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Preface 

Processor-based systems are today employed in many applications where 
misbehaviors can endanger the users or cause the loss of huge amount of 
money. While developing such a kind of safety- or mission-critical 
applications, designers are often required to comply with stringent cost 
requirements that make the task even harder than in the past. 

Software-implemented hardware fault tolerance offers a viable solution 
to the problem of developing processor-based systems that balance costs 
with dependability requirements but since many different approaches are 
available, designers willing to adopt them may have difficulties in selecting 
the approach (or the approaches) that best fits with the design's 
requirements. 

This book aims at providing designers and researchers with an overview 
of the available techniques, showing their advantages and underlining their 
disadvantages. We thus hope that the book will help designers in selecting 
the approach (or the approaches) suitable for their designs. Moreover, we 
hope that researchers working in the same field will be stimulated in solving 
the issues that still remain open. 

We organized the book as follows. Chapter 1 gives the reader some 
background on the issues of fault and errors, their models, and their origin. It 
also introduces the notion of redundancy that will be exploited in all the 
following chapters. 

Chapter 2 presents the approaches that, at time of writing, are available 
for hardening the data that a processor-based system elaborates. This chapter 
deals with all those errors that modify the results a program computes, but 
that do not modify the sequence in which instructions are executed. 



Chapter 3 concentrates on the many approaches deahng with the 
problems of identifying the errors that may affect the execution flow of a 
program, thus changing the sequence in which the instructions are executed. 

Chapter 4 illustrates the approaches that allow developing fault-tolerant 
systems, where errors are both detected and corrected. 

Chapter 5 presents those approaches that mix software-based techniques 
with ad-hoc developed hardware modules to improve the dependability of 
processor-based systems. 

Finally, chapter 6 presents an overview of those techniques that can be 
used to analyze processor-based systems to identify weakness, or to validate 
their dependability. 

Authors are listed in alphabetic order. 
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