
SOFTWARE-IMPLEMENTED 
HARDWARE FAULT TOLERANCE 



SOFTWARE-IMPLEMENTED 
HARDWARE FAULT TOLERANCE 

O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante 

Politecnico di Torino - Dipartimento di Automatica e Informatica 

Springer 



Olga Goloubeva, Maurizio Rebaudengo, 
Matteo Sonza Reorda, and Massimo Violante 

Politecnico di Torino 
Dip. Automatica e Informatica 
C.so Duca degli Abruzzi, 24 
10129 Torino, ITALY 

Software-Implemented Hardware Fault Tolerance 

Library of Congress Control Number: 2006925117 

ISBN-10: 0-387-26060-9 ISBN-10: 0-387-32937-4 (e-book) 
ISBN-13: 9780387260600 ISBN-13: 9780387329376 (e-book) 

Printed on acid-free paper. 

© 2006 Springer Science+Business Media, LLC 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring 
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form of information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, 
even if they are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights. 

Printed m the United States of America. 

9 8 7 6 5 4 3 2 1 

springer.com 



Preface 

Processor-based systems are today employed in many applications where 
misbehaviors can endanger the users or cause the loss of huge amount of 
money. While developing such a kind of safety- or mission-critical 
applications, designers are often required to comply with stringent cost 
requirements that make the task even harder than in the past. 

Software-implemented hardware fault tolerance offers a viable solution 
to the problem of developing processor-based systems that balance costs 
with dependability requirements but since many different approaches are 
available, designers willing to adopt them may have difficulties in selecting 
the approach (or the approaches) that best fits with the design's 
requirements. 

This book aims at providing designers and researchers with an overview 
of the available techniques, showing their advantages and underlining their 
disadvantages. We thus hope that the book will help designers in selecting 
the approach (or the approaches) suitable for their designs. Moreover, we 
hope that researchers working in the same field will be stimulated in solving 
the issues that still remain open. 

We organized the book as follows. Chapter 1 gives the reader some 
background on the issues of fault and errors, their models, and their origin. It 
also introduces the notion of redundancy that will be exploited in all the 
following chapters. 

Chapter 2 presents the approaches that, at time of writing, are available 
for hardening the data that a processor-based system elaborates. This chapter 
deals with all those errors that modify the results a program computes, but 
that do not modify the sequence in which instructions are executed. 



Chapter 3 concentrates on the many approaches deahng with the 
problems of identifying the errors that may affect the execution flow of a 
program, thus changing the sequence in which the instructions are executed. 

Chapter 4 illustrates the approaches that allow developing fault-tolerant 
systems, where errors are both detected and corrected. 

Chapter 5 presents those approaches that mix software-based techniques 
with ad-hoc developed hardware modules to improve the dependability of 
processor-based systems. 

Finally, chapter 6 presents an overview of those techniques that can be 
used to analyze processor-based systems to identify weakness, or to validate 
their dependability. 

Authors are listed in alphabetic order. 



Contents 

CHAPTER 1: BACKGROUND 
1. Introduction 1 
2. Definitions 4 

2.1 Faults, errors and failures 4 
2.2 A taxonomy of faults 6 
2.3 Classifying the effects of faults 7 
2.4 Dependability and its attributes 9 

3.Error models for hardware and software components 10 
3.1 Error models for hardware components 10 

3.1.1 Hardware-level error models 12 
3.1.2 System-level error models 13 
3.1.3 Hardware-level errors vs. system-level errors 15 

3.2 Error models for software components 19 
3.2.1 Error models at the source-code level 20 
3.2.2 Error models at the executable-code level 21 

4. Origin of single-event effects 22 
4.1 Sources of highly energized particles 22 

4.1.1 Space radiation environment 22 
4.1.2 Atmospheric radiation environment 23 
4.1.3 Ground radiation environment 23 

4.2 Physical origin of single-event effects 24 
4.2.1 Direct ionization 24 
4.2.2 Indirect ionization 25 

4.3 Single-event effects in memory circuits 25 
4.4 SEU mechanisms in DRAMs 25 
4.5 SEU mechanisms in SRAMs 27 



viii Table of Contents 

4.6 Single-event effects in logic circuits 28 
4.7 Propagating and latching of SETs 30 

5.Redundancy techniques 30 
5.1 Hardware redundancy 31 
5.2 Information redundancy 32 
5.3 Time redundancy 33 
5.4 Software redundancy 34 

6. References 35 

CHAPTER 2: HARDENING THE DATA 
1. Introduction 37 
2. Computation Duplication 3 8 

2.1 Methods based on instruction-level duplication 38 
2.1.1 High-level instruction duplication 38 
2.1.2 Selective instruction duplication 42 
2.1.3 Assembly-Level Instruction Duplication 45 

2.2 Procedure-level duplication 49 
2.2.1 Selective procedure call 49 

2.3 Program-level duplication 54 
2.3.1 Time redundancy 54 
2.3.2 Simultaneous multithreading 56 
2.3.3 Data diversity 57 

3. Executable assertions 59 
4. References 61 

CHAPTER 3: HARDENING THE CONTROL FLOW 
1. Introduction 63 
2. Background 63 
3.Path identification 70 

3.1 The approach 70 
3.2 Experimental results 73 
3.3 Advantages and limitations 73 

4.CFE detection in sequential and parallel programs 74 
4.1 The approach 74 
4.2 Experimental results 75 
4.3 Advantages and limitations 75 

5.BEECandECI 76 
5.1 The approach 76 
5.2 BEEC 76 
5.3 ECI 78 
5.4 Experimental results 78 
5.5 Advantages and limitations 79 



Table of Contents ix 

6. Exploiting instruction level parallelism: ARC technique 
6.1 The approach 
6.2 Experimental results 
6.3 Advantages and limitations 

7.VASC 
7.1 The approach 
7.2 Experimental results 
7.3 Advantages and limitations 

8.ECCA 
8.1 The approach 
8.2 ECCA-HL 
8.3 ECCA-IL 
8.4 Experimental results 
8.5 Advantages and limitations 

9.Plain inter-block errors detection 
9.1 The approach 
9.2 Experimental results 
9.3 Advantages and limitations 

10. CFc via regular expressions resorting to IPC 
10.1 The approach 
10.2 Experimental results 
10.3 Advantages and limitations 

11. CFCSS 
11.1 The approach 
11.2 Experimental results 
11.3 Advantages and limitations 

12. ACFC 
12.1 The approach 
12.2 Experimental results 
12.3 Advantages and limitations 

13. YACCA 
13.1 The approach 
13.2 Experimental results 
13.3 Advantages and limitations 

14. SIED and its enhancements 
14.1 The approach 

14.1.1 Intra-block detection 
14.1.2 Inter-block detection 

14.2 Experimental results 
14.3 Advantages and limitations 

15. References 

79 
79 
81 
81 
82 
82 
83 
85 
85 
85 
86 
88 
89 
90 
91 
91 
92 
92 
93 
93 
94 
94 
95 
95 
98 
98 
99 
99 

101 
102 
103 
103 
105 
107 
108 
108 
108 
111 
113 
114 
114 



Table of Contents 

CHAPTER 4: ACHIEVING FAULT TOLERANCE 
1. Introduction 117 
2. Design diversity 117 

2.1 N-version programming 119 
2.1.1 Time redundancy 121 

2.2 Recovery Block 122 
2.2.1 Distributed recovery block 125 

3. Checkpointing 13 0 
4. Algorithm-based fault tolerance (ABFT) 132 

4.1 Basic technique 132 
4.2 Matrix multiplication 132 

4.2.1 Method description 132 
4.2.2 Comments 138 

4.3 FFT 138 
4.3.1 Method description 139 

4.4 Final comments 141 
S.DupHcation 142 

5.1 Duplication and checksum 142 
5.1.1 Detecting and correcting transient faults 

affecting data 142 
5.1.2 Detecting and correcting transient faults 

affecting the code 144 
5.1.3 Results 145 

5.2 Duplication and hamming code 147 

CHAPTER 5: HYBRID TECHNIQUES 
1. Introduction 153 
2. Control flow checking 154 

2.1 Assigned run-time signature control-flow checking 157 
2.1.1 Structural integrity checking (SIC) 157 

2.2 Derived run-time signature control-flow checking 159 
2.2.1 Embedded signature monitoring 159 
2.2.2 Stored reference 165 
2.2.3 Reference program 167 

3. Memory access checking 169 
4. Reasonableness checking 171 

4.1 Watchdog methods for special purpose applications 172 
4.2 Watchdog methods for general purpose applications 172 

5. Combined techniques 173 
5.1 Duplication and watchdog 174 
5.2 Infrastructure-IP 176 

5.2.1 Support for control flow checking 178 



Table of Contents xi 

5.2.2 Support for data checking 
5.2.3 Error detection capabilities 
5.2.4 Experimental results 

5.2.4.1 Analysis of fault detection capabilities 
5.2.4.2 Faults affecting the code 
5.2.4.3 Faults affecting the data 
5.2.4.4 Faults affecting the processor 

memory elements 
5.2.4.5 Overhead analysis 

CHAPTER 6: FAULT INJECTION TECHNIQUES 
1. Introduction 
2.The FARM Model 

2.1 Fault injection requirements 
2.2 Intrusiveness 
2.3 Speed 

2.3.1 Speeding-up the single fault-injection 
experiment 

2.3.2Reducing the fault list size 
2.4 Cost 

3. Assumptions 
3.1 SetF 
3.2 Set A 
3.3 SetR 
3.4 SetM 

4. The fault injection environments 
4.1 Simulation-based fault injection 

4.1.1 Golden run execution 
4.1.2 Static fault analysis 
4.1.3 Dynamic fault analysis 
4.1.4 Checkpoint-based optimizations 

4.2 Software-implemented fault injection 
4.2.1 Fault injection manager 
4.2.2 Implementation issues 

4.3 Hybrid fault injection 
4.3.1 The fault injection interface 
4.3.2 Injecting faults 
4.3.3 Memory blocks 
4.3.4 Applying stimuli and observing the 

system behavior 
4.3.5 The FI process 

5. References 

180 
183 
187 
188 
188 
189 

190 
190 

199 
199 
200 
200 
201 

201 
201 
202 
202 
202 
204 
205 
205 
207 
207 
209 
210 
210 
212 
213 
214 
216 
218 
219 
220 
221 

222 
223 
223 



Contributing Authors 

Dr. Olga Goloubeva 
Politecnico di Torino - Dipartimento di Automatica e Informatica 
C.so Duca degli Abruzzi 24 
10129 Torino, ITALY 
E-mail: olga.golubeva@polito.it 

Prof. Maurizio Rebaudengo 
Politecnico di Torino - Dipartimento di Automatica e Informatica 
C.so Duca degli Abruzzi 24 
10129 Torino, ITALY 
E-mail: maurizio.rebaudengo@polito.it 

Prof. Matteo Sonza Reorda 
Politecnico di Torino - Dipartimento di Automatica e Informatica 
C.so Duca degli Abruzzi 24 
10129 Torino, ITALY 
E-mail: matteo.sonzareorda@polito.it 

Dr. Massimo Violante 
Politecnico di Torino - Dipartimento di Automatica e Informatica 
C.so Duca degli Abruzzi 24 
10129 Torino, ITALY 
E-mail: massimo.violante@polito.it 




