).
M. S. Klamkin (eds.). Mathematical Modelling, SIAM, Philadelphia, 1996.
H. Koch, A. Schenkel, P. Wittwer. SIAM Rev. 38, 565 (1996).
Y. N. Lakshman, B. Char, J. Johnson in O. Gloor (ed.). ISSAC 1998, ACM Press, New York, 1998.
W. McCune. Robbins Algebras Are Boolean, 1997. http://www.mcs.anl.gov/home/mccune/ar/robbins/
E. Mach (R. Wahsner, H.-H. von Borszeskowski eds.). Die Mechanik in ihrer Entwicklung, Akademie-Verlag, Berlin, 1988.
D. A. MacKenzie. Mechanizing Proof: Computing, Risk, and Trust, MIT Press, Cambridge, 2001.
B. M. McCoy. arXiv:cond-mat/0012193 (2000).
K. J. M. Moriarty, G. Murdeshwar, S. Sanielevici. Comput. Phys. Commun. 77, 325 (1993).
I. Nemes, M. Petkovšek, H. S. Wilf, D. Zeilberger. Am. Math. Monthly 104, 505 (1997).
W. H. Press, S. A. Teukolsky. Comput. Phys. 11, 417 (1997).
D. Rawlings. Am. Math. Monthly 108, 713 (2001).

Problem Solving Environments Home Page. http://www.cs.purdue.edu/research/cse/pses
D. S. Schmidt in H. S. Dumas, K. R. Meyer, D. S. Schmidt (eds.). Hamiltonian Dynamical Systems, Springer-Verlag, New York, 1995.
S. Seiden. SIGACT News 32, 111 (2001).
S. Seiden. Theor. Comput. Sc. 282, 381 (2002).
C. Simpson. arXiv:math.HO/0311260 (2003).
A. M. Stoneham. Phil. Trans. R. Soc. Lond. A 360, 1107 (2002).
M. Tegmark. Ann. Phys. 270, 1 (1999).
S. Wolfram. Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, Redwood City, 1992.
S. Wolfram. The Mathematica Book, Wolfram Media, Champaign, 2003.

Contents

0. Introduction and Orientation xix
CHAPTER 1
Symbolic Computations
1.0 Remarks 1
1.1 Introduction 1
1.2 Operations on Polynomials 13
1.2.0 Remarks 13
1.2.1 Structural Manipulations on Polynomials 13
1.2.2 Polynomials in Equations 25
1.2.3 Polynomials in Inequalities 50
1.3 Operations on Rational Functions 78
1.4 Operations on Trigonometric Expressions 88
1.5 Solution of Equations 94
1.6 Classical Analysis 129
1.6.1 Differentiation 129
1.6.2 Integration 156
1.6.3 Limits 184
1.6.4 Series Expansions 189
1.6.5 Residues 220
1.6.6 Sums 221
1.7 Differential and Difference Equations 233
1.7.0 Remarks 233
1.7.1 Ordinary Differential Equations 234
1.7.2 Partial Differential Equations 257
1.7.3 Difference Equations 260
1.8 Integral Transforms and Generalized Functions 266
1.9 Additional Symbolics Functions 294
1.10 Three Applications 298
1.10.0 Remarks 298
1.10.1 Area of a Random Triangle in a Square 298
1.10.2 $\cos \left(\frac{2 \pi}{257}\right)$ à la Gauss 312
1.10.3 Implicitization of a Trefoil Knot 321
Exercises 330
Solutions 371
References 749
CHAPTER 2
Classical Orthogonal Polynomials
2.0 Remarks 803
2.1 General Properties of Orthogonal Polynomials 803
2.2 Hermite Polynomials 806
2.3 Jacobi Polynomials 816
2.4 Gegenbauer Polynomials 823
2.5 Laguerre Polynomials 832
2.6 Legendre Polynomials 842
2.7 Chebyshev Polynomials of the First Kind 849
2.8 Chebyshev Polynomials of the Second Kind 853
2.9 Relationships Among the Orthogonal Polynomials 860
2.10 Ground-State of the Quartic Oscillator 868
Exercises 885
Solutions 897
References 961

Chapter 3

Classical Special Functions

3.0 Remarks
 979

3.1 Introduction 989

3.2 Gamma, Beta, and Polygamma Functions 1001
3.3 Error Functions and Fresnel Integrals 1008
3.4 Exponential Integral and Related Functions 1016
3.5 Bessel and Airy Functions 1019
3.6 Legendre Functions 1044
3.7 Hypergeometric Functions 1049
3.8 Elliptic Integrals 1062
3.9 Elliptic Functions 1071
3.10 Product Log Function 1081
3.11 Mathieu Functions 1086
3.12 Additional Special Functions 1109
3.13 Solution of Quintic Polynomials 1110

Exercises 1125
Solutions 1155
References 1393

Index 1431

Introduction and Orientation to The Mathematica GuideBooks

0.1 Overview

0.1.1 Content Summaries

The Mathematica GuideBooks are published as four independent books: The Mathematica GuideBook to Programming, The Mathematica GuideBook to Graphics, The Mathematica GuideBook to Numerics, and The Mathematica GuideBook to Symbolics.

- The Programming volume deals with the structure of Mathematica expressions and with Mathematica as a programming language. This volume includes the discussion of the hierarchical construction of all Mathematica objects out of symbolic expressions (all of the form head [argument]), the ultimate building blocks of expressions (numbers, symbols, and strings), the definition of functions, the application of rules, the recognition of patterns and their efficient application, the order of evaluation, program flows and program structure, the manipulation of lists (the universal container for Mathematica expressions of all kinds), as well as a number of topics specific to the Mathematica programming language. Various programming styles, especially Mathematica' s powerful functional programming constructs, are covered in detail.
- The Graphics volume deals with Mathematica's two-dimensional (2D) and three-dimensional (3D) graphics. The chapters of this volume give a detailed treatment on how to create images from graphics primitives, such as points, lines, and polygons. This volume also covers graphically displaying functions given either analytically or in discrete form. A number of images from the Mathematica Graphics Gallery are also reconstructed. Also discussed is the generation of pleasing scientific visualizations of functions, formulas, and algorithms. A variety of such examples are given.
- The Numerics volume deals with Mathematica's numerical mathematics capabilities-the indispensable sledgehammer tools for dealing with virtually any "real life" problem. The arithmetic types (fast machine, exact integer and rational, verified high-precision, and interval arithmetic) are carefully analyzed. Fundamental numerical operations, such as compilation of programs, numerical Fourier transforms, minimization, numerical solution of equations, and ordinary/partial differential equations are analyzed in detail and are applied to a large number of examples in the main text and in the solutions to the exercises.
- The Symbolics volume deals with Mathematica's symbolic mathematical capabilities-the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful. Structural and mathematical operations on systems of polynomials are fundamental to many symbolic calculations and are covered in detail. The solution of equations and differential equations, as well as the classical calculus operations, are exhaustively treated. In addition, this volume discusses and employs the classical
orthogonal polynomials and special functions of mathematical physics. To demonstrate the symbolic mathematics power, a variety of problems from mathematics and physics are discussed.

The four GuideBooks contain about 25,000 Mathematica inputs, representing more than 75,000 lines of commented Mathematica code. (For the reader already familiar with Mathematica, here is a more precise measure: The LeafCount of all inputs would be about 900,000 when collected in a list.) The GuideBooks also have more than 4,000 graphics, 150 animations, 11,000 references, and 1,000 exercises. More than 10,000 hyperlinked index entries and hundreds of hyperlinks from the overview sections connect all parts in a convenient way. The evaluated notebooks of all four volumes have a cumulative file size of about 20 GB . Although these numbers may sound large, the Mathematica GuideBooks actually cover only a portion of Mathematica's functionality and features and give only a glimpse into the possibilities Mathematica offers to generate graphics, solve problems, model systems, and discover new identities, relations, and algorithms. The Mathematica code is explained in detail throughout all chapters. More than 13,000 comments are scattered throughout all inputs and code fragments.

0.1.2 Relation of the Four Volumes

The four volumes of the GuideBooks are basically independent, in the sense that readers familiar with Mathematica programming can read any of the other three volumes. But a solid working knowledge of the main topics discussed in The Mathematica GuideBook to Programming-symbolic expressions, pure functions, rules and replacements, and list manipulations-is required for the Graphics, Numerics, and Symbolics volumes. Compared to these three volumes, the Programming volume might appear to be a bit "dry". But similar to learning a foreign language, before being rewarded with the beauty of novels or a poem, one has to sweat and study. The whole suite of graphical capabilities and all of the mathematical knowledge in Mathematica are accessed and applied through lists, patterns, rules, and pure functions, the material discussed in the Programming volume.

Naturally, graphics are the center of attention of the The Mathematica GuideBook to Graphics. While in the Programming volume some plotting and graphics for visualization are used, graphics are not crucial for the Programming volume. The reader can safely skip the corresponding inputs to follow the main programming threads. The Numerics and Symbolics volumes, on the other hand, make heavy use of the graphics knowledge acquired in the Graphics volume. Hence, the prerequisites for the Numerics and Symbolics volumes are a good knowledge of Mathematica's programming language and of its graphics system.

The Programming volume contains only a few percent of all graphics, the Graphics volume contains about two-thirds, and the Numerics and Symbolics volume, about one-third of the overall $4,000+$ graphics. The Programming and Graphics volumes use some mathematical commands, but they restrict the use to a relatively small number (especially Expand, Factor, Integrate, Solve). And the use of the function N for numerical ization is unavoidable for virtually any "real life" application of Mathematica. The last functions allow us to treat some mathematically not uninteresting examples in the Programming and Graphics volumes. In addition to putting these functions to work for nontrivial problems, a detailed discussion of the mathematics functions of Mathematica takes place exclusively in the Numerics and Symbolics volumes.

The Programming and Graphics volumes contain a moderate amount of mathematics in the examples and exercises, and focus on programming and graphics issues. The Numerics and Symbolics volumes contain a substantially larger amount of mathematics.

Although printed as four books, the fourteen individual chapters (six in the Programming volume, three in the Graphics volume, two in the Numerics volume, and three in the Symbolics volume) of the Mathematica GuideBooks form one organic whole, and the author recommends a strictly sequential reading, starting from Chapter 1 of the Programming volume and ending with Chapter 3 of the Symbolics volume for gaining the maximum
benefit. The electronic component of each book contains the text and inputs from all the four GuideBooks, together with a comprehensive hyperlinked index. The four volumes refer frequently to one another.

0.1.3 Chapter Structure

A rough outline of the content of a chapter is the following:

- The main body discusses the Mathematica functions belonging to the chapter subject, as well their options and attributes. Generically, the author has attempted to introduce the functions in a "natural order". But surely, one cannot be axiomatic with respect to the order. (Such an order of the functions is not unique, and the author intentionally has "spread out" the introduction of various Mathematica functions across the four volumes.) With the introduction of a function, some small examples of how to use the functions and comparisons of this function with related ones are given. These examples typically (with the exception of some visualizations in the Programming volume) incorporate functions already discussed. The last section of a chapter often gives a larger example that makes heavy use of the functions discussed in the chapter.
- A programmatically constructed overview of each chapter functions follows. The functions listed in this section are hyperlinked to their attributes and options, as well as to the corresponding reference guide entries of The Mathematica Book.
- A set of exercises and potential solutions follow. Because learning Mathematica through examples is very efficient, the proposed solutions are quite detailed and form up to 50% of the material of a chapter.
- References end the chapter.

Note that the first few chapters of the Programming volume deviate slightly from this structure. Chapter 1 of the Programming volume gives a general overview of the kind of problems dealt with in the four GuideBooks. The second, third, and fourth chapters of the Programming volume introduce the basics of programming in Mathematica. Starting with Chapters 5 of the Programming volume and throughout the Graphics, Numerics, and Symbolics volumes, the above-described structure applies.

In the 14 chapters of the GuideBooks the author has chosen a "we" style for the discussions of how to proceed in constructing programs and carrying out calculations to include the reader intimately.

0.1.4 Code Presentation Style

The typical style of a unit of the main part of a chapter is: Define a new function, discuss its arguments, options, and attributes, and then give examples of its usage. The examples are virtually always Mathematica inputs and outputs. The majority of inputs is in InputForm are the notebooks. On occasion StandardForm is also used. Although StandardForm mimics classical mathematics notation and makes short inputs more readable, for "program-like" inputs, InputForm is typically more readable and easier and more natural to align. For the outputs, StandardForm is used by default and occasionally the author has resorted to InputForm or FullForm to expose digits of numbers and to TraditionalForm for some formulas. Outputs are mostly not programs, but nearly always "results" (often mathematical expressions, formulas, identities, or lists of numbers rather than program constructs). The world of Mathematica users is divided into three groups, and each of them has a nearly religious opinion on how to format Mathematica code [1], [2]. The author follows the InputForm
cult(ure) and hopes that the Mathematica users who do everything in either StandardForm or Traditional Form will bear with him. If the reader really wants to see all code in either StandardForm or Traditional: Form, this can easily be done with the Convert To item from the Cell menu. (Note that the relation between InputForm and StandardForm is not symmetric. The InputForm cells of this book have been line-broken and aligned by hand. Transforming them into StandardForm or TraditionalForm cells works well because one typically does not line-break manually and align Mathematica code in these cell types. But converting StandardForm or TraditionalForm cells into InputForm cells results in much less pleasing results.)

In the inputs, special typeset symbols for Mathematica functions are typically avoided because they are not monospaced. But the author does occasionally compromise and use Greek, script, Gothic, and doublestruck characters.

In a book about a programming language, two other issues come always up: indentation and placement of the code.

- The code of the GuideBooks is largely consistently formatted and indented. There are no strict guidelines or even rules on how to format and indent Mathematica code. The author hopes the reader will find the book's formatting style readable. It is a compromise between readability (mental parsabililty) and space conservation, so that the printed version of the Mathematica GuideBook matches closely the electronic version.
- Because of the large number of examples, a rather imposing amount of Mathematica code is presented. Should this code be present only on the disk, or also in the printed book? If it is in the printed book, should it be at the position where the code is used or at the end of the book in an appendix? Many authors of Mathematica articles and books have strong opinions on this subject. Because the main emphasis of the Mathematica GuideBooks is on solving problems with Mathematica and not on the actual problems, the GuideBooks give all of the code at the point where it is needed in the printed book, rather than "hiding" it in packages and appendices. In addition to being more straightforward to read and conveniently allowing us to refer to elements of the code pieces, this placement makes the correspondence between the printed book and the notebooks close to $1: 1$, and so working back and forth between the printed book and the notebooks is as straightforward as possible.

0.2 Requirements

0.2.1 Hardware and Software

Throughout the GuideBooks, it is assumed that the reader has access to a computer running a current version of Mathematica (version 5.0/5.1 or newer). For readers without access to a licensed copy of Mathematica, it is possible to view all of the material on the disk using a trial version of Mathematica. (A trial version is downloadable from http://www.wolfram.com/products/mathematica/trial.cgi.)

The files of the GuideBooks are relatively large, altogether more than 20 GB . This is also the amount of hard disk space needed to store uncompressed versions of the notebooks. To view the notebooks comfortably, the reader's computer needs 128 MB RAM; to evaluate the evaluation units of the notebooks 1 GB RAM or more is recommended.

In the GuideBooks, a large number of animations are generated. Although they need more memory than single pictures, they are easy to create, to animate, and to store on typical year-2005 hardware, and they provide a lot of joy.

0.2.2 Reader Prerequisites

Although prior Mathematica knowledge is not needed to read The Mathematica GuideBook to Programming, it is assumed that the reader is familiar with basic actions in the Mathematica front end, including entering Greek characters using the keyboard, copying and pasting cells, and so on. Freely available tutorials on these (and other) subjects can be found at http://library.wolfram.com.

For a complete understanding of most of the GuideBooks examples, it is desirable to have a background in mathematics, science, or engineering at about the bachelor's level or above. Familiarity with mechanics and electrodynamics is assumed. Some examples and exercises are more specialized, for instance, from quantum mechanics, finite element analysis, statistical mechanics, solid state physics, number theory, and other areas. But the GuideBooks avoid very advanced (but tempting) topics such as renormalization groups [6], parquet approximations [27], and modular moonshines [14]. (Although Mathematica can deal with such topics, they do not fit the character of the Mathematica GuideBooks but rather the one of a Mathematica Topographical Atlas [a monumental work to be carried out by the Mathematica-Bourbakians of the 21st century]).

Each scientific application discussed has a set of references. The references should easily give the reader both an overview of the subject and pointers to further references.

0.3 What the GuideBooks Are and What They Are Not

0.3.1 Doing Computer Mathematics

As discussed in the Preface, the main goal of the GuideBooks is to demonstrate, showcase, teach, and exemplify scientific problem solving with Mathematica. An important step in achieving this goal is the discussion of Mathematica functions that allow readers to become fluent in programming when creating complicated graphics or solving scientific problems. This again means that the reader must become familiar with the most important programming, graphics, numerics, and symbolics functions, their arguments, options, attributes, and a few of their time and space complexities. And the reader must know which functions to use in each situation.

The GuideBooks treat only aspects of Mathematica that are ultimately related to "doing mathematics". This means that the GuideBooks focus on the functionalities of the kernel rather than on those of the front end. The knowledge required to use the front end to work with the notebooks can easily be gained by reading the corresponding chapters of the online documentation of Mathematica. Some of the subjects that are treated either lightly or not at all in the GuideBooks include the basic use of Mathematica (starting the program, features, and special properties of the notebook front end [16]), typesetting, the preparation of packages, external file operations, the communication of Mathematica with other programs via MathLink, special formatting and string manipulations, computer- and operating system-specific operations, audio generation, and commands available in various packages. "Packages" includes both, those distributed with Mathematica as well as those available from the Mathematica Information Center (http://library.wolfram.com/infocenter) and commercial sources, such as MathTensor for doing general relativity calculations (http://smc.vnet.net/MathTensor.html) or FeynCalc for doing high-energy physics calculations (http://www.feyncalc.org). This means, in particular, that probability and statistical calculations are barely touched on because most of the relevant commands are contained in the packages. The GuideBooks make little or no mention of the machine-dependent possibilities offered by the various Mathematica implementations. For this information, see the Mathematica documentation.

Mathematical and physical remarks introduce certain subjects and formulas to make the associated Mathematica implementations easier to understand. These remarks are not meant to provide a deep understanding of the (sometimes complicated) physical model or underlying mathematics; some of these remarks intentionally oversimplify matters.

The reader should examine all Mathematica inputs and outputs carefully. Sometimes, the inputs and outputs illustrate little-known or seldom-used aspects of Mathematica commands. Moreover, for the efficient use of Mathematica, it is very important to understand the possibilities and limits of the built-in commands. Many commands in Mathematica allow different numbers of arguments. When a given command is called with fewer than the maximum number of arguments, an internal (or user-defined) default value is used for the missing arguments. For most of the commands, the maximum number of arguments and default values are discussed.

When solving problems, the GuideBooks generically use a "straightforward" approach. This means they are not using particularly clever tricks to solve problems, but rather direct, possibly computationally more expensive, approaches. (From time to time, the GuideBooks even make use of a "brute force" approach.) The motivation is that when solving new "real life" problems a reader encounters in daily work, the "right mathematical trick" is seldom at hand. Nevertheless, the reader can more often than not rely on Mathematica being powerful enough to often succeed in using a straightforward approach. But attention is paid to Mathematica-specific issues to find time- and memory-efficient implementations-something that should be taken into account for any larger program.

As already mentioned, all larger pieces of code in this book have comments explaining the individual steps carried out in the calculations. Many smaller pieces of code have comments when needed to expedite the understanding of how they work. This enables the reader to easily change and adapt the code pieces. Sometimes, when the translation from traditional mathematics into Mathematica is trivial, or when the author wants to emphasize certain aspects of the code, we let the code "speak for itself". While paying attention to efficiency, the GuideBooks only occasionally go into the computational complexity ([8], [40], and [7]) of the given implementations. The implementation of very large, complicated suites of algorithms is not the purpose of the GuideBooks. The Mathematica packages included with Mathematica and the ones at MathSource (http://library.wolfram.com/database/MathSource) offer a rich variety of self-study material on building large programs. Most general guidelines for writing code for scientific calculations (like descriptive variable names and modularity of code; see, e.g., [19] for a review) apply also to Mathematica programs.

The programs given in a chapter typically make use of Mathematica functions discussed in earlier chapters. Using commands from later chapters would sometimes allow for more efficient techniques. Also, these programs emphasize the use of commands from the current chapter. So, for example, instead of list operation, from a complexity point of view, hashing techniques or tailored data structures might be preferable. All subsections and sections are "self-contained" (meaning that no other code than the one presented is needed to evaluate the subsections and sections). The price for this "self-containedness" is that from time to time some code has to be repeated (such as manipulating polygons or forming random permutations of lists) instead of delegating such programming constructs to a package. Because this repetition could be construed as boring, the author typically uses a slightly different implementation to achieve the same goal.

0.3.2 Programming Paradigms

In the GuideBooks, the author wants to show the reader that Mathematica supports various programming paradigms and also show that, depending on the problem under consideration and the goal (e.g., solution of a problem, test of an algorithm, development of a program), each style has its advantages and disadvantages. (For a general discussion concerning programming styles, see [3], [41], [23], [32], [15], and [9].) Mathematica supports a functional programming style. Thus, in addition to classical procedural programs (which are often less efficient and less elegant), programs using the functional style are also presented. In the first volume of the Mathematica GuideBooks, the programming style is usually dictated by the types of commands that have been discussed up to that point. A certain portion of the programs involve recursive, rule-based programming. The choice of programming style is, of course, partially (ultimately) a matter of personal preference. The GuideBooks' main aim is to explain the operation, limits, and efficient application of the various Mathematica commands. For certain commands, this dictates a certain style of programming. However, the various programming styles, with their advantages and disadvantages, are not the main concern of the GuideBooks. In working with Mathematica, the reader is likely to use different programming styles depending if one wants a quick one-time calculation or a routine that will be used repeatedly. So, for a given implementation, the program structure may not always be the most elegant, fastest, or "prettiest".

The GuideBooks are not a substitute for the study of The Mathematica Book [45] http://documents. wolfram.com/mathematica). It is impossible to acquire a deeper (full) understanding of Mathematica without a thorough study of this book (reading it twice from the first to the last page is highly recommended). It defines the language and the spirit of Mathematica. The reader will probably from time to time need to refer to parts of it, because not all commands are discussed in the GuideBooks. However, the story of what can be done with Mathematica does not end with the examples shown in The Mathematica Book. The Mathematica GuideBooks go beyond The Mathematica Book. They present larger programs for solving various problems and creating complicated graphics. In addition, the GuideBooks discuss a number of commands that are not or are only fleetingly mentioned in the manual (e.g., some specialized methods of mathematical functions and functions from the Developer` and Experimental` contexts), but which the author deems important. In the notebooks, the author gives special emphasis to discussions, remarks, and applications relating to several commands that are typical for Mathematica but not for most other programming languages, e.g., Map, MapAt, MapIndexed, Distribute, Apply, Replace, ReplaceAll, Inner, Outer, Fold, Nest, Nest: List, FixedPoint, FixedPointList, and Function. These commands allow to write exceptionally elegant, fast, and powerful programs. All of these commands are discussed in The Mathematica Book and others that deal with programming in Mathematica (e.g., [33], [34], and [42]). However, the author's experience suggests that a deeper understanding of these commands and their optimal applications comes only after working with Mathematica in the solution of more complicated problems.

Both the printed book and the electronic component contain material that is meant to teach in detail how to use Mathematica to solve problems, rather than to present the underlying details of the various scientific examples. It cannot be overemphasized that to master the use of Mathematica, its programming paradigms and individual functions, the reader must experiment; this is especially important, insightful, easily verifiable, and satisfying with graphics, which involve manipulating expressions, making small changes, and finding different approaches. Because the results can easily be visually checked, generating and modifying graphics is an ideal method to learn programming in Mathematica.

0.4 Exercises and Solutions

0.4.1 Exercises

Each chapter includes a set of exercises and a detailed solution proposal for each exercise. When possible, all of the purely Mathematica-programming related exercises (these are most of the exercises of the Programming volume) should be solved by every reader. The exercises coming from mathematics, physics, and engineering should be solved according to the reader's interest. The most important Mathematica functions needed to solve a given problem are generally those of the associated chapter.

For a rough orientation about the content of an exercise, the subject is included in its title. The relative degree of difficulty is indicated by level superscript of the exercise number (${ }^{\mathrm{L} 1}$ indicates easy, ${ }^{\mathrm{L} 2}$ indicates medium, and ${ }^{\mathrm{L} 3}$ indicates difficult). The author's aim was to present understandable interesting examples that illustrate the Mathematica material discussed in the corresponding chapter. Some exercises were inspired by recent research problems; the references given allow the interested reader to dig deeper into the subject.

The exercises are intentionally not hyperlinked to the corresponding solution. The independent solving of the exercises is an important part of learning Mathematica.

0.4.2 Solutions

The GuideBooks contain solutions to each of the more than 1,000 exercises. Many of the techniques used in the solutions are not just one-line calls to built-in functions. It might well be that with further enhancements, a future version of Mathematica might be able to solve the problem more directly. (But due to different forms of some results returned by Mathematica, some problems might also become more challenging.) The author encourages the reader to try to find shorter, more clever, faster (in terms of runtime as well complexity), more general, and more elegant solutions. Doing various calculations is the most effective way to learn Mathematica. A proper Mathematica implementation of a function that solves a given problem often contains many different elements. The function(s) should have sensibly named and sensibly behaving options; for various (machine numeric, high-precision numeric, symbolic) inputs different steps might be required; shielding against inappropriate input might be needed; different parameter values might require different solution strategies and algorithms, helpful error and warning messages should be available. The returned data structure should be intuitive and easy to reuse; to achieve a good computational complexity, nontrivial data structures might be needed, etc. Most of the solutions do not deal with all of these issues, but only with selected ones and thereby leave plenty of room for more detailed treatments; as far as limit, boundary, and degenerate cases are concerned, they represent an outline of how to tackle the problem. Although the solutions do their job in general, they often allow considerable refinement and extension by the reader.

The reader should consider the given solution to a given exercise as a proposal; quite different approaches are often possible and sometimes even more efficient. The routines presented in the solutions are not the most general possible, because to make them foolproof for every possible input (sensible and nonsensical, evaluated and unevaluated, numerical and symbolical), the books would have had to go considerably beyond the mathematical and physical framework of the GuideBooks. In addition, few warnings are implemented for improper or improperly used arguments. The graphics provided in the solutions are mostly subject to a long list of refinements. Although the solutions do work, they are often sketchy and can be considerably refined and extended by the reader. This also means that the provided solutions to the exercises programs are not always very suitable for
solving larger classes of problems. To increase their applicability would require considerably more code. Thus, it is not guaranteed that given routines will work correctly on related problems. To guarantee this generality and scalability, one would have to protect the variables better, implement formulas for more general or specialized cases, write functions to accept different numbers of variables, add type-checking and error-checking functions, and include corresponding error messages and warnings.

To simplify working through the solutions, the various steps of the solution are commented and are not always packed in a Module or Block. In general, only functions that are used later are packed. For longer calculations, such as those in some of the exercises, this was not feasible and intended. The arguments of the functions are not always checked for their appropriateness as is desirable for robust code. But, this makes it easier for the user to test and modify the code.

0.5 The Books Versus the Electronic Components

0.5.1 Working with the Notebooks

Each volume of the GuideBooks comes with a multiplatform DVD, containing fourteen main notebooks tailored for Mathematica 4 and compatible with Mathematica 5. Each notebook corresponds to a chapter from the printed books. (To avoid large file sizes of the notebooks, all animations are located in the Animations directory and not directly in the chapter notebooks.) The chapters (and so the corresponding notebooks) contain a detailed description and explanation of the Mathematica commands needed and used in applications of Mathematica to the sciences. Discussions on Mathematica functions are supplemented by a variety of mathematics, physics, and graphics examples. The notebooks also contain complete solutions to all exercises. Forming an electronic book, the notebooks also contain all text, as well as fully typeset formulas, and reader-editable and reader-changeable input. (Readers can copy, paste, and use the inputs in their notebooks.) In addition to the chapter notebooks, the DVD also includes a navigation palette and fully hyperlinked table of contents and index notebooks. The Mathematica notebooks corresponding to the printed book are fully evaluated. The evaluated chapter notebooks also come with hyperlinked overviews; these overviews are not in the printed book.

When reading the printed books, it might seem that some parts are longer than needed. The reader should keep in mind that the primary tool for working with the Mathematica kernel are Mathematica notebooks and that on a computer screen and there "length does not matter much". The GuideBooks are basically a printout of the notebooks, which makes going back and forth between the printed books and the notebooks very easy. The GuideBooks give large examples to encourage the reader to investigate various Mathematica functions and to become familiar with Mathematica as a system for doing mathematics, as well as a programming language. Investigating Mathematica in the accompanying notebooks is the best way to learn its details.

To start viewing the notebooks, open the table of contents notebook TableOfContents.nb. Mathematica notebooks can contain hyperlinks, and all entries of the table of contents are hyperlinked. Navigating through one of the chapters is convenient when done using the navigator palette GuideBooksNavigator.nb.

When opening a notebook, the front end minimizes the amount of memory needed to display the notebook by loading it incrementally. Depending on the reader's hardware, this might result in a slow scrolling speed. Clicking the "Load notebook cache" button of the GuideBooksNavigator palette speeds this up by loading the complete notebook into the front end.

For the vast majority of sections, subsections, and solutions of the exercises, the reader can just select such a structural unit and evaluate it (at once) on a year- 2005 computer ($\geq 512 \mathrm{MB}$ RAM) typically in a matter of
minutes. Some sections and solutions containing many graphics may need hours of computation time. Also, more than 50 pieces of code run hours, even days. The inputs that are very memory intensive or produce large outputs and graphics are in inactive cells which can be activated by clicking the adjacent button. Because of potentially overlapping variable names between various sections and subsections, the author advises the reader not to evaluate an entire chapter at once.

Each smallest self-contained structural unit (a subsection, a section without subsections, or an exercise) should be evaluated within one Mathematica session starting with a freshly started kernel. At the end of each unit is an input cell. After evaluating all input cells of a unit in consecutive order, the input of this cell generates a short summary about the entire Mathematica session. It lists the number of evaluated inputs, the kernel CPU time, the wall clock time, and the maximal memory used to evaluate the inputs (excluding the resources needed to evaluate the Program cells). These numbers serve as a guide for the reader about the to-be-expected running times and memory needs. These numbers can deviate from run to run. The wall clock time can be substantially larger than the CPU time due to other processes running on the same computer and due to time needed to render graphics. The data shown in the evaluated notebooks came from a 2.5 GHz Linux computer. The CPU times are generically proportional to the computer clock speed, but can deviate within a small factor from operating system to operating system. In rare, randomly occurring cases slower computers can achieve smaller CPU and wall clock times than faster computers, due to internal time-constrained simplification processes in various symbolic mathematics functions (such as Integrate, Sum, DSolve, ...).

The Overview Section of the chapters is set up for a front end and kernel running on the same computer and having access to the same file system. When using a remote kernel, the directory specification for the package Overview.m must be changed accordingly.

References can be conveniently extracted from the main text by selecting the cell(s) that refer to them (or parts of a cell) and then clicking the "Extract References" button. A new notebook with the extracted references will then appear.

The notebooks contain color graphics. (To rerender the pictures with a greater color depth or at a larger size, choose Rerender Graphics from the Cell menu.) With some of the colors used, black-and-white printouts occasionally give low-contrast results. For better black-and-white printouts of these graphics, the author recommends setting the ColorOutput option of the relevant graphics function to GrayLevel. The notebooks with animations (in the printed book, animations are typically printed as an array of about 10 to 20 individual graphics) typically contain between 60 and 120 frames. Rerunning the corresponding code with a large number of frames will allow the reader to generate smoother and longer-running animations.

Because many cell styles used in the notebooks are unique to the GuideBooks, when copying expressions and cells from the GuideBooks notebooks to other notebooks, one should first attach the style sheet notebook GuideBooksStylesheet.nb to the destination notebook, or define the needed styles in the style sheet of the destination notebook.

0.5.2 Reproducibility of the Results

The 14 chapter notebooks contained in the electronic version of the GuideBooks were run mostly with Mathematica 5.1 on a 2 GHz Intel Linux computer with 2 GB RAM. They need more than 100 hours of evaluation time. (This does not include the evaluation of the currently unevaluatable parts of code after the Make Input buttons.) For most subsections and sections, 512 MB RAM are recommended for a fast and smooth evaluation "at once" (meaning the reader can select the section or subsection, and evaluate all inputs without running out of memory or clearing variables) and the rendering of the generated graphic in the front end. Some subsections and sections need more memory when run. To reduce these memory requirements, the author recommends restarting the Mathematica kernel inside these subsections and sections, evaluating the necessary definitions, and then continuing. This will allow the reader to evaluate all inputs.

In general, regardless of the computer, with the same version of Mathematica, the reader should get the same results as shown in the notebooks. (The author has tested the code on Sun and Intel-based Linux computers, but this does not mean that some code might not run as displayed (because of different configurations, stack size settings, etc., but the disclaimer from the Preface applies everywhere). If an input does not work on a particular machine, please inform the author. Some deviations from the results given may appear because of the following:

- Inputs involving the function Random [...] in some form. (Often SeedRandom to allow for some kind of reproducibility and randomness at the same time is employed.)
- Mathematica commands operating on the file system of the computer, or make use of the type of computer (such inputs need to be edited using the appropriate directory specifications).
- Calculations showing some of the differences of floating-point numbers and the machine-dependent representation of these on various computers.
- Pictures using various fonts and sizes because of their availability (or lack thereof) and shape on different computers.
- Calculations involving Timing because of different clock speeds, architectures, operating systems, and libraries.
- Formats of results depending on the actual window width and default font size. (Often, the corresponding inputs will contain Short.)

Using anything other than Mathematica Version 5.1 might also result in different outputs. Examples of results that change form, but are all mathematically correct and equivalent, are the parameter variables used in underdetermined systems of linear equations, the form of the results of an integral, and the internal form of functions like InterpolatingFunction and CompiledFunction. Some inputs might no longer evaluate the same way because functions from a package were used and these functions are potentially built-in functions in a later Mathematica version. Mathematica is a very large and complicated program that is constantly updated and improved. Some of these changes might be design changes, superseded functionality, or potentially regressions, and as a result, some of the inputs might not work at all or give unexpected results in future versions of Mathematica.

0.5.3 Earlier Versions of the Notebooks

The first printing of the Programming volume and the Graphics volumes of the Mathematica GuideBooks were published in October 2004. The electronic components of these two books contained the corresponding evaluated chapter notebooks as well as unevaluated versions of preversions of the notebooks belonging to the Numerics and Symbolics volumes. Similarly, the electronic components of the Numerics and Symbolics volume contain the corresponding evaluated chapter notebooks and unevaluated copies of the notebooks of the Programming and Graphics volumes. This allows the reader to follow cross-references and look up relevant concepts discussed in the other volumes. The author has tried to keep the notebooks of the GuideBooks as up-to-date as possible. (Meaning with respect to the efficient and appropriate use of the latest version of Mathematica, with respect to maintaining a list of references that contains new publications, and examples, and with respect to incorporating corrections to known problems, errors, and mistakes). As a result, the notebooks of all four volumes that come with later printings of the Programming and Graphics volumes, as well with the Numerics and Symbolics volumes will be different and supersede the earlier notebooks originally distributed with the Programming and Graphics volumes. The notebooks that come with the Numerics and Symbolics volumes are genuine Mathematica Version 5.1 notebooks. Because most advances in Mathematica Version 5 and 5.1 compared with Mathematica Version 4 occurred in functions carrying out numerical and symbolical calculations, the notebooks associated with Numerics and Symbolics volumes contain a substantial amount of changes and additions compared with their originally distributed version.

0.6 Style and Design Elements

0.6.1 Text and Code Formatting

The GuideBooks are divided into chapters. Each chapter consists of several sections, which frequently are further subdivided into subsections. General remarks about a chapter or a section are presented in the sections and subsections numbered 0 . (These remarks usually discuss the structure of the following section and give teasers about the usefulness of the functions to be discussed.) Also, sometimes these sections serve to refresh the discussion of some functions already introduced earlier.

Following the style of The Mathematica Book [45], the GuideBooks use the following fonts: For the main text, Times; for Mathematica inputs and built-in Mathematica commands, Courier plain (like Plot); and for user-supplied arguments, Times italic (like userArgument ${ }_{1}$). Built-in Mathematica functions are introduced in the following style:

> MathematicaFunctionToBeIntroduced [typeIndicatingUserSuppliedArgument(s)] is a description of the built-in command MathematicaFunctionToBeIntroduced upon its first appearance. A definition of the command, along with its parameters is given. Here, typeIndicatingUserSuppliedArgument(s) is one (or more) user-supplied expression(s) and may be written in an abbreviated form or in a different way for emphasis.

The actual Mathematica inputs and outputs appear in the following manner (as mentioned above, virtually all inputs are given in InputForm).

```
(* A comment. It will be/is ignored as Mathematica input:
    Return only one of the solutions *)
Last[Solve[{x^2 - y == 1, x - y^2 == 1}, {x, y}]]
```

When referring in text to variables of Mathematica inputs and outputs, the following convention is used: Fixed, nonpattern variables (including local variables) are printed in Courier plain (the equations solved above contained the variables x and y). User supplied arguments to built-in or defined functions with pattern variables are printed in Times italic. The next input defines a function generating a pair of polynomial equations in x and y.

```
equationPair[x_, y_] := {x^2 - y == 1, x - y^2 == 1}
```

x and y are pattern variables (usimng the same letters, but a different font from the actual code fragments x_{-}and y_{-}) that can stand for any argument. Here we call the function equationPair with the two arguments $u+v$ and $w-z$.

```
equationPair[u + v, w - z]
```

Occasionally, explanation about a mathematics or physics topic is given before the corresponding Mathematica implementation is discussed. These sections are marked as follows:

Mathematical Remark: Special Topic in Mathematics or Physics

A short summary or review of mathematical or physical ideas necessary for the following example(s).

From time to time, Mathematica is used to analyze expressions, algorithms, etc. In some cases, results in the form of English sentences are produced programmatically. To differentiate such automatically generated text from the main text, in most instances such text is prefaced by "o" (structurally the corresponding cells are of type "PrintText" versus "Text" for author-written cells).

Code pieces that either run for quite long, or need a lot of memory, or are tangent to the current discussion are displayed in the following manner.

```
mathematicaCodeWhichEitherRunsVeryLongOrThatIsVeryMemoryIntensive:
OrThatProducesAVeryLargeGraphicOrThatIsASideTrackToTheSubjectUnder:
Discussion
(* with some comments on how the code works *)
```

To run a code piece like this, click the Make Input button above it. This will generate the corresponding input cell that can be evaluated if the reader's computer has the necessary resources.

The reader is encouraged to add new inputs and annotations to the electronic notebooks. There are two styles for reader-added material: "ReaderInput" (a Mathematica input style and simultaneously the default style for a new cell) and "ReaderAnnotation" (a text-style cell type). They are primarily intended to be used in the Reading environment. These two styles are indented more than the default input and text cells, have a green left bar and a dingbat. To access the "ReaderInput" and "ReaderAnnotation" styles, press the system-dependent modifier key (such as Control or Command) and 9 and 7 , respectively.

0.6.2 References

Because the GuideBooks are concerned with the solution of mathematical and physical problems using Mathematica and are not mathematics or physics monographs, the author did not attempt to give complete references for each of the applications discussed [38], [20]. The references cited in the text pertain mainly to the applications under discussion. Most of the citations are from the more recent literature; references to older publications can be found in the cited ones. Frequently URLs for downloading relevant or interesting information are given. (The URL addresses worked at the time of printing and, hopefully, will be still active when the reader tries them.) References for Mathematica, for algorithms used in computer algebra, and for applications of computer algebra are collected in the Appendix A.

The references are listed at the end of each chapter in alphabetical order. In the notebooks, the references are hyperlinked to all their occurrences in the main text. Multiple references for a subject are not cited in numerical order, but rather in the order of their importance, relevance, and suggested reading order for the implementation given.

In a few cases (e.g., pure functions in Chapter 3, some matrix operations in Chapter 6), references to the mathematical background for some built-in commands are given-mainly for commands in which the mathematics required extends beyond the familiarity commonly exhibited by non-mathematicians. The GuideBooks do not discuss the algorithms underlying such complicated functions, but sometimes use Mathematica to "monitor" the algorithms.

References of the form abbreviationOfAScientificFieldyearMonthPreprintNumber (such as quant-ph/0012147) refer to the arXiv preprint server [43], [22], [30] at http://arXiv.org. When a paper appeared as a preprint and (later) in a journal, typically only the more accessible preprint reference is given. For the convenience of the reader, at the end of these references, there is a Get Preprint button. Click the button to display a palette notebook with hyperlinks to the corresponding preprint at the main preprint server and its mirror sites. (Some of the older journal articles can be downloaded free of charge from some of the digital mathematics library servers, such as http://gdz.sub.uni-goettingen.de, http://www.emis.de, http://www.numdam.org, and http://dieper.aib.unilinz.ac.at.)

As much as available, recent journal articles are hyperlinked through their digital object identifiers (http://www.doi.org).

0.6.3 Variable Scoping, Input Numbering, and Warning Messages

Some of the Mathematica inputs intentionally cause error messages, infinite loops, and so on, to illustrate the operation of a Mathematica command. These messages also arise in the user's practical use of Mathematica. So, instead of presenting polished and perfected code, the author prefers to illustrate the potential problems and limitations associated with the use of Mathematica applied to "real life" problems. The one exception are the spelling warning messages General::spell and General::spell1 that would appear relatively frequently because "similar" names are used eventually. For easier and less defocused reading, these messages are turned off in the initialization cells. (When working with the notebooks, this means that the pop-up window asking the user "Do you want to automatically evaluate all the initialization cells in the notebook?" should be evaluated should always be answered with a "yes".) For the vast majority of graphics presented, the picture is the focus, not the returned Mathematica expression representing the picture. That is why the Graphics and Graphics3D output is suppressed in most situations.

To improve the code's readability, no attempt has been made to protect all variables that are used in the various examples. This protection could be done with Clear, Remove, Block, Module, With, and others. Not protecting the variables allows the reader to modify, in a somewhat easier manner, the values and definitions of variables, and to see the effects of these changes. On the other hand, there may be some interference between variable names and values used in the notebooks and those that might be introduced when experimenting with the code. When readers examine some of the code on a computer, reevaluate sections, and sometimes perform subsidiary calculations, they may introduce variables that might interfere with ones from the GuideBooks. To partially avoid this problem, and for the reader's convenience, sometimes Clear [sequenceOfVariables] and Remove [sequenceOfVariables] are sprinkled throughout the notebooks. This makes experimenting with these functions easier.

The numbering of the Mathematica inputs and outputs typically does not contain all consecutive integers. Some pieces of Mathematica code consist of multiple inputs per cell; so, therefore, the line numbering is incremented by more than just 1 . As mentioned, Mathematica should be restarted at every section, or subsection or solution of an exercise, to make sure that no variables with values get reused. The author also explicitly asks the reader to restart Mathematica at some special positions inside sections. This removes previously introduced variables, eliminates all existing contexts, and returns Mathematica to the typical initial configuration to ensure reproduction of the results and to avoid using too much memory inside one session.

0.6.4 Graphics

In Mathematica 5.1, displayed graphics are side effects, not outputs. The actual output of an input producing a graphic is a single cell with the text -Graphics- or -Graphics3D- or -GraphicsArray- and so on. To save paper, these output cells have been deleted in the printed version of the GuideBooks.

Most graphics use an appropriate number of plot points and polygons to show the relevant features and details. Changing the number of plot points and polygons to a higher value to obtain higher resolution graphics can be done by changing the corresponding inputs.

The graphics of the printed book and the graphics in the notebooks are largely identical. Some printed book graphics use a different color scheme and different point sizes and line and edge thicknesses to enhance contrast and visibility. In addition, the font size has been reduced for the printed book in tick and axes labels.

The graphics shown in the notebooks are PostScript graphics. This means they can be resized and rerendered without loss of quality. To reduce file sizes, the reader can convert them to bitmap graphics using the Cell \longrightarrow Convert $\mathrm{To} \longrightarrow$ Bitmap menu. The resulting bitmap graphics can no longer be resized or rerendered in the original resolution.

To reduce file sizes of the main content notebooks, the animations of the GuideBooks are not part of the chapter notebooks. They are contained in a separate directory.

0.6.5 Notations and Symbols

The symbols used in typeset mathematical formulas are not uniform and unique throughout the GuideBooks. Various mathematical and physical quantities (such as normals, rotation matrices, and field strengths) are used repeatedly in this book. Frequently the same notation is used for them, but depending on the context, also different ones are used, e.g. sometimes bold is used for a vector (such as \mathbf{r}) and sometimes an arrow (such as \vec{r}). Matrices appear in bold or as doublestruck letters. Depending on the context and emphasis placed, different notations are used in display equations and in the Mathematica input form. For instance, for a time-dependent scalar quantity of one variable $\psi(t ; x)$, we might use one of many patterns, such as ψ [t] [x] (for emphasizing a parametric t-dependence) or $\psi[t, \quad x]$ (to treat t and x on an equal footing) or $\psi[t, \quad\{x\}]$ (to emphasize the one-dimensionality of the space variable x).

Mathematical formulas use standard notation. To avoid confusion with Mathematica notations, the use of square brackets is minimized throughout. Following the conventions of mathematics notation, square brackets are used for three cases: a) Functionals, such as $\mathcal{F}_{t}[f(t)](\omega)$ for the Fourier transform of a function $f(t)$. b) Power series coefficients, $\left[x^{k}\right](f(x))$ denotes the coefficient of x^{k} of the power series expansion of $f(x)$ around $x=0$. c) Closed intervals, like $[a, b]$ (open intervals are denoted by (a, b)). Grouping is exclusively done using parentheses. Upper-case double-struck letters denote domains of numbers, \mathbb{Z} for integers, \mathbb{N} for nonnegative integers, \mathbb{Q} for rational numbers, \mathbb{R} for reals, and \mathbb{C} for complex numbers. Points in \mathbb{R}^{n} (or \mathbb{C}^{n}) with explicitly given coordinates are indicated using curly braces $\left\{c_{1}, \ldots, c_{n}\right\}$. The symbols \wedge and \vee for And and Or are used in logical formulas.

For variable names in formula- and identity-like Mathematica code, the symbol (or small variations of it) traditionally used in mathematics or physics is used. In program-like Mathematica code, the author uses very descriptive, sometimes abbreviated, but sometimes also slightly longish, variable names, such as buildBril: louinZone and FibonacciChainMap.

0.6.6 Units

In the examples involving concepts drawn from physics, the author tried to enhance the readability of the code (and execution speed) by not choosing systems of units involving numerical or unit-dependent quantities. (For more on the choice and treatment of units, see [39], [4], [5], [10], [13], [11], [12], [36], [35], [31], [37], [44], [21], [25], [18], [26], [24].) Although Mathematica can carry units along with the symbols representing the physical quantities in a calculation, this requires more programming and frequently diverts from the essence of the problem. Choosing a system of units that allows the equations to be written without (unneeded in computations) units often gives considerable insight into the importance of the various parts of the equations because the magnitudes of the explicitly appearing coefficients are more easily compared.

0.6.7 Cover Graphics

The cover graphics of the GuideBooks stem from the Mathematica GuideBooks themselves. The construction ideas and their implementation are discussed in detail in the corresponding GuideBook.

- The cover graphic of the Programming volume shows 42 tori, 12 of which are in the dodecahedron's face planes and 30 which are in the planes perpendicular to the dodecahedron's edges. Subsections 1.2.4 of Chapter 1 discusses the implementation.
- The cover graphic of the Graphics volume first subdivides the faces of a dodecahedron into small triangles and then rotates randomly selected triangles around the dodecahedron's edges. The proposed solution of Exercise 1b of Chapter 2 discusses the implementation.
- The cover graphic of the Numerics volume visualizes the electric field lines of a symmetric arrangement of positive and negative charges. Subsection 1.11.1 discusses the implementation.
- The cover graphic of the Symbolics volume visualizes the derivative of the Weierstrass \wp^{\prime} function over the Riemann sphere. The "threefold blossoms" arise from the poles at the centers of the periodic array of period parallelograms. Exercise 3 j of Chapter 2 discusses the implementation.
- The four spine graphics show the inverse elliptic nome function q^{-1}, a function defined in the unit disk with a boundary of analyticity mapped to a triangle, a square, a pentagon, and a hexagon. Exercise 16 of Chapter 2 of the Graphics volume discusses the implementation.

0.7 Production History

The original set of notebooks was developed in the 1991-1992 academic year on an Apple Macintosh IIfx with 20 MB RAM using Mathematica Version 2.1. Over the years, the notebooks were updated to Mathematica Version 2.2, then to Version 3, and finally for Version 4 for the first printed edition of the Programming and Graphics volumes of the Mathematica GuideBooks (published autumn 2004). For the Numerics and Symbolics volumes, the GuideBooks notebooks were updated to Mathematica Version 5 in the second half of 2004. Historically, the first step in creating the book was the translation of a set of Macintosh notebooks used for lecturing and written in German into English by Larry Shumaker. This was done primarily by a translation program and afterward by manually polishing the English version. Then the notebooks were transformed into $T_{E} X$ files using the program nb2tex on a NeXT computer. The resulting files were manually edited, equations prepared in the original German notebooks were formatted with $T_{E} X$, and macros were added corresponding to the design of the book. (The translation to $T_{E} X$ was necessary because Mathematica Version 2.2 did not allow for book-quality printouts.) They were updated and refined for nearly three years, and then Mathematica 3 notebooks were generated from the $T_{E X}$ files using a preliminary version of the program tex 2 nb . Historically and technically, this was an important step because it transformed all of the material of the GuideBooks into Mathematica expressions and allowed for automated changes and updates in the various editing stages. (Using the Mathematica kernel allowed one to process and modify the notebook files of these books in a uniform and time-efficient manner.) Then, the notebooks were expanded in size and scope and updated to Mathematica 4. In the second half of the year 2003, and first half of the year 2004, the Mathematica programs of the notebooks were revised to be compatible with Mathematica 5. In October 2004, the Programming and the Graphics volumes were published. In the last quarter of 2004, all four volumes of the GuideBooks were updated to be tailored for Mathematica 5.1 A special set of styles was created to generate the actual PostScript as printouts
from the notebooks. All inputs were evaluated with this style sheet, and the generated PostScript was directly used for the book production. Using a little Mathematica program, the index was generated from the notebooks (which are Mathematica expressions), containing all index entries as cell tags.

0.8 Four General Suggestions

A reader new to Mathematica should take into account these four suggestions.

- There is usually more than one way to solve a given problem using Mathematica. If one approach does not work or returns the wrong answer or gives an error message, make every effort to understand what is happening. Even if the reader has succeeded with an alternative approach, it is important to try to understand why other attempts failed.
- Mathematical formulas, algorithms, and so on, should be implemented as directly as possible, even if the resulting construction is somewhat "unusual" compared to that in other programming languages. In particular, the reader should not simply translate C, Pascal, Fortran, or other programs line-by-line into Mathematica, although this is indeed possible. Instead, the reader should instead reformulate the problem in a clear mathematical way. For example, Do, While, and For loops are frequently unnecessary, convergence (for instance, of sums) can be checked by Mathematica, and If tests can often be replaced by a corresponding pattern. The reader should start with an exact mathematical description of the problem [28], [29]. For example, it does not suffice to know which transformation formulas have to be used on certain functions; one also needs to know how to apply them. "The power of mathematics is in its precision. The precision of mathematics must be used precisely." [17]
- If the exercises, examples, and calculation of the GuideBooks or the listing of calculation proposals from Exercise 1 of Chapter 1 of the Programming volume are not challenging enough or do not cover the reader's interests, consider the following idea, which provides a source for all kinds of interesting and difficult problems: The reader should select a built-in command and try to reconstruct it using other built-in commands and make it behave as close to the original as possible in its operation, speed, and domain of applicability, or even to surpass it. (Replicating the following functions is a serious challenge: N, Factor, FactorInteger, Integrate, NIntegrate, Solve, DSolve, NDSolve, Series, Sum, Limit, Root, Prime, or PrimeQ.)
- If the reader tries to solve a smaller or larger problem in Mathematica and does not succeed, keep this problem on a "to do" list and periodically review this list and try again. Whenever the reader has a clear strategy to solve a problem, this strategy can be implemented in Mathematica. The implementation of the algorithm might require some programming skills, and by reading through this book, the reader will become able to code more sophisticated procedures and more efficient implementations. After the reader has acquired a certain amount of Mathemat ica programming familiarity, implementing virtually all "procedures" which the reader can (algorithmically) carry out with paper and pencil will become straightforward.

References

1 P. Abbott. The Mathematica Journal 4, 415 (2000).
2 P. Abbott. The Mathematica Journal 9, 31 (2003).
3 H. Abelson, G. Sussman. Structure and Interpretation of Computer Programs, MIT Press, Cambridge, MA, 1985.
4 G. I. Barenblatt. Similarity, Self-Similarity, and Intermediate Asymptotics, Consultants Bureau, New York, 1979.
5 F. A. Bender. An Introduction to Mathematical Modeling, Wiley, New York, 1978.
6 G. Benfatto, G. Gallavotti. Renormalization Group, Princeton University Press, Princeton, 1995.
7 L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation, Springer, New York, 1998.
8 P. Bürgisser, M. Clausen, M. A. Shokrollahi. Algebraic Complexity Theory, Springer, Berlin, 1997.
9 L. Cardelli, P. Wegner. Comput. Surveys 17, 471 (1985).
10 J. F. Carinena, M. Santander in P. W. Hawkes (ed.). Advances in Electronics and Electron Physics 72, Academic Press, New York, 1988.
11 E. A. Desloge. Am. J. Phys. 52, 312 (1984).
12 C. L. Dym, E. S. Ivey. Principles of Mathematical Modelling, Academic Press, New York, 1980.
13 A. C. Fowler. Mathematical Models in the Applied Sciences, Cambridge University Press, Cambridge, 1997.
14 T. Gannon. arXiv:math.QA/9906167 (1999).
15 R. J. Gaylord, S. N. Kamin, P. R. Wellin. An Introduction to Programming with Mathematica, TELOS/Springer-Verlag, Santa Clara, 1993.
16 J. Glynn, T. Gray. The Beginner's Guide to Mathematica Version 3, Cambridge University Press, Cambridge, 1997.
17 D. Greenspan in R. E. Mickens (ed.). Mathematics and Science, World Scientific, Singapore, 1990.
18 G. W. Hart. Multidimensional Analysis, Springer-Verlag, New York, 1995.
19 A. K. Hartman, H. Rieger. arXiv:cond-mat/0111531 (2001).
20 M. Hazewinkel. arXiv:cs.IR/0410055 (2004).
21 E. Isaacson, M. Isaacson. Dimensional Methods in Engineering and Physics, Edward Arnold, London, 1975.
22 A. Jackson. Notices Am. Math. Soc. 49, 23 (2002).
23 R. D. Jenks, B. M. Trager in J. von zur Gathen, M. Giesbrecht (eds.). Symbolic and Algebraic Computation, ACM Press, New York, 1994.
24 C. G. Jesudason. arXiv:physics/0403033 (2004).
25 C. Kauffmann in A. van der Burgh (ed.). Topics in Engineering Mathematics, Kluwer, Dordrecht, 1993.
26 R. Khanin in B. Mourrain (ed.). ISSAC 2001, ACM, Baltimore, 2001.
27 P. Kleinert, H. Schlegel. Physica A 218, 507 (1995).
28 D. E. Knuth. Am. Math. Monthly 81, 323 (1974).
29 D. E. Knuth. Am. Math. Monthly 92, 170 (1985).
30 G. Kuperberg. arXiv:math.HO/0210144 (2002).
31 J. D. Logan. Applied Mathematics, Wiley, New York, 1987.
32 K. C. Louden. Programming Languages: Principles and Practice, PWS-Kent, Boston, 1993.
33 R. Maeder. Programming in Mathematica, Addison-Wesley, Reading, 1997.
34 R. Maeder. The Mathematica Programmer, Academic Press, New York, 1993.
B. S. Massey. Measures in Science and Engineering, Wiley, New York, 1986.
G. Messina, S. Santangelo, A. Paoletti, A. Tucciarone. Nuov. Cim. D 17, 523 (1995).
J. Molenaar in A. van der Burgh, J. Simonis (eds.). Topics in Engineering Mathematics, Kluwer, Dordrecht, 1992.
E. Pascal. Repertorium der höheren Mathematik Theil 1/1 [page V, paragraph 3], Teubner, Leipzig, 1900.
S. H. Romer. Am. J. Phys. 67, 13 (1999).
R. Sedgewick, P. Flajolet. Analysis of Algorithms, Addison-Wesley, Reading, 1996.
R. Sethi. Programming Languages: Concepts and Constructions, Addison-Wesley, New York, 1989.
D. B. Wagner. Power Programming with Mathematica: The Kernel, McGraw-Hill, New York, 1996.
S. Warner. arXiv:cs.DL/0101027 (2001).
H. Whitney. Am. Math. Monthly 75, 115, 227 (1968).
S. Wolfram. The Mathematica Book, Wolfram Media, Champaign, 2003.

