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Preface 

In the past 40 years, electronic systems have become a pervasive force in 
modern society. Digital integrated circuits (ICs) are at the heart of a large ma- 
jority of these systems. These digital ICs are complex systems comprised of 
millions of interconnected transistors in a very small area. Moreover, the un- 
derlying semiconductor fabrication technology used to manufacture these ICs 
allows for the doubling of the number of transistors in the same area approxi- 
mately every 18 months. 

The design of digital systems is an intricate and time consuming process that 
progresses through various phases and levels of abstraction relying heavily on 
CAD (Computer-Aided Design) software tools. Within this context, ensuring 
the correctness of these digital systems is a critical consideration, especially 
because failure costs are becoming increasingly high. One of the most famous, 
recent examples of the importance of correct design is the Intel Pentium flaw 
in the floating point divide unit in 1994 that eventually forced Intel to replace 
many of the Pentium chips that were already in the market. In many cases, the 
possibility of failure is plainly unacceptable. Examples of these applications 
are transportation systems, medical applications and financial systems. Driven 
by the importance of correct design, the cost of verification in modern com- 
puting systems has grown to dominate the cost of system design in terms of 
the time and human resources dedicated to it. In contrast, even though guaran- 
teeing the correctness of a design is such a central aspect of its development, 
current verification methodologies are still inadequate to tackle the complex 
systems that are being developed nowadays. Hardware design companies try 
to compensate for mediocre CAD tools by dedicating the majority of their re- 
sources to verification, yet are still unable to guarantee correct functionality 
over the entire design space. 

In industry, the scalability, flexibility and predictable run-time behavior of 
logic simulation makes it the most widely accepted technique for ensuring the 
correctness of digital ICs. The technique is based on verifling a digital system 
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by providing sequences of binary values for each of the inputs of the system 
and checking that the corresponding outputs are correct, based on what the de- 
sign team expected to see or described in a specification document. However, 
logic simulation can usually visit only a small fraction of all the possible con- 
figurations of a system - also called the state space - and, thus, the discovery 
of bugs heavily relies on the expertise of the designer to select a few crucial 
configurations to verify. 

Symbolic simulation is another verification method that is attracting increas- 
ing interest because it allows the verification engineer to explore all, or a major 
portion, of a circuit's state space without the need to design time-consuming 
test stimuli. However, this approach poses a high demand on the resources of 
the simulating host, and in particular, on the memory system, because of the 
complexity of the algorithms involved and their unpredictable runtime behav- 
ior. Thus, the scalability of this approach has been the main limiting factor to 
its mainstream deployment, with the consequence that, thus far, its scope has 
been limited to small systems. 

About this book 
This book presents recent advancements in symbolic simulation-based solu- 
tions which radically improve scalability. We overview current verification 
techniques, both based on logic simulation and on formal verification meth- 
ods, and we describe in detail the baseline technique of symbolic simulation. 
The core of this book focuses on new techniques that narrow the performance 
gap between the complexity of digital systems and the limited ability to verify 
them. In particular we cover a range of solutions that exploit approximation 
and parametrization methods in order to achieve this goal. In the direction 
of approximation techniques, we comprehensively cover quasi-symbolic sim- 
ulation - an aggressive technique aiming at simulating only the portion of the 
design necessary for the verification goal at hand - and cycle-based symbolic 
simulation - a unique combination of formal methods and logic simulation that 
can stimulate a circuit with a very large number of input combinations and se- 
quences in parallel. Cycle-based symbolic simulation is a hybrid solution that 
uses both approximation and parametrization to attain its scalability goal. Its 
key concept is the use of a parametric form to represent the set of states visited 
during simulation. This approach maintains a high degree of scalability, in line 
with current logic simulation techniques, while achieving better efficiency. 

In the realm of parametric solutions, we discuss a range of approaches, in- 
cluding various applications of parametric symbolic simulation to industrial 
microprocessor designs. An in-depth analysis is dedicated to another solu- 
tion that we recently proposed, disjoint-support decomposition-based symbolic 
simulation, where the parametrization makes use of the disjoint-support de- 
composition properties of a Boolean function. This simulation technique is 
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rooted on a novel algorithm that exposes the disjoint decomposition proper- 
ties of a Boolean function by restructuring its BDD representation. The new 
algorithm is very efficient in the sense that it has worst-case complexity that 
is only quadratic in the size of the initial BDD, compared to that of previous 
solutions which had exponential complexity in the number of input variables 
of the function. We deploy this algorithm to decompose of the state functions 
in symbolic simulation. Then, by restructuring the next-state functions using 
their disjoint components, it is possible to transform them into a simpler para- 
metric form without sacrificing simulation accuracy. Results show that this 
technique is effective in reducing the memory requirements of symbolic simu- 
lation while maintaining exact state exploration. When the design complexity 
becomes overwhelming, it can trade-off search breadth for performance, and 
proceed to simulate very large trace sets in parallel, thus maintaining a simula- 
tion speed and memory profile that are close to logic simulation. 

In structuring this book, the hope was to provide an interesting reading for a 
broad range of readers. Chapters 1 ,2  and 3 constitute a panoramic flight over 
the world of digital systems' design and, in particular, verification. Chapter 
3 reviews some of the mainstream symbolic techniques in formal verification, 
dedicating most of the focus to symbolic simulation. 

We use Chapter 4 to cover the necessary principles of parametric forms 
and disjoint-support decompositions. In particular, we attempt to keep the 
material at a level that facilitates understanding, but without too many for- 
mal details. While there is a range of resources discussing parametric forms 
and parametrizations for Boolean functions, we felt that the topic of disjoint- 
support decompositions was not as readily available. For that reason Appendix 
A complements Chapter 4 in providing a more formal presentation of the topic 
and derivation of the theoretical results. 

Chapters 5 and 6 focus on a range of recent symbolic simulation techniques, 
which we grouped in approximate solutions, and exact parametrizations. Fi- 
nally, Chapter 7 wraps up the presentation and outlines possible future research 
directions. 
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