
SCALABLE HARDWARE VERIFICATION
WITH SYMBOLIC SIMULATION

SCALABLE HARDWARE VERIFICATION
WITH SYMBOLIC SIMULATION

VALERIA BERTACCO
University of Michigan

Kluwer Academic Publishers
Boston/Dordrecht/London

Valeria Bertacco
The University of Michigan
Advanced Computer Architecture Lab
Department of EE & CS
1 3 0 1 Beal Avenue, Room 2224
Ann Arbor, MI 48109
U.S.A.

Scalable Hardware Verification with Symbolic Simulation

Cover design by S . Alexander Garcia

Library of Congress Control Number: 20055934803

ISBN-I 0: 0-387-2441 1-5 ISBN-1 0: 0-387-29906-8 (e-book)
ISBN-1 3: 97803872441 12 ISBN-13: 9780387299068 (e-book)

Printed on acid-free paper.

O 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, hc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar t e r n ,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

SPIN 1 132503 1

To Roberta, Bruno,
Livio and Todo.

Contents

Dedication
List of Figures
List of Tables
Preface
Acknowledgments

1. INTRODUCTION
1.1 Functional validation
1.2 Formal verification

1.2.1 Symbolic simulation
1.3 Organization of the book

2. DESIGN AND VERIFICATION OF DIGITAL SYSTEMS
2.1 The design flow
2.2 RTL verification
2.3 Boolean functions and their representation

2.3.1 NP-equivalence
2.4 Binary decision diagrams
2.5 Models for design verification

2.5.1 Structural network model
2.5.2 State diagrams
2.5.3 Mathematical model of finite state machines

2.6 Functional validation
2.7 Formal verification

2.7.1 Symbolic finite state machine traversal
2.8 Summary
References

3. SYMBOLIC SIMULATION
3.1 The origins of symbolic simulation
3.2 Symbolic simulation of a logic gate
3.3 Symbolic simulation, time frame-by-time frame

3.3.1 Symbolic simulation to expose design flaws
3.4 Close relatives of symbolic simulation

v
xi ...

X l l l

xv
xix

. . . vlll SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION

3.4.1 Symbolic reachability analysis
3.4.2 Symbolic trajectory evaluation

3.5 Enhancements and optimizations
3.6 The challenge in symbolic simulation
3.7 Summary
References

4. COMPACTING INTERMEDIATE STATES
4.1 Parametric transformations

4.1.1 A formal definition
4.1.2 Applications to symbolic simulation
4.1.3 A brief history of parametric solutions

4.2 Disjoint-support decompositions
4.2.1 A canonical form of DSDs
4.2.2 Decomposition trees

4.3 A BDD-based algorithm to extract DSDs
4.3.1 Building decompositions bottom-up
4.3.2 Putting it all together: The DEC procedure
4.3.3 Complexity analysis and considerations
4.3.4 Decomposability experiments

4.4 On the decomposability of Boolean functions
4.5 Evolution of disjoint-support decompositions
4.6 Summary
References

5. APPROXIMATE SIMULATION
5.1 Cycle-based symbolic simulation flow
5.2 The CBSS algorithm
5.3 The reparametrization phase

5.3.1 Using functional dependencies
5.3.2 How to classify the components of the state vector
5.3.3 The remap function

5.4 Implementation and insights
5.4.1 Experimental results

5.5 Quasi-Symbolic Simulation
5.5.1 Simulation with X values
5.5.2 Approximating and reclassifying symbolic variables
5.5.3 Care and Don't care sets

5.6 Summary
References

Contents ix

6. EXACT PARAMETRIZATIONS
6.1 Re-encoding the state function using DSDs

6.1.1 Reduction at free points
6.1.2 Elimination of prime functions
6.1.3 Removal of non-dominant variables

6.2 The DSD-based simulator
6.2.1 Experimental results

6.3 Parametrization in the micro-processor domain
6.3.1 Structural decompositions
6.3.2 Parametrization for data-space partitions

6.4 Summary
References

7. CONCLUSION 127
7.1 Enabling techniques for symbolic simulation 128
7.2 Scalable symbolic simulation techniques 128
References 129

Appendices
A Disjoint-Support Decompositions

A.l Function decompositions
A.2 The unique maximal Disjoint-Support Decomposition

A.2.1 Partitions and representative elements
A.2.2 Uniqueness of the kernel function
A.2.3 Uniqueness of the actuals list

A.3 The canonical decomposition tree
A.3.1 Extracting all decompositions from the canonical tree

A.4 Building the decomposition tree from a BDD
A.4.1 Case 1. Neither A l o nor A1 is constant and A l o # A11
A.4.1.1 Case 1 .a - PRIME decomposition
A.4.1.2 Case 1 .b - Associative decomposition
A.4.2 Case 2. Exactly one of Ale, A l l is constant
A.4.2.1 Case 2.a - PRIME decomposition
A.4.2.2 Case 2.b - Associative decomposition
A.4.3 Case 3. A10 =All and Ale is not a constant
A.4.3.1 Case 3.a - PRIME decomposition
A.4.3.2 Case 3.b - Associative decomposition
A.4.4 New decompositions
A.4.4.1 Case NEW.a - A N D or OR decomposition
A.4.4.2 Case NEW.b - XOR decomposition
A.4.4.3 Case NEW.c - PRIME decomposition

A.5 The DEC procedure
A.5.1 Inherited decompositions
A.5.1.1 OR decompositions

SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION

A.5.1.2 XOR decompositions
A.5.1.3 PRIME decompositions
A.5.2 New decompositions
A.5.2.1 OR and XOR decompositions
A.5.2.2 PRIME decompositions

References
References

Index

List of Figures

Conceptual design flow of a digital system 8
Approaches to verification: Validation vs. Formal Verification 13
Examples of Binary Decision Diagrams 18
Graphic symbols for basic logic gates 20
Structural network model schematic 2 1
Network model of a 3-bits upldown counter with reset 21
State diagram for a 3-bits upldown counter 22
State diagram for a 1-hot encoded 3-bits counter 23
Compiled logic simulator 25
Pseudo-code for a cycle-based logic simulator 26
Comparison of logic and symbolic simulation 36
Simulation of a netlist by composition of symbolic expressions 37
Schematic of the iterative model of symbolic simulation 3 8
Symbolic simulation for Example 3.1 - Initialization phase 39
Symbolic simulation for Example 3.1 - Simulation Step 2 40
Pseudo-code for frame-by-frame symbolic simulation 41
Pseudo-code for symbolic reachability analysis 43
Parametrization of the state vector during symbolic simulation 53
Parametrization of the state vector during symbolic simulation 54

Three steps of symbolic simulation for the counter of
Example 2.2 and possible parametrizations of the reached
state sets
General form of a disjoint-support decomposition (DSD)
Three different disjoint-support decompositions for Ex-
ample 4.3
A decomposition tree for Example 4.4
Decomposition data structure for the function of Ex-
ample 4.5
Pseudo-code for the decomposenode procedure
Pseudo-code for the decompose procedure
Pseudo-code for decompose-INHERITED
Pseudo-code for decompos eNEW
Flow of cycle-based symbolic simulation algorithm

SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION

Pseudo-code for cycle-based symbolic simulation
The parametrized frontier subset PS@k
Pseudo-code for the Parametrize function of CBSS
Pseudo-code for classifying simple and complex sup-
port variables
Pseudo-code for classyfing shared support variables
Comparison of CBSS vs. logic simulation
Definition of logic operations over the ternary set {0,1 ,X}
MTBDD for the function (a + X)b
Quasi-symbolic simulation for Example 5.7
The decomposed state vector for a small design
The parameterized frontier set PS@k
A vector function and its free points
Free points elimination for Example 6.1
General case for prime function elimination: (a) before
and (b) after the transformation
Prime elimination in test s1196 for Example 6.2
Non-dominant variable removal for Example 6.4
Comparison of DSD simulation vs. cycle-based sym-
bolic simulation and vs. logic simulation
Design decomposition for Example 6.5
Decomposition tree for Example A.5.
PRIME decomposition.
Function for Example A. 11.
Pseudo-code for decompose~INHERITED~OR~12 3 . b

Pseudo-code for decompose-INHERITED-PRIME-1. a
Pseudo-code for decompose-INHERITED-PRIME-2 . a
Two functions and the construction of their Max(G, H) tree.

List of Tables

Disjoint Support Decomposition results (Part 1)
Disjoint Support Decomposition results (Part 2)
Disjoint Support Decomposition results (Part 3)
Disjoint Support Decomposition results (Part 4)
Disjoint Support Decomposition results (Part 5)
Disjoint Support Decomposition results (Part 6)
Cycle Based Symbolic Simulation results (Part 1)
Cycle Based Symbolic Simulation results (Part 2)
DSD-based Symbolic Simulation (Part 1)
DSD-based Symbolic Simulation (Part 2)

Preface

In the past 40 years, electronic systems have become a pervasive force in
modern society. Digital integrated circuits (ICs) are at the heart of a large ma-
jority of these systems. These digital ICs are complex systems comprised of
millions of interconnected transistors in a very small area. Moreover, the un-
derlying semiconductor fabrication technology used to manufacture these ICs
allows for the doubling of the number of transistors in the same area approxi-
mately every 18 months.

The design of digital systems is an intricate and time consuming process that
progresses through various phases and levels of abstraction relying heavily on
CAD (Computer-Aided Design) software tools. Within this context, ensuring
the correctness of these digital systems is a critical consideration, especially
because failure costs are becoming increasingly high. One of the most famous,
recent examples of the importance of correct design is the Intel Pentium flaw
in the floating point divide unit in 1994 that eventually forced Intel to replace
many of the Pentium chips that were already in the market. In many cases, the
possibility of failure is plainly unacceptable. Examples of these applications
are transportation systems, medical applications and financial systems. Driven
by the importance of correct design, the cost of verification in modern com-
puting systems has grown to dominate the cost of system design in terms of
the time and human resources dedicated to it. In contrast, even though guaran-
teeing the correctness of a design is such a central aspect of its development,
current verification methodologies are still inadequate to tackle the complex
systems that are being developed nowadays. Hardware design companies try
to compensate for mediocre CAD tools by dedicating the majority of their re-
sources to verification, yet are still unable to guarantee correct functionality
over the entire design space.

In industry, the scalability, flexibility and predictable run-time behavior of
logic simulation makes it the most widely accepted technique for ensuring the
correctness of digital ICs. The technique is based on verifling a digital system

xvi SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION

by providing sequences of binary values for each of the inputs of the system
and checking that the corresponding outputs are correct, based on what the de-
sign team expected to see or described in a specification document. However,
logic simulation can usually visit only a small fraction of all the possible con-
figurations of a system - also called the state space - and, thus, the discovery
of bugs heavily relies on the expertise of the designer to select a few crucial
configurations to verify.

Symbolic simulation is another verification method that is attracting increas-
ing interest because it allows the verification engineer to explore all, or a major
portion, of a circuit's state space without the need to design time-consuming
test stimuli. However, this approach poses a high demand on the resources of
the simulating host, and in particular, on the memory system, because of the
complexity of the algorithms involved and their unpredictable runtime behav-
ior. Thus, the scalability of this approach has been the main limiting factor to
its mainstream deployment, with the consequence that, thus far, its scope has
been limited to small systems.

About this book
This book presents recent advancements in symbolic simulation-based solu-
tions which radically improve scalability. We overview current verification
techniques, both based on logic simulation and on formal verification meth-
ods, and we describe in detail the baseline technique of symbolic simulation.
The core of this book focuses on new techniques that narrow the performance
gap between the complexity of digital systems and the limited ability to verify
them. In particular we cover a range of solutions that exploit approximation
and parametrization methods in order to achieve this goal. In the direction
of approximation techniques, we comprehensively cover quasi-symbolic sim-
ulation - an aggressive technique aiming at simulating only the portion of the
design necessary for the verification goal at hand - and cycle-based symbolic
simulation - a unique combination of formal methods and logic simulation that
can stimulate a circuit with a very large number of input combinations and se-
quences in parallel. Cycle-based symbolic simulation is a hybrid solution that
uses both approximation and parametrization to attain its scalability goal. Its
key concept is the use of a parametric form to represent the set of states visited
during simulation. This approach maintains a high degree of scalability, in line
with current logic simulation techniques, while achieving better efficiency.

In the realm of parametric solutions, we discuss a range of approaches, in-
cluding various applications of parametric symbolic simulation to industrial
microprocessor designs. An in-depth analysis is dedicated to another solu-
tion that we recently proposed, disjoint-support decomposition-based symbolic
simulation, where the parametrization makes use of the disjoint-support de-
composition properties of a Boolean function. This simulation technique is

PREFACE xvii

rooted on a novel algorithm that exposes the disjoint decomposition proper-
ties of a Boolean function by restructuring its BDD representation. The new
algorithm is very efficient in the sense that it has worst-case complexity that
is only quadratic in the size of the initial BDD, compared to that of previous
solutions which had exponential complexity in the number of input variables
of the function. We deploy this algorithm to decompose of the state functions
in symbolic simulation. Then, by restructuring the next-state functions using
their disjoint components, it is possible to transform them into a simpler para-
metric form without sacrificing simulation accuracy. Results show that this
technique is effective in reducing the memory requirements of symbolic simu-
lation while maintaining exact state exploration. When the design complexity
becomes overwhelming, it can trade-off search breadth for performance, and
proceed to simulate very large trace sets in parallel, thus maintaining a simula-
tion speed and memory profile that are close to logic simulation.

In structuring this book, the hope was to provide an interesting reading for a
broad range of readers. Chapters 1 ,2 and 3 constitute a panoramic flight over
the world of digital systems' design and, in particular, verification. Chapter
3 reviews some of the mainstream symbolic techniques in formal verification,
dedicating most of the focus to symbolic simulation.

We use Chapter 4 to cover the necessary principles of parametric forms
and disjoint-support decompositions. In particular, we attempt to keep the
material at a level that facilitates understanding, but without too many for-
mal details. While there is a range of resources discussing parametric forms
and parametrizations for Boolean functions, we felt that the topic of disjoint-
support decompositions was not as readily available. For that reason Appendix
A complements Chapter 4 in providing a more formal presentation of the topic
and derivation of the theoretical results.

Chapters 5 and 6 focus on a range of recent symbolic simulation techniques,
which we grouped in approximate solutions, and exact parametrizations. Fi-
nally, Chapter 7 wraps up the presentation and outlines possible future research
directions.

Acknowledgments

I would like to acknowledge several people who were critical in making
this book a reality through their work, advice and support. The main solutions
discussed by this book were developed during my Ph.D. work at Stanford,
with the supervision of Kunle Olukotun, who had always been prompt and
available in supporting whatever direction of research, and of life, I pursued. In
our technical interactions, he would always move straight to the results of my
work and challenge me on their practical contribution to improve the quality of
verification in industrial designs. David Dill has been the person I could always
go to bounce ideas off of and to have illuminating technical discussions. When
my ideas could survive his dissecting analysis, I knew I could publish them.

My years at Synopsys have played a central role in shaping my understand-
ing of design verification as an industrial challenge first and a research area
later. My colleagues have been crucial in providing me with invaluable oppor-
tunities: Ghulam Nurie, Swami Venkat and the Vera Group team, who gave
me early opportunities to interact with customers. Those customer meetings
have always been enlightening in my quest towards understanding the needs of
hardware designers; Pei-Hsin Ho, my manager in the Advanced Technology
Group of Synopsys, showed me how to efficiently achieve technology trans-
fers, by taking academic research and deploying it in software solutions for the
hardware-design community. My undergraduate advisor, Maurizio Damiani,
first introduced me to research and to the area of Computer-Aided Design for
integrated circuits. I would like to thank him for the numerous interactions
and collaborations that lasted long after my undergraduate studies and spurred
many of the publications that led to this research work.

On a personal level, I would like to thank my parents for teaching me the
first concepts of mathematics and logic and for introducing me, early in my life,
to the pursuit of both education and industry experience. I also want to thank
my family for supporting my choices in my path through life. My brother,
Livio, provided all sorts of technical support and advice and solved many sys-

xx SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION

tem crashes, most often connecting from some remote location in Europe. My
colleagues and my students at the University of Michigan have been an impor-
tant source of support in continuing this research and in helping shuffle all the
work and deadlines that are always overlapping: Kai-hui Chang, Steve Plaza,
Smitha Shyam and Ilya Wagner. I would also like to thank Todd Austin for
the numerous technical discussions and for taking the time to review this book
multiple times. In addition, I would like to thank Gloria Cadavid, Alex Garcia,
Tim Wright and Azita Emami.

Finally, I would like to express gratitude to my editors Michael Hackett
and Alex Greene and their collaborators, Rose Antonelli, Melissa Guasch and
Rebecca Olson at Springer for their help in preparing the final manuscript and
keeping me on task, particularly during a year of transition and growth in the
company.

