The Strict Avalanche Criterion:
Spectral Properties of Boolean Functions
and an Extended Definition

Réjane Forré
Inst. for Communication Technology *

Abstract

A necessary and sufficient condition on the Walsh-spectrum of a boolean
function is given, which implies that this function fulfills the Strict Avalanche
Criterion. This condition is shown to be fulfilled for a class of functions exhibit-
ing simple spectral symimetries. Finally, an extended definition of the Strict
Avalanche Criterion is proposed and the corresponding spectral characteriza-
tion is derived.

1 Introduction

The “Strict Avalanche Criterion” (SAC) was introduced by A.F. Webster and
S.E. Tavares. They write {1]: “If a function is to satisfy the strict avalanche cri-
terion, then each of its output bits should change with a probability of one half
whenever a single input bit z is complemented to Z.” The cryptographic signifi-
cance of the SAC is highlighted by considering the situation where a cryptographer
needs some “complex” mapping f of n bits onto one bit. Although the expression
“complex” has no precise mathematical definition here, an information-theoretical
approach can help assigning it an intuitively pleasant meaning. Maximizing the
entropy H(f([z1,22,...,2s])) yields zero-one balanced functions, but this alone
certainly does not ensure the “complexity” of a function. Maximizing the condi-
tional entropy H([f(z1,... %5, ..-,aa]) | f{z1,-- 5 Tiy..yZa])) forall 4, 1 < ¢ < m,
leads to SAC-fulfilling boolean functions, according to the definition in [1]. It is
proposed here to go even further, by keeping one or more input bits of f constant,
and making the obtained “subfunctions” complex as well. It is worthwhile pointing
out the fact that any function f’ of n —1 bits will be a relatively bad approximation
of f if f fulfills the SAC. Indeed, the output of the best possible f' will differ from

*Sternwartstr. 7, ETH-Zentrum, 8092 Ziirich, Switzerland

S. Goldwasser (Ed.): Advances in Cryptology - CRYPTO *88, LNCS 403, pp. 450-468, 1990.
© Springer-Verlag Berlin Heidelberg 1990

451

the output of f with a probability of . This lack of accuracy of lower-dimensional
approximations is a wishable property of cryptosystems: the existence of some (rela-
tively accurate) lower-dimensional approximation of an enciphering transformation
could reduce the amount of work for an exhaustive search according to the dimen-
sion of the domain of the approximation. Functions for which flipping one input
bit always flips the output of course are still more difficult to approximate (the
best lower-dimensional approximation is inaccurate in 50% of the cases), but their
conditional entropy H([f(z1,...,%,..,za)) | F([z1,-. . iy .., 24])) is zero.

In the first part of this paper, Boolean functions f(z) with n bits input and
one bit output are considered. The Walsh-transform has shown to be very useful
for the analysis of (statistical) properties of boolean functions. It is shown that a
boolean function f(z) fulfills the SAC if and only if, for all i € {1,2,...,n}, its
Walsh transform F(w), w = [wy,ws,. .. ,w,], fulfills

> (1% Fiw) =0,

weZy

where Z7 denotes the n-dimensional vector space over the finite field GF(2). This
set of conditions is shown to be fulfilled for a class of functions F(w) that exhibits
certain “visible symmetries” arising from equalities of the form F(w) = F(w @ ¢).

In the second part of the paper, the requirements on a boolean function are made
stronger, introducing the concept of “SAC of higher order”. The corresponding
spectral conditions are then established.

2 Walsh-Spectrum of SAC-fulfilling Functions
2.1 Spectral Characterization of Functions Fulfilling the SAC

First, a few basic definitions, lemmas and theorems are needed.

Deflnition 1 [2,3,5/ If f(z) is any real-valued function whose domain is the vector
space Z7, the Walsh transform of f(z) is defined as:

F(w)= 3 f(z) (1=, (1)

2€2]
where w € Z3 and z - w denotes the dot-product of z and w, defined as

T Ww=T1w DTws D ... D Tawn. (2)

The function f(z) can be recovered from F(w) by the inverse Walsh transform:

flz)=27" 3 Fw)-(-1)== (3)

wezp

452

The Walsh transform and its inverse (both defined for real-valued functions) may
be applied to boolean functions if their values are viewed as the real values 0 and 1.

Very often, it is easier to work with boolean functions that take values in the
range {1,-1}. The function f(z) is defined as

flz)=(-1)® or f(z)=1-2f(z). (4)

The relationship between the Walsh transforms of f(z) and f(z) is stated in the
following lemma (2,3}

Lemma 1 If f(z) = (=1)/®, then

F(w) = —2F(w) + 2"8(w), (5)
which is equivalent to
F(w) = 2"'6(w) — -;—F(_tg), (6)
where 4
s ={ g 17 ®

Let z and z; denote two n-bit vectors, such that z and z; differ only in bit ¢,

f(z) =z, z € {0,1} fulfills the SAC if and only if
3 f(2)® flz)=2""", foralliwithl<i<n. (8)

z€27

If we denote by ¢; the n-dimensional unit-vector with a one at the i-th place and
zeroes elsewhere, condition (8) may be alternatively written as

S fl)®flz®e)=2"", foralliwithl<i<n. (9)
z€Z]

We now wish to express the SAC for the case of an f-function (with range {1, —1}).
The following Lemma yields an alternative definition of the SAC.

Lemma 2 f(z) fulfills the SAC if and only if the function f(g) = (=1)¥2) fulfills
> flz) - flzee) =0, (10)

zeZ7
for all ¢; with Hamming-weight one.

This lemma is easily derived, considering that if a function f(z) fulfills the SAC,
exactly half the z € Z7 satisfy f(z) # flz ®¢,), forall 1 € 1,2,...,n. This means

that the function f(z) = (—1)/® satisfies

(z)-flz®¢) = —1 for half the z € Z3, and (11)
(z) f(lf. @®¢) = 1 for the other half. (12)

hy e

453

Summing up over all the ieZ," thus yields (10). The term on the left-hand side
of equation (10) can also be represented by the convolution of f{x) with itself:

Y f@)-feed = [P - (13)
z€Z}
From the well-known convolution theorem, which states that

Ms) = £ fy).» 9V Of)<=> H(w) = F(w) » G(w), (14)

yezy

we see that the left-hand side of (10) is also the inverse Walsh-transform of FA(yL)‘ .
F{w) = F*{w), and with (3) we get:

[4/1(€) = 27 £ F(w)-(-iy->-* (15)
weZ}

= 2~" £ F(w) (-i)*“, (16)
weZy

where we made use of the fact that ¢; is of the form [0,0,... ,0,Cj = 1,0,..., 0].
This, together with (5), proves the following theorem.
Theorem 1 A function f(‘x)_: 7y —> {1,-1} fulfills the SAC if and only if its
Walsh-transform F(xv) satisfies
S (=¥ FHw) =0 (17)
weZY
for alli 6 {1,2,... ,n}. Equivalently, the Walsh-transform F(w) of flx) = (1 -
fix)) has to fulfill
3 (-1 . F¥w) = 2"F([0,...,0]) - 2*"? (18)
weZp
for alii G {1,2,...n}.
Note that F([0,... ,0]) equals the number of ones in the truth table of /(x).

Example 1: N
Consider the function f{x) : Z\ —e {0,1}, the corresponding f{x) =
(_D/(s) and their respective Walsh-transforms F(xyv) and F (x) given by
the following table:

Ty /wy Ty wy 3/ ws /te);if(z) F(w) ’ F(w)
0 0 0o | o 4 0
0 0 I B B 0 0
0 1 o | I | 4 o
0 1 I -1 4
1 0 o | o 1 0 0
1 0 1 | 0; 1 0 0
1 1 o | L - 2 4
1 1 1| 1: -1 2 2|

454

It is easily checked that flipping the bit x, flips the output f{x_) in 50%
of the cases. That is true for x; too, but not for x,: flipping x, always
changes f{x). Therefore,

H(f([x1 x5 Ml [xwxrx}) = 0
and this function does not fulfill the SAC. Indeed, when we compute
Emez?!-")'"" « A2(A) ©' 5 =12 and 3, we get zero for i = 1 and i = 3
and -64 for i = 2, which does not satisfy the requirements of theorem 1.
Example 2:
Next, we examine another function of three bits, g(x).

T /wl L /w, T3/ w; E 9(3L) é(XJ G(m) | <(uL)
0 0 0 | o 1 4 0
0 0 1 0 1 2 4
0 1 0] 0 1 2 4
0 1 1 1] A 0 0
1 0 o | of 1] 2 4
1 0 1} 1 1 0 0
1 1 o iy 1| - 0 0
1 1 1 1 A 2 4

The reader can check that flipping any of the three input bits involves
an output change in 50% of the cases. Therefore, this function fulfills
the SAC and the requirements of theorem 1 can be checked to hold for
i =12 and 3.

It should be pointed out that if a function fulfills the SAC, it does not imply
that it is zero/one balanced, as can be seen from the following example.

Example 3:

Ty /wy X7 Iwy za /ws | h(x) | k(x) H(w) H{W)
0 0 0 0 1. 2 -4
0 0 1 0 1 0 0
0 1 0 of 1 0 0
0 1 1 1 1 2 4
1 0 0 1 -1 0 0
1 0 1 0 1 -2 4
1 1 0 0 1y -2 2
1 1 1 0 | 0 0

h(x) takes on six times the value zero and only twice the value one,
which doesn't prevent it from fulfilling the SAC.

455

2.2 Construction of SAC-Fulfilling Functions

A geometrical interpretation of theorem 1 can be introduced if we look at the
n—~tuples {wy,ws,...,w,] as the corners of an n—dimensional cube with edges of
length one. Let’s attach to each corner w = [wy,w,,...,w,] a weight m, equal
to F?(w). The center of gravity of this n—dimensional body has the coordinates
[w1,w3,...,w,] with

(19)

— ZEEZ? My - Wy - Ew sw=1 Fz(l_v.)
Ywezp Mu Cuezy FH(w)’

for 1 < i < n. If a function f(z) : Z} — {1,—1} fulfills the SAC, we know by
theorem 1 that

Z FYw) - Z Flw)=0 (20)
= Z_ Fw) = Z. F(w). (21)

And in that case we have

i = Zz_u_:w,‘:l Fz(w») Zw w.-—UF (ul)
' Ywezp Fz(w) Ywezp X ()

, (22)

which shows that the coordinate w; of the center of gravity of the considered cubic
body remains unchanged if all the weights on one “face” of the cube (face with w; =
0) are moved to the opposite “face” (face with w; = 1) and conversely. Therefore,
we can state that a function f(g) fulfills the SAC if and only if the n—cube with
weights equal to ¥ >(w) attached to its corners has a center of gravity which is
equidistant from any two opposite “faces” of the cube, and thus from all the corners
of the cube. The center of gravity of the body associated to the Wa.lsh-spectrum of
an SAC-fulfilling function therefore has the coordinates 1 1.

2’2’]

Example 4:

The 3-dimensional cube associated to the function g(z) of example 2 is
represented on the right-hand side of Fig. 1. The dark circles designate
weights of magnitude F?(w) = 16. The exchange of “faces” may be
performed in three ways:

Gw) = Fus(1,0,0),
(1-9.) = F(@[0,1,0]),
&) = F(@[0’0’1})7

all of them yielding the same body, namely the one represented on the
left-hand side of Fig. 1.

456

[007) (001}

{10] {110}

{000} [100] w {oo0] {100] Wy

Figure 1: The 3-dimensional cubic body associated to the function §(z) of example 2
and its associated body obtained by exchanging “faces”.

The idea that now naturally arises is to use this as a construction for new SAC-
fulfilling functions from known ones. The pitfall is that F(w) might be taken as
+1/F?(w) for each one of the 2" w’s. For the worst case where all 2" w’s are
associated to nonzero values of F?(w), this will yield 22" possible choices for the
mapping F(t_g), not all of them having valid boolean functions (i.e. 1/-1 valued)
as inverse Walsh-transforms. In fact, a function f(z) is a boolean (1/-1 valued)

function if and only if)
fiz) =1, forall z € Z]. (23)

By the convolution theorem, we see that this is equivalent to

Theorem 2 [2, p.167] F(w) is the Walsh-transform of a boolean function flz) :
Z7 — {1,-1} if and only if

> F(&)'F(&@§)=2n5(é)={2n for 2 =100 (24)

0 otherwtse.

Let 7 be an operator on ZJ which, when applied to z, permutes its indices (2, p.165]:
T =[21,Taye0 ey Tn] = TZ = [Tg, Tayy-o oy Ty |- (25)
m~! is the inverse operator such that

7 rz) = z. (26)

We write

y= [yI)yZ) e ,yn] = 7"~ly = {ywiayﬂv' e 7yw£,}' (27)
Example 5:
If the permutation m = [m, 7z, m3] = [2,3,1] is applied to z = [z, 2, 3],
one gets wz = [r;,z3,2;]. The inverse operator 77! = [}, 73, 73] in this
case equals [3,1,2], since #7!(mz) must equal z.

457

If a function f(z) fulfills the SAC, it is easy to see that this property is preserved
under any permutation 7 of the input bits. Thus, §(z) = f(rz) fulfills the SAC too.
Furthermore, §(z®¢) = h(z) has (~1)¢2.G(w) = H(w) as Walsh-transform (by the
translate theorem), and this implies H?(w) = G*(w) for all w € Z§. Consequently,

H(w) satisfies equation (17) and the following theorem holds.
Theorem 3 If f(z) : Z7} — {1, ~1} fulfills the SAC, then §(z) = §(rz Dc) fulfills

it too, for any permutation operator m and any constant ¢ € Z7.

For symmetry reasons, the following lemma is easily seen to be true.

Lemma 3 The function §(z) = —f(z) (resp. g(z) = f(z)) fulfills the SAC if and
only if f(g) (resp. f(z)) fulfills the SAC.

At this point, we already dispose of some tools to construct SAC-fulfilling
boolean functions, and the question arises whether it is possible to construct all
SAC-fulfilling functions with those tools. Computer experiments were carried out,
in order to find such functions

i) by exhaustive testing of all the 22" existing boolean functions of n bits (n = 3
g
and n = 4),

(ii) by making use of Theorem 3 and Lemma 3 (but without trying out all possible

assignations G(w) = 4/ F2(w)).
This established the fact that the above construction does not generate all the
SAC-fulfilling functions, but only subclasses of them. We call the attention of the
reader to the redundancy of the described synthesis rules: nothing ensures us that
a newly obtained function will be different from the starting one or from a formerly
constructed one.

Example 6:)
Let g(z) = f(z & [1,0,1]), where f(z) is defined through the following

table.
=z, z3 | f(z) | §(z)
0 0 O 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 -1 -1
1 0 0 .1 1
1 0 1 1 1
1 1 0 -1 -1
i1 1 1 1

We notice that §(z) = f(z) for all z € Z3. The reason is that f(z)
i§ partially symmetric in z; and z3 [4, p.123], that is f([z,,22,23]) =
f([l!g,il!z,l‘l}) for all [1!1,132,333] € Zg

458

2.3 Spectral Symmetries of SAC-Fulfilling Functions

We now introduce the definition of the 50%-dependence of boolean functions with
respect to one of their input bits. The concept is not new: it was implicitely used

in the definition of the SAC. ,
Definition 2 A function f : Z} — {1,—1} (resp. f : Z} — {0,1}) is said to
be 50%-dependent of its i—th input bit z; if and only if any two n—tuples z

and z; that differ only in bit i are mapped onto two different values with probability
1/2 and onto the same value with the same probability of 1/2. Or formally

> fla) flzde) =0, (28)
z€7}
for {1, —1}—valued functions, and
> f(2)8 flzoc)=2"" (29)
z€2}

for {0,1}—valued functions.

We thus see that a boolean function fulfills the SAC if and only if it is 50%-dependent
of each of its input bits.

The following theorem gives a sufficient condition for a function to be 50%-
dependent of one or more of its input bits.

Theorem 4 If for some nonzero ¢ € Z} and for allw € Z7

F(w) = Fw®c) (30)
l{olda, and if ¢ has Hamming-weight m (c;, =c;, =...=¢;, =1, 1 <m < n), then
f(z) is 50%-dependent of the input bits z,,,z,,,..., %,

Proof:
According to the value of the subvector w' = [w;,wi,,...,w;,.], the

vector space Z7 can be divided into 2™ disjoint subsets S,/. To each
of these subsets S, one can uniquely associate the subset S,, where
v' = [Wy,, Wy, ..., W5, and because of (30) one can write

Y FPw)=) Flw) (31)

we Swl we S!l

for each choice of w' € ZJ*. Consequently, we have the following set of
2™-1 equations:

Y P = Y P

wESjg.0,...,0] wES(1 1.1
Y O Fw) = Y ()
wES,... 0.1 wESy . 1.0)

™
hqt\:

E
I

Z Fz(w).

WES[o,1,...,1) weS g,..,0]

459

Summing up the left-hand side terms and the right-hand side terms
respectively, we get

Y Flu)= 3 F’i_v (32)

wwyy =0 w: wq_l

or equivalently
3o (=1)™ - F2(w) =0, (33)

weZy
which means that f(z) is 50%-dependent of z; . For symmetry reasons,
we get the same result for z;,,...,2;

m

|&i

flz) et + + ; + + + t + t + + t
- CO00C 0001 SOI8 0011 0700 [0ICT 2112 {0111 {1000 (10CY {1090 1011 { 1100{1107 1110 1113

-1 4

. —
g ‘ | S L P e —
UDUB DUCI o016 ©0C11 0100f @161 0118 gsirt|yoen)TeeT 101cf1g1y 1100 1101 1110 11N

v

% ! —

DDOO 0001 001ﬂ 0011 0100 0101 0\10 0111 1000 1001 1010 1011 1100 1101 1130 311 ¢

I
‘1
B
+
Sl
T

Figure 2: An SAC-fulfilling function f(z) of 4 bits whose squared Walsh-spectrum
satisfies (34)

For the special case
Fiw) = FPwell,...1) = F (@), (34)

theorem 4 asserts that f() is 50%-dependent of all its input bits, or, in other words,
that f(z) fulfills the SAC. This is interesting from a practical point of view, because
the equality (34) is easily noticeable when looking at the squared Walsh-spectrum
F*(w).

460

Example 7:

The function f(z) : Z4 — {1, 1} takes on the following values (from
the top to the bottom of the truth table): 1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-
1,-1,-1. Fig. 2 shows this function, its Walsh-spectrum and its squared
Walsh-spectrum. The discrete points where the functions are defined are
connected by lines to make the diagrams more easily readable. We ob-
serve a symmetrical form of F2(w) according to (34) and f(z) therefore

fulfills the SAC.

But (34) is not a necessary condition for a function to fulfill the SAC. If, for example,
f(z) is such that its squared Walsh-transform satisfies

FYw) = Fuwell1,1,1,0,...,0]) (35)

and FY(w) = F(wal1,1,0,1,...,1]) (36)

we know, by theorem 4 that f(z) fulfills the SAC (by (35), f(z) is 50%-dependent
of the bits z,,z, and z3, by (36), f(z) is 50%-dependent of z;,z,,z4,...,%n). The
following example shows that a function f(z) might be 50%-dependent of its input
bit ; even if there is no ¢ € Z7 such that ¢; = 1 and (30) is satisfied for all w € Z7.
In other words, the condition of theorem 4 is sufficient but not necessary.

Example 8:
F*(w) of Fig. 3 satisfies

Fw) = F*wa[1,0,1,1)) (37)

for all w € Z; but no other relation of the form (30). Equation (37)
implies that f(z) is 50%-dependent of Ty, T3 and z4, but says nothing
about z;. Nonetheless, one can check that f(z) is 50%-dependent of z;
as well.

3 Strict Avalanche Criterion of Higher Order

3.1 Definitions

As mentioned in the introduction, the SAC is cryptographically relevant because it
maximizes the conditional entropy H([f(z1,..., %5, ..., z.]) | fl{T1,eery Ziye ety Tal))
and it assures that the best possible lower-dimensional space approximation of a
mapping yields an erroneous result in 25% of the cases. We consider now a map-
ping of n bits onto one bit that fulfills the SAC. If one or more of its input bits
are kept constant, the question arises whether it is possible to find some accurate
approximation of this reduced mapping (reduced in the sense that it is defined only
on a subspace of Z7'). If this is possible, the exhaustive search over the considered
subspace can be reduced (compared with the exhaustive search over the full space

461

flz) P—— SR WS SIS RS- T -
0G0 SGOY 0010 5071 GI1GO{ 0163 L1116 0F1T 1QGO; 1061 1619 1611 1166 1101 1139111 T
-1
A
:t L e T et e o e e ol
iﬂnuo C'UUT DQ'Q 0011 0100 D101 01104 QY1) vQoQm| 001 1010 1071 1100 110 110 1 l
&
)
F - ‘s i L
! . L N R S
‘UQUU D01 g0 g 0011 BiIcC 0101 0110 2111 10688 105Y 1310 1811 1100 1181 1110 1311 u

Figure 3: An SAC-fulfilling function that does not satisfy any equation of the form
F*(w) = FY(w® [cy,¢c; = 1,3, ¢4)) but nevertheless is 50%-dependent of the second
input bit.

without approximation). In a chosen-plaintext attack, the opponent has the oppor-
tunity to perform such tests where one or more input bits are kept constant. For
this reason, we now extend the definition of the SAC in order to cover situations
like the one just described.

Let f(z) be a function which maps ZJ onto {0,1} and which fulfills the SAC. It

is well-known that f(z) can be written as
f(&) =x;- fi,l(zly cre g Ti1y Tigrye-- ,-‘En) DI fi,o(rn---,Ii—uwi+1,~~- ,'-Cn) (38)

for every ¢ € {1,2,...,n}. The function f;; (resp. fio) is obtained from f(z) by
keeping the i-th bit of z constant and equal to 1 (resp. to 0). We now consider the
50%-dependence of the output of f;; and f;o with respect to each of their n — 1
input bits.

Definition 3 A function f(z): Z} — {0,1} is said to fulfill the Strict Avalanche
Criterion of order 1 if and only if

o f(z) fulfills the SAC,

o and every function obtained from f(z) by keeping the i-th input bit constant
and equal to ¢ fulfills the SAC as well (for every i € {1,2,...,n}, and for
c=0andc=1).

462

The definition can be extended to order m, where 1 < m < n — 2, if m input bits
of f(z) are kept constant.

Definition 4 A function f(z): Z} — {0,1} is said to fulfill the Strict Avalanche
Criterion of order m if and only if

o f(z) fulfills the SAC of order m — 1,

e and any function obtained from f(z) by keeping m of its input bits constant
fulfills the SAC as well (this must be true for any choice of the positions and
of the values of the m constant bits).

In what follows, the “classical” SAC will sometimes be called “SAC of order 0”.

Example 9:
f(z) + Z3 — {0,1} is defined through the following truth table.

2z, |0 000 0O0OOGO0OT11T1 11111 1!
22 /0 0 0 01 1110000T1T1T11
2 |00 1 1001100110011
ze 10 1. 01 010101010101
fz)}0 00 1 01 1110000001

Keeping the bit z; equal to 0, we get a function f;4 : Z§ — {0,1}
(left-hand half of truth table of f(z)) which can be checked to fulfill the
SAC. To check whether f(z) fulfills the SAC of order one, we must go
further and control all eight functions of three bits obtained by keeping
each input bit of f(z) fix (equal to zero resp. to one); they are listed in
the following table. All of them fulfill the SAC.

1 Y2 Ys E fio fin fro far fro Far fao fan
|
© 0 0{0 1 0 0 0 0 0 0
o 0 1/0 0 0 1 0 1 0 1
6o 1 o{0o o o 1 0 1 0 1
o 1 1|1 o 1 1 1 1 1 1
1 0 0l0o 0 1 o0 1 0 1 0
1 0 11 0 0 0 0 0 0 O
1 1 01 0 0 0 0 0 0 O
11 1|1 1 0 1 0 1 1 1

Therefore, f(z) fulfills the SAC of order one. Keeping each pair (z;, z;)
constant and equal to (0,0), (0,1), (1,0) and (1,1) respectively, one gets

463

4
2
SAC. f(z) thus even satisfies the SAC of order 2. It makes of course
no sense to consider the SAC of order 3 for this function, since keeping
three input bits constant yields functions of one variable for which the

SAC is not defined.

-4 = 6-4 = 24 functions of 2 bits and each of them fulfills the

3.2 Spectral Characterization for SAC of Higher Order

From example 9, it is clear that a boolean function of n bits can fulfill the SAC of
order at most n — 2.

We are interested in a spectral characterization of boolean functions that fulfill
some SAC of higher order. We again consider f(z) = (=1)f® rather than f(z).
The following equation is quite similar to (38).

]E(E,) = xi'fi,l([xla"-ami—laxi+1,"'vmn])+x_i'fi.0({ml7‘",zi—17$i+17"-yzn]) (39)

and can be written for each i € {1,2,. n} The “subfunctions” :1 and f;o map
Z: onto {1,—1}, and all 2n subfunctlons f, must fulfill the SAC of order zero if
f(z) is to fulfill the SAC of order 1. We introduce
fi,I(é.U.) = T ﬁ,x([xl, ey Tis1y Tigly- -5 2a]) and (40)
fi,[[(l’) = T fi,O([xly vy L1y Tiglye o)In]) (41)

and we compute their Walsh-transforms.

E,I(l_u) = Z Ly fi,l([xla"'azi—l)xi+17 mn]) EE (42)
z€27
= T urllonesmias w2 - (S1)PO s e i)
zrzi=1

With the substitutions

Ql [mh-"vxi—lazi+17"'7$n]7 E-IEZ;-l and (44)
w' o= (Wi, Wil Wik, wye), w' € 20T (45)
we obtain
Fiflw) = % fule) (=10 (-1 (46)
x EZ" 1
= (-D" - Fa(w), (47)

where F);(w') designates the Walsh-transform of fi,l(g’). Similarly, we get

zlll_ﬂ Z f;o@.)

zrz;=0

Fio(w)- (48)

464

Because of the linearity of the Walsh-transform and the fact that “+” in expres-
sion (39) can be considered as integer addition {because always one of both terms
on the right-hand side of (39) equals zero) we get:

Flw) = (=1)* - B (w') + B o(w'), foralli € {1,2,...,n} (49)

or equivalently

- o (w') + F (w) forw;=0

Fw) = | Fal@)+ Fo ’ 50
() { —Fia(w') + Fio(w') forw;=1. (50)

Adding, respectively subtracting both equations gives

. 1 . .

Folw) = 3lF(w)+ Fleg)] (51)
. 1 o oo .

Fule) = 3 (-1 [F(w) - Fuse)] (52)

where ¢; = (0,0,...,0,¢; = 1,0,...,0]. By theorem 1, f(z) will fulfill the SAC of
order 1 if and only if

Z (—1)’”3-Ffo(_w') = 0 and (53)
w'ezp}t
> (1) Fh(w) = 0 (54)
Q'GEZ;‘"1

for all 4,5 € {1,2,...,n} with ¢ # j. Replacing F in (53) by its equivalent form
from (51) gives

2 @+ Plusc) (-1 =0, j#i (55)
i)3 [F’(w)+ﬁ2(wgﬂ-(~1)wé+§ . Flw)F(wse) (-1)" = 0. (56)

&
g
I
Q
&
g
i
[~}

The first sum in (56) can be written as Twezp F*(w)-(=1)* and therefore equals

zero since f(g) fulfills the SAC of order 0 (necessary condition for fulfilling the SAC
of order one). Thus

2 Flu) Flwee) (1) =0, ('#1) (57)
which implies

“; Flw) Fludg) (-1)" =0, (7 #3). (58)

wezZy

Inserting (52) in (54) also leads to (58). Theorem 5 follows.

465

Theorem 5 A function f(z) : Z; — {1,—1} fulfills the SAC of order 1 if and
only if it fulfills the SAC of order zero and

S Fw)F F(wde) (1) =0 (59)
weZF

for alli,j € {1,2,...,n} withi # ;.

To verify whether a function of n bits fulfills the SAC of order 1 or not, at most
SAC order 0 SAC order1

£y 4+ n-(n—1) checks are therefore required. The spectral characteri-

zations of the SAC of order 2 and of higher orders can be derived in a similar way
and are given without proof in the following two theorems.

Theorem 6 A function f(g) 0 Z3 — {1, -1} fulfills the SAC of order 2 if and
only if it fulfills the SAC of orders 0 and 1, and

Z F w@c”) (=) =0 (60)

wely

for all distinct 1,5,k € {1,2,...,}, and with ¢; ; denoting the n—tuple with a one at
the t—th and j—th place and zeroes elsewhere.

Verifying whether the SAC of order 2 is fulfilled or not thus requires at most rn +

n(n—1) + (’2‘) (n — 2) checks.

Theorem 7 4 function f(g) : 27 — {1, -1} fulfills the SAC of order m, 0 <
m < n -2, if and only if
> Fw)Fwec) (-1)* =0 (61)
weZy
for all ¢, € Z} with Hamming-weights s = 0,1,2,...,m and for allk € {1,2,... ,n}
such that the k—th bit of ¢, is zero.

Verifying whether the SAC of order m is fulfilled or not requires at most n + n{n —

1)+ (g)(n—2)+(g)(n~3)+...+ (T’;)m—m) checks.

Example 10:
If f(z) is a boolean function of five bits, the following sums have to be

checked:
SAC order 0 {Tyezp F2(w) - (-1)®, je{1,2,...,n},

(00001}) - (1), j € {1,2,3,4},

Z “(w B
Zw nF_F_eaoomo v, je{1,2,3,5)
SAC order 1 wezp Fw)Fu @ | D=1, jef }

zwez; Fw)F(we [wooon (-1)%, j€{2,3,4,5},

466

n — 2 3 4 5 6
no SAC 8 192 61408 7 ?
SACorder0 || 8 48 3808 7 7
SACorderl || - 16 288 7 ?
SAC order 2 |} - - 32 7 7
SAC order 3 | - - - 64 ?
SAC order 4 || - - - - 128

Table 1: Number of functions that fulfill the SAC of some given order

(w & [00011])- (1), j € {1,2,3},

ZQEZ;F(LQ
w)F(w & [00101]) - (-1)%, j € {1,2,4},

F
dez; F(F

)
SAC order 2)

5 ez Flw) P(w & [11000]) - (1), j € {3,4,5},

ZQEZ;‘ f?(w) (
(

(oo111})- (~1), j€{1,2},
EEEZ; F(w)F (

wd
@ [01011]) - (=1)*, j € {1,3},
SAC order 3 wsl0 D A

T e zs Fw)Flw & [11100)) - (-1)%, j € {4,5}.

Exhaustive computer search through functions of 2, 3 and 4 bits allowed to count
how many boolean functions fulfill the SAC of a given order. The results are listed
in table 1. One can check that the columns for » = 2,3 and 4 sum up to 2%". Notice
that no function is counted twice, although in fact each function that fulfills the SAC
of some order m by definition also fulfills the SAC of orders m —1,m — 2,...,1,0.

3.3 Construction of Functions Fulfilling the SAC of Maxi-
mum Order

The method used to count the SAC-fulfilling functions of maximum order n — 2 for
n =5 and n = 6 is a constructive one. The definition of the SAC of order m implies
the following lemma.

Lemma 4 A boolean function f(z) of n bits fulfills the SAC of order m if and only
if
o f(z) fulfills the SAC of order 0, and

o any function obtained from f(z) by keeping one input bit constant (equal to 0
or to 1) fulfills the SAC of order m — 1.

467

This gives rise to the idea of using functions of n — 1 bits that fulfill the SAC of
order n — 3 as basic elements for the synthesis of functions of n bits that fulfill the

SAC of order n — 2.

Example 11:
The eight functions of two bits that fulfill the SAC of order zero are
listed below.

= om | A A AHE) A A A fE) fe)

- O
— o - D
_-—0 O
O H OO

0
1
1
1

= N
[B

1
0
1
1

D O ke D
[e R e R

| |

We can define f(z) : 23 — {0,1} as
fz) = f([z1, 22, 28]) = 21 - fil[z2,23]) + F1 - fi([z2, Ta]) (62)

with ¢,7 € {1,2,...,8}, i # j and we get 2 = 28 functions f(z);

sixteen of them can be checked to fulfill the SAC of order 1. We can
be sure that no other function of three bits satisfies the SAC of order 1,
since any such function necessarily is decomposable according to (62)
(by Lemma 4).

The procedure used in example 11 can be applied to the sixteen functions of three
bits that fulfill the SAC of order 1, and it yields the 32 functions of four bits that
fulfill the SAC of order 2, and so on,

4 Conclusion

The Strict Avalanche Criterion of order m has been introduced which corresponds
to a generalized definition of the known SAC. It has been shown that the SAC of
any order can be easily characterized in the Walsh-domain. This representation
was used for the construction of further SAC-fulfilling boolean functions. The ap-
plication of SAC-fulfilling functions for cryptosystem-design has still to be studied.
An application would be, for instance, to use such functions for the synthesis of
S-boxes in substitution/permutation (SP) block-ciphers. Since an S-box has many
inputs and n outputs, n SAC-fulfilling functions should be chosen and combined
in some adequate manner. For example, statistical dependencies between output
bits should be avoided. Statistical independencies between input m—tuples and
the output of boolean functions is known as m—th order correlation-immunity. It
might be interesting to examine whether there are restrictions in the compatibil-
ity of correlation-immunity and SAC of order m. Any boolean function that is

468

m—th order correlation-immune [6] has vanishing values of F(w) for all w's with
Hamming-weigths between one and m [5]. Exhaustive search for functions of three
and four bits showed that eight functions of three bits as well as ninety-six functions
of four bits are first-order correlation-immune and fulfill the SAC of order 1 at the
same time.

Acknowledgements

The author is grateful to Thomas Siegenthaler for many constructive discussions
and for his suggestions to improve this paper. She also wishes to thank Othmar
Staffelbach for his helpful comments.

References

[1] A.F. Webster and S.E. Tavares, “On the Design of S-Bozes”, Advances in Cryp-
tology: Crypto’85 proceedings, Springer, 1986.

[2] R.C. Titsworth, “Correlation Properties of Cyclic Sequences”, Thesis, California
Institute of Technology, Pasadena, California, 1962.

(3] Th. Siegenthaler, “Methoden fir den Entwurf von Stream Cipher-Systemen”,
Diss. ETH No. 8185, Dec. 1986.

[4] S.C. Lee, “Modern Switching Theory and Digital Design”, Prentice-Hall, 1978.

[5] G.Z. Xiao, J.L. Massey, “A Spectral Characterization of Correlation-Immune
Combining Functions”, to be published in IEEE Tr. on Information Theory.

(6] Th. Siegenthaler, “Correlation-immunity of Nonlinear Combining Functions
for Cryptographic Applications”, IEEE Tr. on Information Theory, vol. IT-30,
pp- 776-780, Oct. 1984,

	Abstract
	Introduction
	Wals h- Spect rum of SAC- fulfilling Functions
	Spectral Characterization of Functions FuIAlIing the SAC
	Construction of SAC-Fulfilling Functions
	Spectral Symmetries of SAC-Fulfilling Functions

	Strict Avalanche Criterion of Higher Order
	Definitions
	Spectral Characterization for SAC of Higher Order
	Construction of Functions Fulfilling the SAC of Maxi- mum Order

	Conclusion
	Acknowledgements
	References

