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For a large class of cases - though not for all - in which we employ the 
word 'meaning' it can be defined thus: the meaning of a word is its use 
in language. - Ludwig Wittgenstein 
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Preface 

Vague concepts are intrinsic to human communication. Somehow it would 
seems that vagueness is central to the flexibility and robustness of natural lan- 
guage descriptions. If we were to insist on precise concept definitions then 
we would be able to assert very little with any degree of confidence. In many 
cases our perceptions simply do not provide sufficient information to allow us 
to verify that a set of formal conditions are met. Our decision to describe an 
individual as 'tall' is not generally based on any kind of accurate measurement 
of their height. Indeed it is part of the power of human concepts that they do not 
require us to make such fine judgements. They are robust to the imprecision of 
our perceptions, while still allowing us to convey useful, and sometimes vital, 
information. The study of vagueness in Artificial Intelligence (AI) is therefore 
motivated by the desire to incorporate this robustness and flexibility into intel- 
ligent computer systems. This goal, however, requires a formal model of vague 
concepts that will allow us to quantify and manipulate the uncertainty resulting 
from their use as a means of passing information between autonomous agents. 

I first became interested in these issues while working with Jim Baldwin 
to develop a theory of the probability of fuzzy events based on mass assign- 
ments. Fuzzy set theory has been the dominant theory of vagueness in A1 since 
its introduction by Lotfi Zadeh in 1965 and its subsequent successful appli- 
cation in the area of automatic control. Mass assignment theory provides an 
attractive model of fuzzy sets, but I became increasingly frustrated with a range 
of technical problems and unintuitive properties that seemed inherent to both 
theories. For example, it proved to be very difficult to devise a measure of con- 
ditional probability for fuzzy sets, that satisfied all of a minimal set of intuitive 
properties. Also, mass assignment theory provides no real justification for the 
truth-functionality assumption central to fuzzy set theory. 

This volume is the result of my attempts to understand and resolve some of 
these fundamental issues and problems, in order to provide a coherent frame- 
work for modelling and reasoning with vague concepts. It is also an attempt to 
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develop such a framework as can be applied in practical problems concerning 
automated reasoning, knowledge representation, learning and fusion. I do not 
believe A1 research should be carried out in isolation from potential applica- 
tions. In essence A1 is an applied subject. Instead, I am committed to the idea 
that theoretical development should be informed by complex practical prob- 
lems, through the direct application of theories as they are developed. Hence, 
I have dedicated a significant proportion of this book to presenting the appli- 
cation of the proposed framework in the areas of data analysis, data mining 
and information fusion, in the hope that this will give the reader at least some 
indication as to the utility of the more theoretical ideas. 

Finally, I believe that much of the controversy in the A1 community sur- 
rounding fuzzy set theory and its application arises from the lack of a clear 
operational semantics for fuzzy membership functions, consistent with their 
truth-functional calculus. Such an interpretation is important for any theory to 
ensure that its not based on an ad hoc, if internally consistent, set of inference 
processes. It is also vital in knowledge elicitation, to allow for the translation 
of uncertainty judgements into quantitative values. For this reason there will be 
a semantic focus throughout this volume, with the aim of identifying possible 
operational interpretations for the uncertainty measures discussed. 
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Foreword 

Fuzzy set theory, since its inception in 1965, has aroused many contro- 
versies, possibly because, for the first time, imprecision, especially linguistic 
imprecision, was considered as an object of investigation from an engineering 
point of view. Before this date, there had already been proposals and disputes 
around the issue of vagueness in philosophical circles, but never before had the 
vague nature of linguistic information been considered as an important issue 
in engineering sciences. It is to the merit of Lotfi Zadeh that he pushed this 
issue to the forefront of information engineering, claiming that imprecise ver- 
bal knowledge, suitably formalized, could be relevant in automating control or 
problem-solving tasks. 

Fuzzy sets are simple mathematical tools for modelling linguistic informa- 
tion. Indeed they operate a simple shift from Boolean logic, assuming that there 
is more to "truth-values" than being true or being false. Intermediate cases, like 
"half-true" make sense as well, just like a bottle can be half-full. So, a fuzzy 
set is just a set with blurred boundaries and with a gradual notion of member- 
ship. Moreover, the truth-functionality of Boolean logic was kept, yielding a 
wealth of formal aggregation functions for the representation of conjunction, 
disjunction and other connectives. This proposal also grounds fuzzy set theory 
in the tradition of many-valued logics. This approach seems to have generated 
misunderstandings in view of several critiques faced by the theory of fuzzy 
sets. A basic reason for the reluctance in established scientific circles to accept 
fuzzy set theory is probably the fact that while this very abstract theory had an 
immediate intuitive appeal which prompted the development of many practical 
applications, the notion of membership functions had not yet been equipped 
with clear operational semantics. Namely, it is hard to understand the meaning 
of the number 0.7 on the unit interval, in a statement like "Mr. Smith is tall to 
degree 0.7", even if it clearly suggests that this person is not tall to the largest 
extent. 
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This lack of operational semantics, and of measurement paradigms for mem- 
bership degrees was compensated for by ad hoc techniques like triangular fuzzy 
sets, and fuzzy partitions of the reals, that proved instrumental for addressing 
practical problems. Nevertheless, degrees of membership were confused with 
degrees of probability, and orthodox probabilists sometimes accused the fuzzy 
set community of using a mistaken surrogate probability calculus, the main ar- 
gument being the truth-functionality assumption, which is mathematically in- 
consistent in probability theory. Besides, there are still very few measurement- 
theoretic works in fuzzy set theory, while this would be a very natural way of 
addressing the issue of the meaning of membership grades. Apparently, most 
measurement-theory specialists did not bother giving it a try. 

Important progress in the understanding of membership functions was made 
by relating fuzzy sets and random sets: while membership functions are not 
probability distributions, they can be viewed as one-point coverage functions 
of random sets, and, as such, can be seen as upper probability bounds. This is 
the right connection, if any, between fuzzy sets and probability. But the price 
paid is the lack of universal truth-functionality. 

The elegant and deep monograph written by Jon Lawry adopts this point of 
view on membership functions, for the purpose of modelling linguistic scales, 
with timely applications to data-mining and decision-tree learning. However it 
adopts a very original point of view. While the traditional random set approach 
to fuzzy sets considers realisations as subsets of some numerical reference scale 
(like a scale of heights for "short and tall"), the author assumes they are subsets 
of the set of labels, obtained from answering yestno questions about how to 
label objects. This approach has the merit of not requiring an underlying nu- 
merical universe for label semantics. Another highlight of this book is the lucid 
discussion concerning the truth-functionality assumption, and the proposal of 
a weaker, yet tractable, "functionality" assumption, where independent atomic 
labels play a major role. In this framework, many fuzzy connectives can be 
given an operational meaning. This book offers an unusually coherent and 
comprehensive, mathematically sound, intuitively plausible, potentially useful, 
approach to linguistic variables in the scope of knowledge engineering. 

Of course, one may object to the author's view of linguistic variables. The 
proposed framework is certainly just one among many possible other views 
of membership functions. Especially, one may argue that founding the mea- 
surement of gradual entities on yes-no responses to labelling questions may 
sound like a paradox, and does not properly account for the non-Boolean na- 
ture of gradual notions. The underlying issue is whether fuzzy predicates are 
fuzzy because their crisp extension is partially unknown, or because they are 
intrinsically gradual in the mind of individuals (so that there just does not exist 
such a thing as "the unknown crisp extension of a fuzzy predicate"). Although 
it sounds like splitting hairs, answering this question one way or another has 
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drastic impact on the modelling of connectives and the overall structure of the 
underlying logic. For instance if "tall" means a certain interval of heights I can- 
not precisely describe, then "not tall" just means the complement of this interval. 
So, even though I cannot precisely spot the boundary of the extension of "tall", 
I can claim that being "tall and not tall" is an outright contradiction, and "being 
tall or not tall" expresses a tautology. This view enforces the laws of contra- 
diction and excluded-middle, thus forbidding truth-functionality of connectives 
acting on numerical membership functions. However, if fuzzy predicates are 
seen as intrinsically gradual, then "tall" and "not tall" are allowed to overlap, 
then the underlying structure is no longer Boolean and there is room for truth- 
functionality. Fine, would say the author, but what is the measurement setting 
that yields such a non-Boolean structure and provides for a clear intuition of 
membership grades? Such a setting does not exist yet and its discovery remains 
as an open challenge. 

Indeed, while the claim for intrinsically gradual categories is legitimate, most 
interpretative settings for membership grades proposed so far (random sets, 
similarity relations, utility ...) seem to be at odds with the truth-functionality 
assumption, although the latter is perfectly self-consistent from a mathematical 
point of view (despite what some researchers mistakenly claimed in the past). 
It is the merit of this book that it addresses the apparent conflict between truth- 
functionality and operational semantics of fuzzy sets in an upfront way, and 
that it provides one fully-fledged elegant solution to the debate. No doubt this 
somewhat provocative but scientifically solid book will prompt useful debates 
on the nature of fuzziness, and that new alternative proposals will be triggered 
by its in-depth study. The author must be commended for an extensive work that 
highlights an important issue in fuzzy set theory, that was perhaps too cautiously 
neglected by its followers, and too aggressively, sometimes misleadingly, ar- 
gued about, by its opponents from more established fields. 
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