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Abstract  

A notion of reduction among multi-party distributed computing problems is in- 
troduced and formally defined. Here the reduction from one multi-party distributed 
computing problem to another means, roughly speaking, a secure and verifiable proto- 
col for the first problem can be constructed solely froma secure and verifiable protocol 
of the second. A universal or complete multi-party distributed computing problem 
is defmed to be one to which the whole class of multiparty problems is reducible. One 
is interested in finding a simple and natural multi-party problem which is universal. 
The disfributed sum probkm, of summing secret inputs from N parties, is shown to be 
such a universal problem. The reduction yields an efficient systematic method for the 
automatic generation of secure and verifiable protocols for all multi-party distributed 
computing problems. Incorporating the result from [l?], it also yields an alternative 
proof to the completeness theorem of [!I] that assuming honest majority and the ex- 
istence of a trap-door function, for all multi-party problems, there is a secure and 
verifiable protocol. 
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1 Introduction 
We are concerned with the problem of computing correctly and securely in a distributed 
environment. This problem, raised by Goldreich, M i d ,  and Wigderson, was called the 
multi-party protocoI problem [9]. Informally, the multi-party protocol problem can be stated 
as: given a description of a game with incomplete information of any number of players, 
produce a protocol for playing the game that leaks no partial information, provided that 
the majority of the players is honest. Such protocols are called decure and verifiable protocol 
they simultaneously guarantee correctness of the corresponding games and privacy of all 
players. 

In [9], Goldreich, Ivlicali, and Wigderson presented the first solution to the multi- 
party protocol problem and derived a completeness theorem for the class of distributed 
protocol problems with honest majority, namely, if any trap-door function exists, then 
for all games, there is secure and verifiable protocol provided that more than half of the 
players are honest. Ben-Or, Goldwasser and Wigderson "4, Chaum, Crepeau and Damgdra 
[5] independently prove a completeness result for multi-party protocol problem in a non- 
cryptographic setting . 

In this paper, the relationship among the multi-party problems is studied. We formal- 
ize the notion of reduct ion among multi-party problems. Roughly speaking, a multi-party 
problem P is reducible to a set S of multi-party problems if a secure and verifiable proto- 
col for P can be constructed solely from the combination of secure and verifiable protocols 
for problems in S. From the notion of reduction, the concept of universal set and uni- 
versal multi-party problem is defined. A set S of multi-party problems is a universal 
set if all multi-party problems are reducible to S. In other words, secure and verifiable 
protocols for a universal set can be used as fundamental building block for constructing 
secure and verifiable protocols for all  multi-party problems. A multi-party problem P is 
universal if itself forms a universal set. 

We are interested in finding a simple and natural multi-party problem that is universal 
for the whole class of multi-party problems. The distributed sum problem, of summing 
secret inputs from N parties, is shown to be such a universal problem. Besides being a 
universal problem, the distributed sum problem itself is also an important problem. For 
example, the well-known election problem [6,14,13,4,7,18] is the distributed sum problem 
when the secret inputs are restricted to 0 and 1. 

We prove that, assuming honest majority, designing a secure and verifiable protocol 
for any N-player multi-party problem is reducible to the design of secure and verifiable 
problem for distributed sum problem over N players. This reduction demonstrates that 
the distributed sum problem is universal, and gives an efficient systematic method for 
the automatic generation of secure and verifiable protocol for all multi-party problems. 
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Incorporating the result from [1411, it yields an alternative proof to the completeness 
theorem of Goldreich, Micali, and Wigderson [9]. 

2 Preliminary 
The computation model used for multi-party problems is a complete synchronous network 
of N nodes. Each node (node i) has a probabilistic Turing machine (U;), called a user ,  
with its own private read-only input tape, write-only output tape, and work tape. There 
is a common read-only tape, a common write-only tape, and a global clock shared by all 
machines. 

Various models can be defined according to the different means of communication 
among the machines [9,2,6]. 

0 Private Channel Model: There are perfectly secure private communication 
tapes. The it'' machine communicates with the j t h  machine, and vice verse, via tape 
i t-t j .  No other machines can read the message on the i H j tape. 

0 Common Tape Model:  There is only one communication tape. Each machine can 
read the message from the tape and write message on the tape. 

0 Bulletin Board Model:  There are N publicly readable tape, B B I , .  . . , BBN, called 
B u l l e t i n  Boards, where BBi is writable only by the ith machine. 

Throughout this paper, the bulletin board model is assumed. Note that using digital 
signatures [16] to authenticate the sender, protocols designed on the bulletin board model 
can be implemented on the common tape model. Also, using Byzantine agreement [15], 
all machines can agree on what message machine i has sent to machine j at certain time. 
Hence, protocols designed on the bulletin board model can be implemented on the private 
channel model. 

A distributed protocol DDP consists of a set of probabilistic algorithms (4 : 1 5 i 5 
N }  to be run on a distributed system of N parties U1, ... ,UN. The algorithm d, runs 
on U;. The initial content of the shared input tape is the c o m m o n  input ,  and the initial 
content of the private input tape of 24; is the secret input  to 2.4;. The common input typicdy 
consists of the agreed upon verifiability and  security parameters denoted by VN and KN 
respectively. The final content on the shared output tape is the public o u t p u t  of 21, and 
the secret outputs of U; appear on the private output tape of 24;. 

'It was proven in [14] that  there is an optimally secure and verifiable protocol for the distributed sum 
problem. 
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Let DP = {A, : 1 5 i 5 N }  be a distributed protocol of N parties 2.41, ... ,UN. A 
party U; is hones t  if it runs its preassigned algorithm -4, faithfully and only runs d,, and 
is c d e d  d i ~ h o n e ~ t  otherwise. We allow the possibility of sharing information among the 
dishonest parties. A dishonest party can be either passive or maliciou~ in the sense of 191. 
We also allow each party to become dishonest in a dynamic fashion during the execution 
of the protocol. 

A conspiracy C among s dishonest parties is a set of probabilistic polynomial time 
algorithms {C; : 1 5 i 5 N )  and a dishonest parties U,, where C; = d, if 24; is honest. The 
common input of C and the secret input to the honest U; are the same as those in W. 
The output of C is defined to be the private output of U,, and is either one or zero. 

For the ease of understanding, we restrict our consideration to a special subclass of 
multi-party problems, distributed transformation problem. The result achieved for this 
subclass can be generalized to the general multi-party problems [9,2,5]. 

The N-party distr ibuted t rans format ion  problem is stated as: given a 2N-ary formula’ 
CF(z1,. . . , ZN, y1,. . . , y ~ ) ,  design a protocol P such that on each tuple of secret inputs  
(~1,. . . ,sN), the application of the protocol outputs a tuple of secret outputs (~1,. . . ,-zN), 
such that: 

0 Verifiable Correctness: C 3 ( s l , .  . . ,SN, 21,. . . , ZN) = 1. 

0 Privacy: No subset of less than [ N / 2 ]  parties can extract any more information 
about s;’s and Z;’S from execution of P than it is already contained in the formula 
cF(31,. . . , SN, ~ 1 , .  . . , ZN) = 1 and their shared secret inputs. 

where a tuple  of secret  i n p u t s  (sl,. . . , sN) means that s; is the secret input of X ,  and 
a tuple of secret o u t p u t s  (q,. . . , ZN) means that z; is the secret output of 2.4;. 

The distributed transformation problem can be interpreted as: at the beginning of 
the execution, the i th party owns a private database DB;, the application of the protocol 
transforms the ith database securely into a new database DB: which satisfies the predefined 
properties without revealing any more information about DB;’s and DB:’s. 

The Turing machine game, defined by Goldreich, Micali, and Wigderson [9], is a 
subclass of the distributed transformation problem defined above. Informally, the Turing 
machine game can be described as: N parties, respectively owning secret inputs 31, .  . . , SN, 
are to correctly run a given Turing machine M on sl,. . . , SN while keeping the maximum 
possible privacy of all  parties. Clearly, the Turing machine game with Turing machine M 

’It is usually assumed that the formula C 3  of a distributed transformation problem is random p o l p o ~  
time computable in the sense that we can construct a random algorithm &r which on each tuple of 
inputs (.I,. . . , S N )  outputs a tuple of output, in random polynomial time, a tuple (21,. . . , ZN) such that 
C7(3ll...,JN,2lr...,ZN) = 1. 
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is a distributed transformation problem with formula CFM: 

A distributed protocol VF is a s-secure protocol for a distributed transformation 

For all conspiracy C among a set of s dishonest users, for all pairs of 2N-ary tuples 
problem with formula CF, if the following condition is satisfied. 

(11,. . . , X N , U ~ ,  . . . ,UN) and (y l , .  . . , Y N ,  711,. . . ,VN) with 

and xi = yj if Ui is dishonest, for all k E M, 

where z is the input size which equals to the maximum binary-length of xi and yi. 
Informally, the above condition says that ( z l , .  . . ,IN) and (yl,. . . , y ~ )  are polynomial 

time indistinguishable to the dishonest users. 
A distributed protocol ?lP is s-verifiable for a distributed transformation problem 

with formula CF if for all inputs S = ( ~ 1 , .  . . , sN) ,  the probability that CF(S, 2)  = 1, 
where 2 = (21,. . . , t ~ )  is the output of VP on sl,. . . ,SN, is at least 1 - (N+z+VN * ) b  for all 
k E N, provided no more than s users are dishonest. 

A distributed protocol VP is an optimally secure and verifiable protocol for a 
distributed transformation problem iff it is s-secure and s-verifiable for a l l  1 5 s 5 N .  

3 Complete Sets and Universal Problems 
Throughout the development of computational complexity theory, an important notion 
has been the reduction among a class CP of problems. Informally, reduction from one 
problem to another shows thiit the first problem is essentially no harder than the second. 
The notion of reduction introduces a partial order among problems in CP. A problem P is 
complete or universal for the whole class of problems if all problems in CP are reducible 
to P. More generally, a subset S C CF is a complete set if all problems in CF are reducible 
to s. 

The completeness of a problem P is often used as a strong evidence that P is in- 
tractable up to certain computation power. For example, if a problem P is complete for 
the class of recursive functions (NP, P )  under recursive reduction (polynomial-time re- 
duction, NC-reduction, respectively), then P is undecidable (unlikely in P, unlike in N C ,  
respectively). However, in the case where P admits an efficient solution, a constructive 
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proof of completeness provides a systematic method for solving all problems in CP. In this 
case, we also call P a universal problem for the class CIP. 

Informally, the reduction from a multi-party problem P to another multi-party prob- 
lem P‘ means that P can be solved by  alternating applications of local computation by 
individual parties, and a secure and verifiable protocol for P‘. More specifically, each dis- 
tributed protocol can be decomposed into a sequence of local transformation where each 
user computes locally and securely; and distributed transformation where all users work 
together to transform a tuple of secret inputs to a tuple of secret outputs satisfying some 
predefined conditions. Let Program(S) be the set of all distributed programs consisting of 
alternating local transformation and distributed transformation protocols from S. Infor- 
mally, a set of protocols is complete iff for all multi-party problems P, there is a distributed 
program from Progrum(S) that is secure and verifiable for P. A multi-party problem Q 
is universal iff each secure and verifiable protocol for Q by itself forms a complete set. 

3.1 Local Transformation vs Distributed Transformation 

The class of distributed transformation problem can be partitioned into two subclasses 
according to the input-output dependency. Let us first see some examples: 

Problem 3.1 There are N users. User i has a secret value si. User i  wants to  compute the 
largest perfect square which is smaller than s;. In  other words, problem 3.1 i s  a distributed 
transformation problem with formula C F :  

Problem 3.2 There are N u3ers. User i has a secret value 8; .  User i wants t o  compute 
cj”=, 83. 

In problem 3.1, each user can locally compute its secret output from its secret input; 
while in problem 3.2, the secret output of each user depends on the secret inputs of all 
other users. Hence, each user, by itself, can not obtain the correct secret output. In order 
to perform the computation, each user has to communicate with other users. 

In general, a distributed transformation problem P with formula C 3  is locally com- 
putable if there are N functions f1,. . . , fN E RPU, such that for all 

where RPU stands for the class of probabilistic polynomial time computable unary func- 
tions. 
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The computation of a locally computable distributed transformation problem is called 
local transformation, and the computation of a distributed transformation problem which 
involves inter-user communication is called a distributed transformation. 

Using the probabilistic public-key cryptosystem of Goldwasser and Micali [11] and 
two party zero knowledge proof protocols from [12,10,3], or using the verifiable secret 
sharing (VSS) [2,5,17], each party can prove to all other parties the correctness of its local 
computation without leaking any information about its secrets. Such a scheme can be 
found in [1,2,5,14]. Thus, it is assumed that the local transformation of each party in all 
distributed protocols is performed securely with verifiable correctness. 

3.2 Reducibility 
Two operators are defined on the set of distributed protocols to formalize the concept of 
reduction from one multi-party problem to another. 

Definition 3.1 (Composition) Let DPl and DP2 be two N-party distributed protocols, 
and F = (fl,. .. , fN) E R'PUN. The F-composition of DPl and DPZ forms  a new N -  
party distributed protocol, denoted by DP2 OF DP,, which is composed of the following 
three steps: (1) apply DP1 o n  a tuple of secret input (sl, ..., sN) to  compute a tuple of 
secret output3 ( ~ 1 , .  . . , u ~ ) ;  (2) each party 24; performs a local transformation t o  compute 
fj(Ui); (3) apply D", on ( f l (~1 ) ,  ...,f~( U N ) )  t o  compute the final tuple of secret outputs 
(a,. . . ,m)- 
Definition 3.2 (Combinat ion)  Let VP,, . . . ,DPk be k N-par ty  distributed protocols, 
the combination of these k protocols defines a new N-party distributed protocol, denoted by 
k!$=,'DPj, which is specified as: o n  a tuple of secret inputs ( ( s l ,~ , ,  , s k , l ) ,  ..., (Sl,N, ..., S k , N ) ) ,  

for i = 1 t o  k, apply "P, o n  S; t o  compute a tuple of secret outputs ( q 1  ..., z i , ~ ) .  T h e n  the 
final tuple of secret ou tput  is ((z1,1,, , q l ) ,  ..., ( q , ~ ,  ..., z k , ~ ) ) .  

Let ZDPN denote the identity distributed protocol whose application on any tuple of 
secret inputs (~1,. . . , SN) outputs the tuple of secret outputs (91,. . . , s N ) .  

Definition 3.3 (P ro toco l  Circuit)  An N-party protocol circuit C i s  a labeled directed 
acyclic simple graph with a unique sink rc in which each vertex v i d  labeled by a n  ordered 
pair (FV,'DPe), where F, E RpUN and DP, is a N-party distributed protocol. T h e  value 
of each vertez v in a protocol circuit is a N-par ty  distributed protocol which is defined 
inductively: 
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a If v is an internal vertex, labeled b y  (F,,,VP,) and with children w l , .  . , , w k ,  then: 

The distributed protocol defined a protocol circuit C, denoted b y  protocol(C), is vaZue(rc). 
We can evaluate a protocol circuit C on a tuple of secret inputs ( $ 1 ) .  . . , sx) according 

to the definition of composition and combination. Note that the evaluation is composed of 
an alternating applications of local transformation within each party and some distributed 
protocols associated with the vertices in C. This yields a general paradigm for solving 
multi-party problems. 

Definition 3.4 (Reduct ion)  A set S of multi-party problems is reducible t o  another 
set  T of multi-party problems iff for all  P E S ,  there exist protocol circuit C ,  with protocol 
labels only f rom the set  of protocols which are secure and verifiable for problems in S, that 
defines a secure and verifiable protocol for  P. 

Let F = (fl) .  . . , f ~ )  be an N-tuple of random polynomial computable unary func- 
tions. Let 'DP,,. . . ) m k  be k 2N-ary formulas. The F-composition of C31 and C ~ Z ,  
denoted by C ~ ~ O F C F ~ ,  is defined as: for all N-tuples, X = (21,. . . , ZN), Y = (~1). . . ,YIV), 

C T Z O J ? C ~ ~ ( X , Y )  = 1, iff 3u= (U11,...,~~),C31(X,F(U)) = C T z ( F ( U ) , Y ) = 1  (1) 

k 

Ijlt,c~~{(ul,vl), ...,( U ~ , V N ) }  = 1 i f f  J-JcF;(si,z;) = 1 
i=l 

If for all vertex v is a protocol circuit, DP, is a distributed protocol for a dis- 
tributed transformation problem with formula c.?,,, then C defines a formula, denoted 
by fmmuZa(C) ,  by Relation (I), and Relation (2) in a natural way. We can prove the 
following lemma. 

Lemma 3.1 If for all u,  'Dp,, is a s-verifiable distributed protocol for the distributed trans- 
formation problem with formula C 3 ; ,  then protocoZ(C) is Q s-verifiable distributed protocol 
for the distributed transformation prob lem with formula formuZa(C). 
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4 The Distributed Sum Problem 
Formally, the distributed sum problem is a distributed transformation problem with for- 
mula 

N 
CF(r1,. . - , XN, y1, a s a 9 yN) = 1 iff y1 = yz = ... = yN = 2;. 

i d  

where the problem domain is a subset of 2, the set of integers. It will be shown in next 
section that the distributed sum problem is universal over aU multi-party problems. 

An optimally secure and verifiable protocol is presented in [14] based on the efficient 
construction of perfectly secure patterns. 

Lemma 4.1 ([14]) There is a n  optimally Secure and verifiable protocol for the distributed 
Sum problem. 

Other secure and verifiable protocols for the distributed sum problem are also implied 
in [2,5,9,8). 

An important variance of the distributed sum problem, denoted by ?)Spry, is the one 
that after the computation, only the ith party correctly computes the sum, and all other 
parties can extract no information about the sum. In other words, VSPY is a distributed 
transformation problem with formula: 

N 
C ~ ( E ~ , - - . , ~ N , Y ~ , . . . , Y N ) = ~  iff y i = C z i  

j=1 

Lemma 4.2 the distributed sum problem and {VSP? I 1 5 i 5 N }  are reducible between 
each other. 

[PROOF] It can be easily shown that the distributed sum problem is reducible to {DDSP? I 
1 5 i 5 N } .  We now show that {DSP? I 1 5 i 5 N }  is reducible to the distributed sum 
problem DSPN. Let (~1,. . . , S N )  be a tuple of secret inputs, let s = Czl s;, the application 
of DSP? on (31,. . . , SN) can be done by: 

1. The 2'' party 24, randomly chooses w1,w2 E Z, such that w1+ w2 = si- 

2. Apply a protocol for the distributed sum problem on (sl, .., s ; - ~ ,  w1, .., S N )  to produce 
(y,  ..., y) ,  where y = zu1 - si + zzl s, = s - w2. 

3. 24; locally compute w2 + y to get 8 .  

Note that y contains no information about s, therefore the above protocol is s-secure, 
0 if the protocol for the distributed sum problem is s-secure. 
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5 Universality of the Distributed Sum Problem 

A natural universal problem for multi-party distributed computation is sought. And the 
simpler the universal problem, the better. In this section, the very simple the distributed 
s u m  problem is proven to be a universal multi-party problem. Moreover, the proof is 
constructive. 

Theorem 5.1 (Main T h e o r e m )  The distributed sum problem is a universal multi-party 
problem. 

Corollary 5.1 For all multi-party problem, there is a secure and verifiable protocol a5- 

suming honest majority.  

5.1 Distributed Boolean Circuit Problem 

The proof of Theorem 5.1 consists of a sequence of reductions. The first step is to reduce 
the general distributed transformation problem to a special distributed transformation 
problem, the distributed boolean circuit problem. 

The distributed boolean circuit problem is proposed by the following observation. 
For each formula CF(z1,. . . , xN,Y1,. . . ,YN), we can construct a probabiZistic algo- 

rithm &r which on each tuple of inputs (sl,. . . , s ~ )  outputs a tuple ( z ~ , .  . . , ZN) such 
that CF(s1,. . . ,sN,q,. . . , ZN) = 1. In turn, we can construct a Boolean circuit3, CCF to 
implement &r such that the size of CCF is polynomially bounded by the time complexity 
of &r. In the context of secure distributed computation, &'-parties, each holding some 
secret inputs to C c r ,  want to evaluate Ccr to correctly compute their corresponding secret 
output, i.e. 24; holding secret input s; is to securely and correctly compute the value of zi. 

In circuit CCF,  s; corresponds to a subset of input Boolean variables, and r; to a subset of 
output Boolean variables. The distributed boolean circuit problem is defined formally as: 

Definition 5.1 (Distr ibuted Boolean circuit problem) Given a BooZean circuit c of 
m input variables z1 ,... ,x,, and n output variables b1 ,..., b,. Each party Ui owns a 
nonempty subset of input  variables X; such that Uz,Xi = (21,. . . , x,} and X; fl Xj = 6, 
for all 1 5 i # j 5 I?. T h e  distributed Boolean circuit problem with circuit C is a distributed 
transformation problem with formula  C 3 c :  

n N 
CFc(X1,. . . , X x , Y i , .  . . ,YN> = A {Fj(Xi, .  - .  ,XN) = (Cyij) mod21 

j=1 i=l 

3A Boolean circuit is a labeled directed acyclic graph in which the leaves are labeled by distinct Boolean 
variables, and the internal nodes are-labeled from the set of Boolean operators. Each node u in the Boolean 
circuit is associated with a Boolean formula which is defined in a natural way. 
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Where 3i is the boolean formula defined by  the Boolean circuit C on  output variable z;, 
J5 = {%,I, ..., Yi,n). 

Lemma 5.1 The distributed transformation problem is reducible to the distributed Boolean 
circuit problem and the distributed sum problem. 

[PROOF] Given a distributed transformation problem with formula C3, first we construct 
a Boolean circuit CCF of output Boolean variables b l ,  . . . , b,, then we apply the secure and 
verifiable protocol for the distributed Boolean circuit problem on Ccr. Suppose bj is a 
bit in the secret output .z; of U;, we apply the secure and verifiable protocol for DSP; on 
(yl,j, ..., y ~ j )  to transform bj securely and correctly to &. The verifiability and the security 

0 of the above reduction can be easily verified. 

5.2 Two Primitives for the Distributed Boolean Circuit Problem 

We wil l  construct a distributed protocol which evaluates a Boolean circuit sequentially 
gate after gate in such a way that after evaluating one gate b, each party U; obtains a 
fraction of information y; about the value of b defined on the secret inputs S1,. . . , S N ,  and 
zEl yi mod 2 = vaZue(b). Moreover, no proper subset less than N / 2  parties can extract 
any information about va lue (b )  and S;'s more than those contained in their secret inputs. 
Note that A,$z are complete in zero-one Boolean Algebra in the sense that all boolean 
operators can be respented by those two operators. Therefore, for all Boolean circuits C 
of size n, there is an equivalent Boolean circuit C' built up by eZ and A only, whose size 
is polynomial in n, computes the same function as C does. This reduces the distributed 
BooIean circuit problem to the following set of problems. 
0 Distributed &-problem: a distributed transformation problem with formula: 

N N N 
CF((z1, y~), ..., ( ~ N , Y N ) , z ~ ,  . . . , ZN) = 1 iff c z ;  mod 2 = (c z; mod 2) $2 (c yi mod 2) 

~~ 

i=l i=l i=l 

0 Distributed A-problem: a distributed transformation problem with formula: 

c3( (21, y l ) ,  ..., (ZN, yN), 21,. . . , ZN) = 1 i f f  

We can prove the following lemma: 

N N N 

i=l i=l i=l 
zi mod 2 = (c 2; mod 2) A (c y; mod 2) 

Lemma 5.2 The  distributed Boolean circuit problem i s  reducible to the distributed $2- 

problem, distributed A-problem, and the distributed sum problem. 
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Motivated by finding reduction from the distributed A-problem and the distributed 
&-problem to the distributed sum problem, we introduce the following set of equivalent 
distributed transformation problems. 

Let 2[a] denote the set of polynomials in z whose coefficients are in Z. Let Z[zIN 
stand for the set of integral polynomials of degree N .  We define a function P d R T 7 y  : 
Z[Z] -+ {0,1} as: for aLI a[.] = CElqzi E ~ [ z ] ,  

N 
PdIRZly (a [x ] )  = ai mod 2 

i=l  

$2-simulation-Problem is  a distributed transformation problem with formula: 

C F ( F , H )  = 1 iff PA7UTY 

A-simulation-problem is a distributed transformation problem with formula:  

C F ( F , H )  = 1 iff P d R Z T y  

Where F = ((fi[~],s~[z]), -.., (f~[z], f ~ [ ~ l ) ) ,  and fi[zI,gi[~],hi[~I E Z [ a l N .  
We observe that P d R Z 7 Y  defines a homomorphism from Z[Z] to F2 = (0, I, $2, A). 

Therefore, the solution to the above two problems can be applied for N parties to perform 
secure A and $2 operations. This reduces the distributed e2-problern and the distributed 
A-problem to the @z-simulation problem and the A-simulation problem. 

Observer that, for all i : 1 5 i 5 N, letting hi[.] = f;[z] +g;fz], 

Hence, the $*-simulation problem can be solved solely by local computation. Consequently, 
we have: 

Lemma 5.3 The distributed Boolean circuit problem, hence the distributed transformation 
problem, is reducible t o  the A-simulation problem, and the distributed sum problem. 

5.3 Reducing the &Simulation Problem t o  the Distributed Sum 
Problem 

In this section, we complete the proof of the main theorem by showing that the A-simulation 
problem is reducible to the distributed sum problem. 

Let f[z] = zg1 fj[z], g[z] = Cz,  gj[z], and h[z]  = f[x]g[z]. Then h[a] is a po lynohd  
of degree no more than 2 N ,  and 

PdRZ'TY(h[z]) = PARITy(f[a]) A PAR17y(g[~]) 
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Lemma 5.4 Given a secure and verifiable protocol for the distributed sum problem, there 
i s  a secure and verifiable protocol t o  transform the tuple of secret inputs 

[PROOF] Protocol 1: 

1. for all i, locally, U; computes f i [ 2 j ]  and gi[2j] ,  1 5 j 5 2 N  + 1 

2. for i = 1 to N ,  apply a protocol V S P ~  on tuples of secret inputs ( f 1 [ 2 i ] , - - .  , f N [ 2 i ] )  
and ( f 1 [ 2 N  + 221, * * - , f ~ [ 2 N  f %I) ,  (g1[2;], - * * , gN[2i]) a d  (g1[2N + 2 i ] ,  - - , g ~ [ 2 N  + 
2 4 )  to transfer f [ 2 i ]  = cE1 f j [ 2 i ] ,  f [ 2 ~  + 2i] = c:, f j [ 2 ~  + 2i] ,  g[2i] = cZl gj[2i] ,  
g [2N + 2i] = Cg, g j [2N + 2i] securely and correctly to 24;. 

3. apply a protocol for the distributed sum problem on the tuple of secret inputs 
( f 1 [ 4 N + 2 ] , . . . , f ~ [ 4 N + 2 ] )  and (g1[4N+2],...,glv[4N+2]) to transfer f [ 4 N + 2 ]  = 
Cj”=, f j [ 4 N  + 21, and g [ 4 N  + 21 = Egl gj[4N +2] securely and correctly to all parties. 

4. Each party 24; computes h[2i], h [ 2 N  + 24 and h[4N + 21 locally. 0 

By interpolation law, we have: 

Bk[r] = n ( z  - 2 j )  rI (2a - 2b)h[2L] 
j # k  l<a<b<ZN+l,a#k,b#k 

Let Hk[x]  = z7z0 Hk, j x j ,  let cj = C:Z:’Hk,j. Then d j  = c j / A  E z. 
The following procedure forms a reduction for the A-simulation-problem to {VSP; I 

1 5 i 5 N }  and the distributed sum problem. 
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Reduction Protocol: 

1. apply Protocol 1. 

2. By interpolation law, each party 24; computes polynomial H;[z] ,  H N + ; [ ~ ]  and H ~ N + I [ ~ ]  
locally. Then for all j : 0 5 j 5 2 N ,  2.41 computes qj = H 1 , j  + H N + I , ~  + z 2 N + l j ,  and 
all other parties 24, computes c;,j = H;,, + H N + ~ >  locally. 

3. for i = 1 to N ,  apply a protocol for DOSPY on tuples of secret inputs ( q i ,  ..., cN, i )  

and (Cl,N+;, ..., C N , N + ~ )  to transfer c; = xi!!:' Ek,;, and C N + ~  = c:!!:' Hk,~+i, securely 
and correctly to 24,. 

4. apply a protocol for the distributed sum problem on the tuple of secret inputs 
( ~ 1 . 0 ,  ..., c1 ,o )  to transfer cg = c:::' H k , o ,  securely and correctly d parties. 

5 .  Local Transformation: each party u; computes 4 = z ,  d N + i  = 5 U i  A and do = 
Iocally. Then for all j : 1 5 j 5 N ,  Ul randomly generate a polynomial h1[z] E Z [ Z ] ~  
locally such that 'PdRZTy(hl) = (d, + dN+l + &) mod 2, and all other parties z-d, 
randomly generate a polynomial h;[s] E 2[zIN locally such that PdRXTY(hi) = 
(d; + d N + i )  mod 2. 

By interpolation law, we have: 

PdRZTy C h j [ ~ ]  = PARZTJ(h[r] )  = P A Z V ( f  I.]) /I PA72ZSry(g[al) 

The verifiability of the above reduction can be easily verified. We now show that the 

We first make an observation based on the classical information theory. 

(j: ) 
above reduction is secure under the assumption of honest majority. 

Lemma 5.5 (Composition Lemma) If a l ,  . . . , ak be k ( K  > 1) random numbers in Z, 
then for all X C { a l , .  . . , ah ) ,  X implies no  information about C!=l~ .  

It follows from the Composition Lemma (Lemma 5.5) ,  any proper subset of { fi, . . . , f ~ }  
or {gi,. . . , g N }  contains no information about PAaZ7y( f [ z ] )  and P A R Z 9 ' ( g [ z ] ) .  SO, 
after running the protocol, the only additional information obtained by the ith party is 
the values of f [ 2 i ] , f [ 2 N  + 24, f [ 4 N  + 21, g[2 i ] ,g [2N + 2 i ] ,g [4N + 21, hence h[2i] ,h[2N + 
2 i ] ,h [4N + 21. It follows that for any  subset S c (1, ..., N}, the information on the parity 
of f, g and h that can be obtained by S is all that is implied by the interpolated values 
held by the party in S .  Treating the coefficients of f (9, h)  as variables, each value f[2j] 
( g [ 2 j ] ,  h[2j] respectively) determines a linear equation in the coefficients of f (9, h respec- 
tively). SO the values held by the users in S determines a linear system I;. Consequently, 
the security of our scheme relies on the parity of the solutions in the solution space of L. 



350 

The following Lemma can be proved via linear algebraic analysis (the proof will appear 
in the full paper). 

Therefore, it follows from the above lemmas that any subset of s dishonest users can 
extract no more information about P d R Z I Y ( f ; ) [ z ] ,  PdRZlY(g ; ) [ z ] ,  P d R Z I Y ( h ; [ z ] ) ,  
P d R Z I Y ( f [ s ] ) ,  P d a Z l Y ( g [ z ] ) ,  and PdRZ7Y(h[z ] )  provided all applications of the 
protocols for the distributed sum problem and its variance are s-secure, and s 5 [$I. 
Lemma 5.7 T h e  A - s i m u l a t i o n  problem is reducible t o  the didributed s u m  problem.  

Remark 5.1 It is assumed in L e m m a  5.6 that  the domain of the distributed sum problem 
is  2, the set  of integers. T h i s  assumpt ion  is not  realistic in the  sense that  there  is n o  
bound on t h e  size of integers .  T h e  following are some results when the size of t h e  integers 
is bounded. 

Let SN be a security parameter agreed upon all users, let d N  = 2'N and DN = 
{ -dN ,.,,, d N } ,  and for all i : N - 1 5 i 5 0, d, = @(N2&+l) and D, = {-&, ..., &}. The 
following Lemma can be proved via linear algebraic analysis. 

Lemma 5.8 For a random polynomial  p [ z ]  = Czop;zi E 2[z] such  that  p; E D;, f o r  all 
X C {2,4,6. . . ,4N + 21, if 1 X /< N, t h e n  with probability at  least 1 - poIy(N)(;) 'N: 

Where p o Z y ( N )  m e a n  a polynomial  in N .  

Assuming the coefficients of the secret polynomials f and g are bounded as in the above 
lemma, it follows from the above lemma that, with very high probability, no subset of s 
dishonest users can extract any more information about PdRZIy(f[t]), P d R Z 7 y ( g [ z ] )  
and PdRZQJ(h[t]), where s 5 [$I. 
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Remark 5.2 Note that, if s ,  the number of dishonest users, is greater than \$I, they can 
compute f[z], g[z] b y  interpolation law, thus PAR5TY(h[z]) .  Hence, our scheme i s  not 
secure against the dishonest majority. 

Acknowledgement: We would like to thank Len Adleman and Gary Miller for helpful 
discussion. 
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