
Proving Security Against Chosen Ciphertext
Attacks

Manuel Bhm* Paul Feldman

Univ. of Calif. Cambridge, MA
Computer Science Dept .

Berkely, CA

MIT Lab. for Computer Sci

Silvio Micala?
Lab. for Computer Science

MIT
Cambridge, MA

Abstract

The relevance of zero knowledge to cryptography has become apparent in the
recent years. In this paper we advance this theory by showing that interaction in
any zero-knowledge proof can be replaced by sharing a common, short, random
string. This advance finds immediate application in the construction of the first
public-key cryptosystem secure against chosen ciphertext attack.

Our solution, though not yet practical, is of theoretical significance, since
the existence of cryptosystems secure against chosen ciphertext attack has been
a famous long-standing open problem in the field.

1 Introduction
Recently [GMR] have shown that it is possible to prove that some theorems are true
without giving the slightest hint of why this is so. This is rigorously formalized in
the somewhat paradoxical notion of a zero-knowledge proof sys tem.

I f secure encryption schemes exist, though, these proof systems are far from being
a rare and bizar event. In fact, under this assumption, [GMW] demonstrate that any
language in NP possesses zero-knowledge proof systems.

'Supported by NSF Grant # DCR85-13926
+Supported by NSF grant # CCR-8719689

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 256-268, 1990,
0 Springer-Verlag Berlin Heidelberg 1990

257

Actually, as recently pointed out by Impagliazzo [I] and Ben-Or, Goldreich, Gold-
wasser, Hastad, Kilian, Micali and Fbgaway [BGGHKMR], the same is true for all
languages in IP; also, as pointed out by Blum [B2], any theorem at all admits a proof
that conveys zero-knowledge other than betraying its own length.

Zero-knowledge proofs have proven very useful both in complexity theory and in
cryptography. For instance, in complexity theory, via results of fortnow [F] and Bop-
pana and Hastad [BH], zero-knowledge provides us an avenue to convince ourselves
that certain languages are not NP-complete. In cryptography, zero-knowledge proofs
have played a major role in the recently proven completeness theorem for protocols
with honest majority [GMW2]. They also have inspired rigorously-analyzed identifi-
cation schemes that are as efficient [FFS] and even more efficient [MS] than folklore
ones.

Despite its wide applicability, zero-knowledge remains an intriguing notion: What
makes zero-knowledge proofs work?

Three main features differentiate all known zereknowledge proof systems from
more traditional ones:

1. Interaction: The prover and the verifier talk back and forth

2. Hidden Randomization: The verifier tosses coins that are hidden from the prover
and thus unpredictable to him.

3. Computational Dificulty: The prover imbeds in his proofs the computational
difficulty of some other problem.

At a first glance, all of these ingredients appear to be necessary. This paper makes
a first, important step in distilling what is essential in a zero-knowledge proof. We
show that computational difficulty alone (for instance the hardness of distinguish-
ing products of 2 primes from products of 3 primes) may make inessential the first
resource (interaction) and and eliminate the secrecy of the second resource (random-
ness). That is, if the prover and the verifier share a common random.string, the prover
can non-interactively and yet in zero-knowledge convince the verifier of the validity
of any theorem he may discover. A bit more precisely, for any constants c and d,
sharing a k-bit long random string allows a prover P to prove in zero-knowledge to a
poly(k)-time verifier V any k" theorems of kd size non-interactively; that is, without
ever reading any message ifrom V.

A Conceptual Scenario: Think of P and V as two mathematicians. After
having played "heads and tails" for a while, or having both witnessed the same
random event, P leaves for a long trip along the world, during which he continues his
mathematical investigations. whenever he discovers a theorem, he writes a postcard
to v proving the validity of his new theorem in zero-knowledge. Notice that this is
necessarily a non-interactive process; better said, it is a mono-directional interaction:
From P to V only. in fact, even if V would like to answer or talk to P, he couldn't: P
has no fixed (or predictable) address and will move away before any mail can reach
him.

258

1.1

While the definition of zero-knowledge remains unchanged, the mechanics of the com-
putation of the prover and verifier changes dramatically.

Notice that sharing a random string c is a weaker requirement than being able to
interact. In fact, if P and V could interact they would be able to construct a common
random string by coin tossing over the phone [Bl]; the converse, however, is not true.

Also notice that sharing a common random string is a requirement even weaker
than having both parties access a random beacon in the rabin’s sense (e.g. - perhaps! -
the same geiger counter). In this latter case, in fact, all made coin tosses would be seen
by the prover, but the future ones would still be unpredictable to him. by contrast, our
model allows the prover to see in advance all the coin tosses of the verifier. That is the
zero-knowledgeness of our proofs does not depend on the secrecy, or unpredictability
of c, but on the “well mixedness” of its bits! This curious property makes our result
potentially applicable. For instance, all libraries in the country possess identical
copies of the random tables prepared by the rand corporation. Thus, we may think of
ourselves as being already in the scenario needed for non-interactive zero-knowledge
proofs.

Our Model Versus the Old One

1.2 The Robustness of Our Result
As we have already said, we guarantee that all theorems proved in our proof systems
are correct and zero-knowledge if the string u is a truly random one. We may rightly
ask what would happen if LT was not, in fact, truly randomly selected. fortunately, the
poor randomness of o may upset the zero-knowledgeness of our theorems, but not their
correctness. That is, for almost all (poorly random) o’s, there is no wrong statement
that can be accepted by the verifier. This is indeed an important property as we can
never be sure of the quality of our natural sources of randomness. Unfortunately, due
to the limitations of an extended abstract, we cannot further elaborate on this and
similar points. We wish, however, to point out the following important corollary of
our result.

1.3 Applications of our Result
A very noticeable application of non-interactive zero-knowledge is the construction
of encryption schemes 6 la Diffie and Hellman that are secure against chosen cipher-
text attacks. Whether such schemes existed has been a fundamenatal open problem
ever since the appearence of complexity-based cryptography. We will discuss this
application in Section 3.

1.4 What’s Coming
The next section is devoted to set up our notation, recall some elementary facts from
Number Theory and state the complexity assumption which sufficies to show the
existence of non-interactive, zero-knowledge proofs.

259

In Section 3, we show the “single-theorem” case. That is, we show that if a k4-bit
string u is randomly selected and given to both the proven and the verifier, then the
first can prove, for any single string P (of length k) belonging to a NP-language L, that
indeed x E L; the proof will be a zero-knowledge one for whenever x is independent
of u.

In the final paper [BDFMP], we will show the “many-theorems” case. Namely,
that for each fixed polynomial &(-), using the same randomly chosen k4-bit string,
the prover can show in zero-knowledge membership in NP languages for any Q (k)
strings of length Q (k) .

The complexity assumption under which the result holds is the computational
difficulty of deciding quadratic residuosity.

We would like to point out that the proof of the many-theorems result in the
earlier versions of [BFM] and [DMP] contained a gap: it required, over than the stated
number theoretic assumptions, a stronger property about pseudo-random generators.
This stronger property is not needed in the final paper.

2 Preliminaries

2.1 Notations and Conventions

Let us quickly recall the standard notation of [GoMiRi].
We emphasize the number of inputs received by an algorithm as follows. If al-

gorithm a receives only one input we write “A(.)”, if it receives two inputs we write
“A(., -)” and so on.

If A (.) is a probabilistic algorithm, then for any input z, the notation A (z) refers
to the probability space that assigns to the string u the probability that A, on input
P, outputs o. If S is a probability space, then PRs(e) denotes the probability that
S associates with the element e.

If f(.) and g (- , . . . , .) are probabilistic algorithms then f(g(. , . . . , .)) is the proba-
bilistic algorithm obtained by composing f and g (i.e. running f on g’s output). For
any inputs z, y, . . . the associated probability space is denoted by f (g (~ , y, . . .)).

If s is any probability space, then z t S denotes the algorithm which assigns
to P an element randomly selected according to S. If f is a finite set, then the
notation2 t f denotes the algorithm which assigns to I an element selected according
to the probability space whose sample space is f and uniform probability distribution
on the sample points.

The notation P r (z t S; y t T ; . . . :p (z , y, ..)) denotes the probability that the
predicate p(z , y, . . .) will be true after the ordered execution of the algorithms z +

S, y t T , . . .
The notation {z t S ; y t- T ; . . . : (z, y, . . .)} denotes the probability space over

{ (x ,y , . . .)} generated by the ordered execution of the algorithms z t S, y + T,. . ..
Let us recall the basic definitions of [GMR]. We address the reader to the original

paper for motivation, interpretation and justification of these definitions.

260

Let U = { U (z) } be a family of random variables taking values in {O, l}* , with the
parameter z ranging in (0, l}*. U = { U (z) } is called poly-bounded family of random
variables, if, for some constant e E \, all random variables U (z) E u assign positive
probability only to strings whose length is exactly IzI‘.

Let C = { Cz} be a poly-size family of boolean circuits, that is, for some constants
c,d > 0, all C, have one boolean output and at most IzI‘ gates and lzld inputs. In
the following, when we say that a random string, chosen according to U (z) , where
{ U (z) } is a poly-bounded family of random variables, is given as input to C,, we
assume that the length of the strings that are assigned positive probability by U (Z)
equals the number of boolean inputs of C,.

Definition 2.1 (Indistinguishability) . Let L c {0,1}* be a language. Two poly-
bounded families of random variables U = { U (x) } and V = { V (x) } are indistinguish-
able on L if for all poly-size families of circuits C = {C,},

IPr(A t V (x) : Cz(a) = 1) -

P r (a + V (x) : C&) = 1) < 1X1C

For all positive constants c and suficiently large x E L .

Definition 2.2 (Approximabili ty) . a family
of random variables U = { U (z) } is approximable on L i f there exists a probabilistic
turing machine M , running in ezpectedpolynomial time, such that the families { U (X) }
and { M (s) } are indistinguishable o n L.

Let L c { O , l } * be a language.

2.2 Number Theory
Let Z , (k) denote the set of integers product of s 2 1 distinct primes of length k.

Let N be the set of the natural numbers, 5 E N , 2: = {y I 1 5 y < z, gcd(z, y) =
1 } and 2;’ = {y E Zcl(y I z) = +I}, where (y I z) is the jacobi symbol. We say that
y E 2: is a quadratic residue modulo z iff there is w E 2: such that w 2 = y mod 2.
If this is not the case we call w a quadratic non residue modulo z.

Define the quadratic residuosity predicate to be

0,
Q d y > = { 1, otherwise;

if y is a quadratic residue modulo x;

and the languages QR and QNR as

Q R = { (Y , ~) I Q = (Y) = 01

Q N R = { (Y , z) ~ Y E 2,” and &,(Y) = 1).

261

Fact 1: Let - be the relation so defined: y1 - y2 iff Q2(y1y2) = 0. Then - is
an equivalence relation in 2:'. T w o elements are equivalents if they have the same
quadratic character modulo each of the prime divisors of z. Thus, if z E Z,(,k) there
are 2 equivalence classes, if z E &(k) there are 4; in general if z = p41 . . - ,p," where
each p ; is a prime > 2 and p ; # p , if i # j, then there are 2" equivalence classes.

Fact 2: For each yl, yz E Z;l one has

Q=(YIYZ) = Q,(YI) CB Q=(Yz).

Fact 3: Where "@" denotes the exclusive or operator. the jacobi symbol function
sln is polynomial-time computable.

We now formalize the complexity assumption that is sufficient for non-interactive
zero-knowledge. Namely, that it is computationally hard to distinguish the integers
product of 2 primes leftarrow the ones product of 3 primes.

2.3 A Complexity Assumption
20R3A: for each poly-size family of circuits {Cklk E iV}

I p z 2 (k) - P Z 3 (k) l < k-'

for all positive constants c and sufficiently large k; where

Pz2(k) = PR(~ t zz(k) : ck(l) = 1) and
PZ3(k) = PR(Z t &(k) : Ck(z) = 1).

20R3A is a stronger assumption than assuming that deciding quadratic residu-
osity is hard. (Having an oracle for Qn(.), allows one to prbabilistically count the
number of - equivalence in 2:' and thus, by fact 1, to distinguish whether n E Zz(k)
or n E Z3(k)). Thus we can freely use that quadratic residuosity is cornputationally
hard (as formalized below) without increasing our assumption set.

Quadratic Residuosi ty Assumption(QRA):
For each poly-size family of circuits { C k I k E N } ,

Pr(a: + z2(k); Y + 2,": C~(Z,Y) = Q&))
< 1/2 + 1p-O(1) .

The QRA was introduced in [GM] and is now widely used in Cryptography. The
current fastest algorithm to compute Qz(y) is to first factor z and then compute
Q,(y), while it is well known that, given the factorization of z, QZ(y) can be computed
in O(1xI3) steps. In what follows, we choose z E Z2(k) since these integers constitute
the hardest input for any known factoring algorithm.

262

3 Single-Theorem Non-Interactive Zero-Knowledge Proofs

To prove the existence of single- theorem Non-Interactive Zero-Knowledge Proof Sys-
t e m (single-theorem non-interactive ZKPS) for all NP languages, it is enough to
prove it for 3COL the NP-complete language of the 3-colorable graphs [GJ]. For
k > 0, we define the language 3 c o L k = {z E 3 c 0 L I 1.1 5 k}.

Definition 3.1 . A Single-Theorem Non-Interactive ZKPS is a pair (A,B) where
A (the Prover) is a Probabilistic Turing Machine and B(-,., ,) (the Verifier) is a
deterministic algorithm running in time polynomial in the length of its first input,
such that:

1. Completeness. (The probability of succeeding in proving a true theorem is
overwhelming.)

3c > 0 such that V x E 3COLk

Pr(g t {O,l}"c; y t A(a, x) :
B(s , y, a) = 1) > 1 - n-o(l).

2. Soundness. (The probability of succeeding in proving a false theorem is neg-
ligi ble.)
3 > 0 such that Vx # 3coLk and for each Probabilistic Turing Machine A'

P r (u t {O,l}"'; y t A'(a,z) :
B(s, y , CT) = 1) < n-o(l).

3. Zero-Knowledge. (The proof gives no information but the validity o f the
theorem.)

3c > 0 such that the family of random variables V = {V(x)} is approximable
over 3COL. Where

V(X) = {a +-- (0, l}'"'c; y +-- A(a, 5): (a , ~) } ,

Remark: Notice that, as usual, the zero-knowledge condition guarantees that
the verifier's view can be well simulated; that is, all the verifier may see can be
reconstructed with essentially the same odds. In our scenario, what the verifier sees
is only the common random string and the proof, i.e., the string, received by A.
Notice that in our scenario, the definition of zero-knowledge is simpler. As there is
no interaction between B and A, we do not have to worry about possible cheating
by the verifier to obtain a "more interesting view." That is, we can eliminate the
quantification "VB'" from the original definition of [GMR].

263

Theorem 3.1 .
ZKPS for 3-COL.

This theorem will be rigorously proven in the final paper. Here we restrict our-
selves to informally describe the programs P and V of a single-theorem non-interactive
ZKPS (P,V) and, even more informally, to argue that they posses the desired prop-
erties.

Under the QRA, there ezists a Single-Theorem Non-Interactive

3.1 The Proof System (P,V)
Instructions for P

1. Randomly select nl , n 2 , n g E Z 2 (k)

2. For i = 1 , 2 , 3 randomly select qi such that (qiln,) = 1 and q; is a quadratic
non-residue mod n;.

3. Color G with colors 1,2,3.

4. For each node v of G whose color is i, label v with a randomly selected triplet
(q , v 2 , ~ 3) E 22 x 2:: x 2:; such that Qn(v;) = 0 and Qn,(vj) = 1 for j # i.
Call G’ the so labeled G
{Remark 1: WLOG (else purge u in the “right way”) let u = u 1 0 u 2 0 u 3 0 ~ 4 , - - a ,

where all triplets (ul, u2,u3)(u4, us, us), .. . belong to 22 x 22 x 2:; .}
{Convention: The first 8k triplets are assigned to the first edge of G (in the
lexicographic order), the next 8k triplets to the second edge, and so on.}

5. For each edge (a ,b) of G‘ (where node a has label (a l , a 2 , a 3) and node b
(b1, b, b)) and each of its 8k assigned triplets (zl, z2, 23) compute one of the
following types of signature.

(Comment: Only one is applicable if steps 1-4 are performed correctly)}

type 0
type 1

type 3
type 2

type 4
type 5
type 6

(4 F l 7 &z, &z) type 7

{Notation “by example”: Let z1 be a quadratic non residue mod n1, 2 2 a
quadratic residue mod n2, and 23 is a quadratic residue mod 122. Then the
signature of the triplet (zl, z2, 23) a triplet of type 1: (m, 6, where
f i denotes a randomly selected square root of the quadratic residue q1 * 21

mod nl; and for i = 2 ,3 J.. denotes a randomly selected square root of zi mod
7% 1

264

6. Send V nl, n 2 , n 3 , 4 ~ , 4 ~ , 43, G', and the signature of the triplets composing U.

{Comment: Note that the edges of G' are labelled with triples, not with
colors!}

Instruct ions for V

1. Verify that 721,722, and n3 are not even and not integer powers. Verify that G'
has assigned a triplet (v l , vz, v3) is a proper labelling of G. That is, each node

such that v; E .Z:l for i = 1,2,3.

2. Break u into triplets, verify that for each edge you received a signature of some
type for each of its 8k triplets.

3. If all the above verifications have been successfully made, accept that G is
3-colorable.

3.2 A Rough Idea of why (P,V) is a Single-Theorem Non-
Interactive ZKPS

First notice that the communication is mono-directional: From P to V. Then let
us convince ourselves that the statement of Remark 1 really holds without loss of
generality. In our context, WLOG means with overwhelming probability.

If G has a edges, our protocol assumes u to consist of 8 . k - a triplets in 2: x
x 2:;. Such a string u is easily obtainable from a (not too much larger) random "2 string p. Consider p to be the concatentation of k-bit strings grouped into triplets

P = (P1,P27P3)(P4,P5,P6)'..

Then obtain u by "purging" p. That is, obtain u from p by discarding all triplets
not in 2:; x 2; x 2:. We now argue that p is not much longer than u. Let n
be either n1 or n2 or 123. Now a random k-bit integer (with possible leading 0's) is
less than n with probability 2 4; a random integer less than n belongs to 2; with
probability 2 i; a random element of 2; belongs to Z,+l with probability 2 3. Thus,
we expect that at least 1 in 64 of the triplets of p not to be discarded.

Now let us consider the question of V's running time. V can verify in poly-time
whether n; = 2" (where 2, a integers; a > 1) as only values 1,. . . ,log n; should be
tried for CY and binary search can be performed for finding z, if it exists. All other
steps of V are even easier.

Now let US give some indication that (P,V) constitute a single-theorem non-
interactive ZKPS.

Completeness: Assuming that u is already consiting of triplets in 2:' x 2: x
Zn+3', if P operates correctly, V will be satisfied with probability 1.

Soundness: If the verification step 1 is successfully passed, by fact 1, there must
be 2 2 - equivalence classes in each 22 (exactly two if P honestly chooses all the
72,'s in Zz(k)).

. >-

265

Thus, if we define two of our triplets (zl,z2,z3) (w1,w2,w3) to be equivalent if
ziwimodni is a quadratic residue for i = 1,2,3, we obtain 2 8 equivalence classes
among the triplets (exactly 8 if P is honest).

To exhibit a signature of a given type for a triplet, essentially means to put the
triplet in one out of 5 8 possible “drawers”. (there are 8 types of signatues, but they
may not be mutually exclusive; thus two drawers may be equal). Moreover, it is easy
to see that if two triplets are put in the same drawer, they must belong to the same
equivalence class.

As u is randomly selected, each of its triplets in 2: x 2:: x 2L1 is equally likely
to belong to any of the 2 8 equally-numerous equivalence classes. However, since if
there were > 8 classes, there would be (by fact 1) at least 16, the fact that all triplets
can be fit in 5 8 drawers, “probabilistically proves” several facts:

1. There are exactly 8 equivalence classes among the triplets and exactly 8 distinct
drawers.

2. The n,’s are product of two distinct prime powers.

3. Qnl(q1) = QnZ(q2) = Qna(43) = 1

4- Qnl(q1) + Qnz(42) + QnS(q3) = 2
That is, (01, 02, u3) is a proper color (i.e., properly encodes a color: Either 1,2,
or 3).

5. That (b,,b,&) is a proper color.

6. That (al , 02, a3) and (b l , &, b) are different colors. Else drawer 6 and drawer 0
would be the same.

Item 6 being true for all edges in G’ implies that G is 3-colorable which is what

Zero-Knowledgeness
Let us specify the simulating machine M that, under the QRA, generates a pair

Instructions for M

was to be proven.

(0, proof) with the “right odds” on input G (without any coloring!)

1. Randomly select n l , nz, n3, E Z2(k) together with their prime factorization.

2. Randomly select q1,qz7q3 so that Qn,(ql) = Qn1(q2> = Qn3(q3) = 0

3. For each node v of G, label v with a triplet (v1,v2,v3) E Z:l x Z:2 x .Z;3 such

4. Construct u = (ul, u2, u3)(u4) us, u6) . - , such that each triplet
is randomly selected so that Qni(u3j+;) = 0 for i = 1 ,2 ,3 .

{Remark: Also in the simulation we only deal with already “purged strings”.
It is not hard to see that M could also handle generating “unpurged strings”.}

that Q ~ ~ (v 1) = Qn2(vz) = Qn3(w3) = 0. Call G’ the so labelled graph.

u3j+2, u3j+3)

266

5 . For each edge (a , b) of G’ and each of its assigned 8k triplets (q, 2 2 , t g) , choose
an integer z at random between 0 and 7, and compute a signature of type i.
{Comment: By using the prime factorization of the n;.}

6 . Output u, nl, n2, n3, ql , q2,q3, G‘, and the computed signatures.

We now informally argue that M is a good simulator for the view of V. Essentjally,
this is so because efficiently detecting that the triplets of u are not randomly and
independently drawn from the space 2:’ x Zn+z‘ x Znf: is tantamount as violating
the QRA (to be explained in the final paper). For the same reason, it cannot be
detected efficiently that G‘ is an illegal labelling or that ql , qa, 43 are squares mod,
respectively, nl, 722 , n3. Given that, the distribution of the various types of signature
looks “perfect”.

{Remark: the reader is encouraged to verify that if (P,V) uses part of the used
~7 to show that another graph is 3-colorable, then extra knowledge would leek. For
instance that there exists 3-coloring of G and H in which nodes v1 and u2 in H
respectively have the same clolors as nodes w1 and w2 in G.}

4 Security Against Chosen Ciphertext Attack
One of the most beautiful gifts of complexity-based cryptography is the notion of a
public-key cryptosystem. As proposed by Diffie and Hellman [DH], each user U pub-
licizes a string Pu and keeps secret an associated string Sv. Another user, t o secretely
send a message rn to U , computes y = E(Pv,m) and sends y; upon receiving y, U
retrieves m by computing D(Sv , y); here E and D are polynomial-time algorithms
chosen so that it will be infeasible, for any other user, to compute rn from y.

Notice that in this set-up any other user is thought to be a “passive” adversary
who tries to retrieve rn by computing solely on inputs y and Pv. This is indeed
a mild type of adversary and other types of attacks have been considered in the
literature. It is widely believed that the strongest type of attack among all the
natural ones is the chosen-ciphertezt uttuck. In such an attack, someone tries to
break the system by asking and receiving decryptions of ciphertexts of his choices.
Rivest has shown that Rabin’s scheme (whose breaking is, for a passive adversary, as
hard as factoring if the messages are uniformily selected strings of a given length) is
easily vulnerable to such an attack. Indeed, this is an attack feasible to any employee
who works at the decoding equipment of, say, a large bank. The power by this
attack is very well exemplified by an elegant scheme of Rabin [R] that is as secure
as factoring (if the messages are uniformily selected strings of a given length) in
the passive adversary model but is easily broken by chosen-ciphertext attack. Since
observing this phenomenon, people tried to design cryptosystems invulnerable to
such attacks, but in vain. A positive answer has been found [GMT] only allowing
interaction, during the encryption process, between legal sender and legal receiver.
However, for the standard (non-interactive) Diffie-and-Hellman model, the existence
of a cryptosystem invulnerable to chosen ciphertext attack has been an open problem
since 1978.

267

Non-interactive zero-knowledge proofs allow us to finally solve this problem. The
essence of our solution (instead of its details) is informally described as follows. In-
stead of sending U an encryption, y , of a message m, one is required to send two
strings: y and and 6, where u is a zero-knowledge and non-interactive proof that the
sender knows the decoding of y . The “decoding equipment” (read: the decoding func-
tion) checks that (7 is convincing and, if so, outputs m, the decoding of y ; Otherwise,
it outputs nothing. Notice that, now, being able to use the decoding equipment prov-
ably is of no advantage! In fact, only when we feed it with ciphertexts whose decoding
we can prove we know, does the decoding equipment output these decodings! In other
words, the decoding equipment can only be used to output what we already know. A
detailed discussion of this powerful application will appear in the final paper.

(A formal setting and the proof require some care. For instance, the decoding
equipment may be used as an oracle to check whether a given string u is a “correct
proof of knowledge”. Thus, in particular, one should prove that such an oracle cannot
help. In the final paper we will essentially show that if one can generate a legal (y , 0)
pair without having m as an input, then one can easily decrypt all messages on input
y and Pu only.)

5 References
[ACGS] W. Alexi, B. Chor, 0. Goldreich, and C. Schnorr RSA/Rabin Bits Are 1/2 +
l/po,y(log N) Secure, To appear SIAM J. on Computing.
[Bl] M. Blum, Coin Flipping b y Telephone, IEEE COMPCON 1982, pp. 133-137.
[B2] M. Blum, unpublished manuscript
[BBS] M. Blum, L. Blum and M. Shub,A simple and secure pseudo-randomnumber
generator,SIAM Journal of Computing, 1986
[BFM] Blum, De Santis, Feldman, Micali, and Persiano, Non-Interactive Zero
Knowledge and Its Applications, in preparation.
[BGGHKMR] M. Ben-Or, 0. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Mi-
Cali, and P. Rogaway, Everything Provable is Provable in Zero-Knowledge, These
Proceedings
[BH] R. Boppana, J. Hastad and S. Zachos, Interactive Proofs Systems for CO-NP
Imply Polynomial Time Hierarchy Collapse, In preperation.
[BM] M. Blum and S. Micali, How To Generate Sequences Of Cryptographically
Strong Pseudo-Random Bits, SIAM J. on Computing, Vol. 13, Nov 1984, pp. 850-
864
[DH] Diffie, Mi., and M.E. Hellman, New Directions in Cryptography,IEEE Trans.
on Inform. Theory,
[DMP] De Sentis, Evficali, and Persiano, Non Interactive Zero-Knowledge Proof
Systems, Proc. Crypto 87.
[F] L. Fortnow, The Complexity of Perfect Zero-Knowledge, Proc. 19th a m . Symp.
on Theory of Computing, New York, 1987.
[FFS] Feige, Fiat and A. Shamir, Zero-knowledge proofs of identity, Proceedings of
the 19th Annual ACM Symp. on Theory of Computing, 1987, pp. 210-217

268

[GM] S. Goldwasser, and S. Micah, Probabilistic Encryption, JCSS Vol. 28, No. 2,
April 1984.
[GMR] S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of Inter-
active Proof-Systems, To appear SIAM J. on Computing (manuscript available from
authors) .
[GoMiRi] S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure
Against Adaptive, Chosen Cyphertext Attack To appear in SIAM J. on Computing
(available from authors)
[GMT] S. Goldwasser, S. Micali, and P. Tong, w h y and how to establish a perivate
code in a public network, Proc. 23rd Symp. on Foundations of Computer Science,
Chicago, Ill., 1982
[GMW] 0. Goldreich, S. Micali and A. Wigderson, Proofs that Yield Nothing but their
Validity and a Methodology of Cryptographic Design, Proc. of FOCS 1986.
[GMW2] O.Goldreich, S. Micali and A. Wigderson, How to Play Any Mental Game,
Proceedings of the 19th Annual ACM Symp. on Theory of Computing, 1987, pp.

[GS] S. Goldwasser and M. Sipser, Private Coins versus Public Coins in Interactive
Proof Systems, Proceedings of the 18th Annual ACM Sympl on Theory of Computing,

[I] R. Impagliazzo, Personal Communication.
[MS] S. Micali and A. Shamir An improvement of the Fiat-Shamir Identification and
Signature Scheme, These proceedings
[R] M. Rabin, Digitalized signatures and public-key functions as intractable as fac-
torization, MIT/LCS/TR-212, Technical report MIT, 1978
[Y] A.Yao, Theory and Application of Trapdoor Functions, Proc. of 23rd FOCS,
IEEE, Nov., 1982, pp. 80-91.

218-229.

1986, pp. 59-68.

	Abstract
	Introduction
	Our Model Versus the Old One
	The Robustness of Our Result
	Applications of our Result
	What’s Coming

	Preliminaries
	Notations and Conventions
	Number Theory
	A Complexity Assumption

	Single-Theorem Non-Interactive Zero-Knowledge Proofs
	The Proof System (P,V)
	A Rough Idea of why (P,V) is a Single-Theorem Non-

	Security Against Chosen Ciphertext Attack
	References

