A CLASSICAL INTRODUCTION TO CRYPTOGRAPHY EXERCISE BOOK

A CLASSICAL INTRODUCTION TO CRYPTOGRAPHY EXERCISE BOOK

by

Thomas Baignères
EPFL, Switzerland

Pascal Junod EPFL, Switzerland

Yi Lu EPFL, Switzerland

Jean Monnerat
EPFL, Switzerland

Serge Vaudenay EPFL, Switzerland

Thomas Baignères EPFL - I&C - LASEC Lausanne, Switzerland

Yi Lu EPFL - I&C - LASEC Lausanne, Switzerland

Serge Vaudenay Lausanne, Switzerland Pascal Junod Lausanne, Switzerland

Jean Monnerat EPFL-I&C-LASEC Lausanne, Switzerland

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

A CLASSICAL INTRODUCTION TO CRYPTOGRAPHY EXERCISE BOOK by Thomas Baignères, Palcal Junod, Yi Lu, Jean Monnerat and Serge Vaudenay

ISBN-10: 0-387-27934-2 e-ISBN-10: 0-387-28835-X ISBN-13: 978-0-387-27934-3 e-ISBN-13: 978-0-387-28835-2

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

SPIN 11514411, 11552901

springeronline.com

To Valérie and my parents

To Mimi and Chloé

To my parents

To Susan and my parents

To Christine and Emilien

Contents

Foreword		xiii
1. PREHISTO	RY OF CRYPTOGRAPHY	1
Exercises		1
Exercise 1	Mappings, etc.	1
Exercise 2	A Simple Substitution Cryptogram	4
Exercise 3	Product of Vigenère Ciphers	5
Exercise 4	⋆One-Time Pad	5
Exercise 5	*Latin Squares	6
Exercise 6	Enigma	6
Solutions		8
2. CONVENT	IONAL CRYPTOGRAPHY	17
Exercises		17
Exercise 1	Weak Keys of DES	17
Exercise 2	Semi-Weak Keys of DES	17
Exercise 3	Complementation Property of DES	17
Exercise 4	3DES Exhaustive Search	18
Exercise 5	2DES and Two-Key 3DES	18
Exercise 6	\star Exhaustive Search on 3DES	19
Exercise 7	An Extension of DES to 128-bit Blocks	20
Exercise 8	Attack Against the OFB Mode	21
Exercise 9	\star Linear Feedback Shift Registers	22
Exercise 10	→Attacks on Cascade Ciphers	23
Exercise 11	Attacks on Encryption Modes I	24
Exercise 12	2 Attacks on Encryption Modes II	28
Exercise 13	3 ★A Variant of A5/1 I	29

viii EXERCISE BOOK

Exercise 14	⋆A Variant of A5/1 II	31
Exercise 15	\star Memoryless Exhaustive Search	32
Solutions		34
	D CONVENTIONAL	
CRYPTOGE	RAPHIC PRIMITIVES	57
Exercises		57
Exercise 1	Collisions in CBC Mode	57
Exercise 2	Collisions	57
Exercise 3	Expected Number of Collisions	58
Exercise 4	Multicollisions on Hash Functions	58
Exercise 5	Weak Hash Function Designs	60
Exercise 6	Collisions on a Modified MD5	62
Exercise 7	First Preimage on a Modified MD5	62
Exercise 8	*Attacks on Yi-Lam Hash Function	62
Exercise 9	MAC from Block Ciphers	63
Exercise 10	CFB-MAC	64
Exercise 11	\star Universal Hashing	64
Solutions		66
4. CONVENTI	ONAL SECURITY ANALYSIS	81
Exercises		81
Exercise 1	The SAFER Permutation	81
Exercise 2	*Linear Cryptanalysis	81
Exercise 3	*Differential and Linear Probabilities	82
Exercise 4	∗Feistel Schemes	82
Exercise 5	*Impossible Differentials	84
Exercise 6	*Attacks Using Impossible Differential	84
Exercise 7	\star Multipermutations	86
Exercise 8	\star Orthomorphisms	87
Exercise 9	\star Decorrelation	88
Exercise 10	*Decorrelation and Differential Cryptanalysis	89
Exercise 11	\star Decorrelation of a Feistel Cipher	89
Exercise 12	$\star A$ Saturation Attack against IDEA	89
Exercise 13	$\star \text{Fault}$ Attack against a Block Cipher	94
Solutions		97

Contents	ix
----------	----

	PROTOCOLS WITH DNAL CRYPTOGRAPHY	125
Exercises		125
Exercise 1	Flipping a Coin by Email	125
Exercise 2	Woo-Lam Protocol	126
Exercise 3	MicroMint I	127
Exercise 4	MicroMint II	127
Exercise 5	Bluetooth Pairing Protocol	128
Exercise 6	UNIX Passwords	128
Exercise 7	Key Enlargement	128
Solutions		130
6. ALGORITHI	MIC ALGEBRA	135
Exercises		135
Exercise 1	Captain's Age	135
Exercise 2	Roots in \mathbf{Z}_{77}^*	135
Exercise 3	*When is \mathbf{Z}_n^* Cyclic?	135
Exercise 4	Finite Fields and AES	137
Exercise 5	$\star A$ Special Discrete Logarithm	138
Exercise 6	\star Quadratic Residues	138
Exercise 7	*Cubic Residues	139
Exercise 8	\star Generating Generators for \mathbf{Z}_p^*	139
Exercise 9	$\star \text{Elliptic Curves}$ and Finite Fields I	140
Exercise 10	$\star \text{Elliptic Curves}$ and Finite Fields II	141
Solutions		142
7. ALGORITHI	MIC NUMBER THEORY	159
Exercises		159
Exercise 1	$\star \mathbf{Rho}$ Method and Distinguished Points	159
Exercise 2	\star Factorization	160
Exercise 3	*Prime Numbers	161
Exercise 4	*Factoring $n = p \cdot q$	161
Exercise 5	Strong Prime Numbers	161
Exercise 6	Complexity of Eratosthenes Sieve	161
Exercise 7	$\star {\it Hash}$ Function Based on Arithmetics	164
Solutions		165

x EXERCISE BOOK

8.	ELEMENTS	OF COMPLEXITY THEORY	175
Ex	Exercise 1 Exercise 2 Exercise 3 Exercise 4	*Regular Language *Finite State Automaton *Turing Machine *Graph Colorability I	175 175 175 175 176
α .	Exercise 5	*Graph Colorability II	176
50.	$\operatorname{lutions}$		177
9.	PUBLIC KE	Y CRYPTOGRAPHY	181
Ex	Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5 Exercise 6 Exercise 7 Exercise 8 Exercise 9 Exercise 10	*Okamoto-Uchiyama Cryptosystem RSA Cryptosystem RSA for Paranoids RSA - Common Moduli Networked RSA Repeated RSA Encryption Modified Diffie-Hellman *Rabin Cryptosystem *Paillier Cryptosystem *Naccache-Stern Cryptosystem	181 182 182 183 183 184 184 185 186
Sol	lutions		188
10.	DIGITAL SIG	GNATURES	199
	ercises Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5 Exercise 6	Lazy DSS *DSS Security Hypothesis DSS with Unprotected Parameters Ong-Schnorr-Shamir Signature Batch Verification of DSS Signatures Ring Signatures	199 199 199 200 201 201 203
So	lutions		205
11.	CRYPTOGR	APHIC PROTOCOLS	211
Ex	ercises		211
	Exercise 1	Breaking the RDSA Identification Scheme	211
	Exercise 2	*A Blind Signature Protocol for a Variant of DSA	213

Contents	xi
----------	----

Exercise 3	∗Fiat-Shamir Signature I	215
Exercise 4	∗Fiat-Shamir Signature II	216
Exercise 5	*Authenticated Diffie-Hellman Key Agreement Protocol	216
Exercise 6	Conference Key Distribution System	217
Solutions		220
12. FROM CRY	PTOGRAPHY TO	
COMMUNIC	CATION SECURITY	231
Exercises		231
Exercise 1	A Hybrid Cryptosystem Using RSA and DES	231
Exercise 2	SSL/TLS Cryptography	233
Exercise 3	Secure Shell (SSH)	235
Exercise 4	Attack against RC5-CBC-PAD	236
Exercise 5	Wired Equivalent Privacy (WEP)	237
Exercise 6	Forging X.509 Certificates	238
Solutions		240
References		249

Foreword

As a companion book of Vaudenay's A Classical Introduction to Cryptography, this exercise book contains a carefully revised version of most of the material used in teaching by the authors or given as examinations to the undergraduate students of the Cryptography and Security lecture at EPFL from 2000 to mid-2005. It covers a majority of the subjects that make up today's cryptology, such as symmetric or public-key cryptography, cryptographic protocols, design, cryptanalysis, and implementation of cryptosystems.

Exercises do not require a large background in mathematics, since the most important notions are introduced and discussed in many of the exercises. We expect the readers to be comfortable with basic facts of discrete probability theory, discrete mathematics, calculus, algebra, as well as computer science. Following A Classical Introduction to Cryptography, exercises related to the more advanced parts of the textbook are marked with a star.

The difficulty of the exercises covers a broad spectrum. In some the student is expected to simply apply basic facts, while in others more intuition and reflexion will be necessary to find the solution. Nevertheless, the solutions accompanying the exercises have been written as clearly as possible. Some exercises are clearly research-oriented, like for instance the ones dedicated to decorrelation theory or to very recent results in the field of hash functions. The idea was to give to our readers a taste of this exciting research world.

Chapter 1 is dedicated to the prehistory of cryptology, exposing the design and the cryptanalysis of very simple and/or historical ciphers. Chapter 2 investigates basic facts of modern symmetric cryptography, focusing on the Data Encryption Standard, modes of operations, and stream ciphers. Chapter 3 handles the hash functions topic, while Chapter 4 describes some more involved notions of cryptanalysis of block ci-

xiv EXERCISE BOOK

phers. Chapter 5 considers protocols based on symmetric cryptography. Chapter 6 is based on some basic facts of algebra and on the algorithms used to compute within the usual algebraic structures used in cryptology, while Chapter 7 is devoted to number theory with a strong emphasis put on its algorithmic aspects. Chapter 8 is built around some elements of complexity theory. Chapter 9 treats the important subject of public-key encryption schemes and Chapter 10 contains exercises centered around the notion of digital signatures. Chapter 11 exposes some protocols using public-key cryptography, and Chapter 12 handles the case of hybrid protocols, combining both symmetric and public-key schemes.

A website (http://www.intro-to-crypto.info) has been set up as a companion of this book. It will contain inevitable errata as well as other material related to this book, like challenging tests and more exercises.

Finally, the authors would like to thank Gildas Avoine, Matthieu Finiasz, and all the EPFL students who attended at least one of our lectures, as well as the Springer-Verlag staff for having provided us so many useful comments on these exercises, their solutions, and on the textbook.

We wish the reader a wonderful trip in the exciting world of cryptology!