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Abstract 

Informally, a (t, w)-threshold scheme is a way of distributing partial information 
(shadows) to  w participants, so that any t of them can easily calculate a Key (or 
secret), but no subset of fewer than t participants can  determine the key. In this 
paper, we present an unconditionally secure threshold scheme in which any 
cheating participant can be detected and identified with high probability by any 
honest participant, even if the cheater is in coalition with other participants. We 
also give a construction that will detect with high probability a dealer who 
distributes inconsistent shadows (shares) to the honest participants. Our scheme 

is not perfect; a set of t - 1 participants can rule out at most 1 + (w,t:’) 
possible keys, given the information they have. In our scheme, the key will be an 
element of GF(q) for some prime power q. Hence, q can be chosen large enough so 
that the amount of information obtained by any t - 1 participants is negligible. 

1. Introduction 

Informally, a (t, w)-threshold scheme is a way of distributing partial information 
(shadows) t o  w participants, so that any t of them can easily calculate a key (or  
secret), but no subset of fewer than t participants can determine the key. 
Threshold schemes are also known as secret sharing schemes. A perfect 
threshold scheme is one in which no subset of fewer than t participants can 
determine any partial information regarding the key. 

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 ’88, LNCS 403, pp. 564-577, 1990. 
0 Springer-Verlag Berlin Heidelberg 1990 
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Threshold schemes were first described independently by Blakley [2] and Shamir 
171 in 1979. Since then, many constructions have been given for threshold 
schemes. More recently, various researchers have considered the problem of 
guarding against the presence of cheaters in threshold schemes. It is conceivable 
that any subset of the participants may attempt to cheat, that is, to  deceive any of 
the other participants by lying about the shadows they possess. There is also the 
possibility that the person distributing the shadows (the deuler) may attempt to  
cheat. The dealer might distribute an inconsistent set of shadows, so that the key 
cannot  be determined correctly, or  so that different subsets oft  participants would 
calculate M e r e n t  keys from the shadows they possess. If this is done without the 
knowledge or co-operation of any of the participants, we refer t.o this form of 
cheating as disruption. However, if this cheating is done in co-operation with 
one or more of the participants, we call it collusion. 

A threshold scheme is said to be unconditionally secure (against cheating) if the 
probability of cheating successfully is independent of the computational resources 
available to the cheaters. Under the assumption that the dealer is honest, several 
constructions have been given for threshold schemes which are unconditionally 
secure against cheating 13, 6, 8, 91. We now briefly summarize the properties of 
these threshold schemes. 

As far as the authors are aware, the first researchers to address the problem of 
cheaters in threshold schemes were McEliece and Sarwate in [6]. They use an 
error-correcting code to construct a threshold scheme in which any group of t  + 2e 
participants which includes at most e cheaters can correctly calculate the key. 

Tompa and Woll [9] proceed as follows. The dealer specifies a subset & of the set 
of possible keys K. A key will be accepted as authentic only if it is an element of 
&. If a set o f t  participants calculate the key to  be an element of K \ &, then 
they realize that one of them is cheating. The probability of successful cheating is 
at  most 1 - I & I / I KI , even if t - 1 participants conspire to to  cheat another 
participant. However, even though participants can detect when cheating has 
occurred, they cannot determine who is cheating. 

The construction of Simmons [8] is more general, in that it can be applied to most 
existing threshold schemes. This method detects cheating only if at least t + 1 
participants exchange their shadows. Define a set S of at least t shadows to  be 
consistent if all t-subsets of S determine the same key. Then, a key is accepted as 
authentic only if there is a consistent subset of at least t + 1 shadows which 
determine it. If t + e participants exchange shadows and there are at most e - 1 
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cheaters among them, then they possess a consistent subset of at least t + 1 
shadows. Unfortunately, the only known method to determine the existence of a 
consistent set of t  + 1 shadows is an exhaustive search. 

Finally, Chaum [31 has suggested the following approach. For each bit b to  be 
communicated to the ith participant, the dealer chooses 2w - 2 large random 
numbers rjo and rg (1 I j I w, j f i). For each j, rjo and rp are given to participant 
j. The dealer gives to the ith participant the bit b and all rjt, (1 I j I w, j f i). 
Then, rJ% is used to authenticate the bit b (as 0 or  1, respectively) to participant j. 
This procedure is used for every bit communicated to each participant. 

In the schemes discussed above, it is assumed that the dealer is honest. Also, the 
Tompa and Woll scheme and the Simmons construction require that the 
participants be able to simultaneously release their shadows, in order to ensure 
that no participant is able to obtain partial information about the shadows of the 
other participants before releasing his own shadow. Simultaneous release of 
shadows is not required in the Chaum scheme. 

Threshold schemes which provide protection against dealer disruption have been 
presented by Chor, Goldwasser, Micali and Awerbuch in [5] and by Benaloh in 111. 
These schemes provide computational security only, since they rely on 
computational assumptions regarding certain encryption schemes. Chaum, 
Crepeau and Damgard [4] use threshold schemes as a building block in  
unconditionally secure multiparty protocols. They tolerate both dealer disruption 
and collusion, but require that less than one third of the participants cheat. 
Under these assumptions, they describe a scheme that is unconditionally secure 
and which allows the key to  be determined correctly by the honest participants. 

The threshold scheme we present provides unconditional security and gives the 
honest participants the ability to identify cheaters, assuming the dealer is honest. 
Also, we do not require that the participants simultaneously release their 
shadows. The properties of our  construction can be summarized as follows. 

1) The key is an element of GF(q), and each shadow is a t-dimensional 
vector over GF(q) (q will be some large prime power). 

2) Any participant who attempts to  cheat will be identified by any honest 
participant with probability 1 - 1 / (q - 1). 
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3) Even if there is only one honest participant and the remaining w - 1 
participants form a coalition in order to  deceive him, their probability 
of cheating successfully is only (w - t + 1) / (q - 1). 

4) The scheme is nearly perfect. A group of t - 1 participants can 

eliminate at most 1 + ( i-tl I) possible keys, and can obtain no other 

partial information about the key. If q is large, this will cause no 
dimculty in practice. 

5 )  The scheme can also protect against dealer disruption, by using a "cut- 
and-choose'' technique similar to  that of [4]. 

2. The construction 

Our construction is a modification of Blakley's threshold scheme [2], which we now 
review briefly. Suppose the participants are denoted Ai, 1 I i I w, and the dealer 
is denoted by D. Let V be a t-dimensional vector space over GF(q), where q is 
some large prime power. First, D fixes a line Cin V. This line is made known to 
all the participants. There are q possible keys, namely the q points on 1. If D 
wants to distribute shadows corresponding to a key p, he first constructs a random 
(t - 1)-dimensional subspace H that meets Cin a point. Then, he constructs the 
hyperplane H, = H + p. mote that H, n C= p.1 Finally, he picks w random points 
on H,, denoted si (1 I i I w), such that the points in the set {p} u {si: 1 < i w) are 
in general position (that is, no j of them lie on a flat of dimension j - 2, if j < t). 
The point s; is the shadow that D gives to Ai. 

Any t participants can uniquely determine the hyperplane H,, and then obtain p 
by calculating H, n C= p. However, a subset oft' (c t) participants know only that 
H, contains the flat F of dimension t' - 1 generated by the shadows they possess. 
For any p' on 4 there is a hyperplane H, containing F and p'. Hence, they have no 
information as to  the point p. Thus, the scheme is indeed a (t, w)-threshold 
scheme. 
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(2, 3)threshold scheme 

In order to  guard against cheating, we modify the threshold scheme. D will 
distribute extra information to  the participants, along with the shadows. For ease 
of exposition, we first discuss the case t = 2. In this case, H is a 1-dimensional 
subspace and the hyperplane H, is a line. D constructs w random 1-dimensional 
subspaces, denoted Hi (1 I i I w), each of which is distinct from H. We do not 
require that the subspaces Hi (1 2 i I w> be distinct. D gives to  each Aj the w - 1 
parallel lines Hi; = Hj + si, 1 I i 5 w, i # j. These lines Hj; are called supershadows. 
Note that Hji is given only to Aj. 
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We must first show that knowledge of the supershadows does not enable any one 
participant to  determine the key. Let's consider A,. He knows that s2 E Hl2. 
This does give him some partial information, namely that the key p f Hl2 n L 
For, if p = HI2 n I; then p = s2, which is not allowed. Similarly, Al knows that p f 
H1; n 5 for any i, 2 I i I w. As well, p # Hll n l, where Hll denotes the line 
through s1 parallel to  the Hli's. For, this would require that H, = H11, but 
s2 E H11. Thus, A1 has ruled out w possibilities for p. However, the key, p, could 
be any point po on [other than these w points, since the line posl will intersect 
each HI; in a point. Each of these q - w possibilities for p is equally likely to  
occur. 

Hence, each participant can rule out w possibilities for the key, and knows that 
the key is equally likely to be one of the q - w remaining possibilities. Thus, the 
scheme is no longer perfect. However, if q is large relative to  w, this will cause no 
difficulty in practice. (A variation of this scheme, described in Section 4, allows 
only one possible value to be ruled out for the key in the case t = 2.) 

Next, we consider the possibility that certain participants will cheat, by lying as  t o  
what shadows they possess. In the worst case, w - 1 participants, say Ai 
(2 I i I w) will form a coalition in order to try to  convince A1 that the key is some 
value p' f p. We will assume that w 2 3, so that the coalition can determine the 
line H, and the key p before attempting to deceive A l .  Note that they can also 
calculate sl , since s 1  = H, n Hal, for example. 

Suppose A2 tells Al that his shadow is some point s2' rather than s2. A2 will not 
choose 52' t o  be any point on I; o r  any point on the line through s1 parallel to  ( 
since A1 would then realize that A2 is lying. Also, A2 will not choose s2' t o  be a 
point on H,, since this would not deceive A1 as to the value of p. Hence, he will 
choose s2' to be one of the remaining q2 - 3q + 2 points. For any such choice of s2', 
there is a unique line H l i  joining s2' and s2.  Al will be deceived if and only if 
H12' = H12. Since H12 # H,, there are q - 1 possibilities for H12, all equally likely. 
Each of these q - 1 lines through s2 contains q - 2 of the q2 - 3q + 2 points 
mentioned above. Thus, the chance that A2 deceives Al is 1 / (q - 1). 
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If all the other Ai (2 I i I w) independently try to deceive A1 in a similar fashion, 
the probability that at least one of them succeeds is 

w - 1  w - 1  +(=)) Sq-l. 

Their best strategy is to conspire; if they ensure that no two of the lines sj'si are 
parallel, then A1 will be deceived by one of them with probability equal t o  
(w - 1) / (q - 1). This will be a negligible quantity if q is large compared to  w. 

If w = 2, then the analysis is slightly different. Suppose A2 attempts to  deceive 
A l .  If A2 can obtain the value of s1, then the arguments proceed as before, and A2 
can deceive A1 with probability 1 / (q - 1). (This could happen if Al reveals s1 to  
A2 before A2 reveals s2 to  A l ,  for example.) If A2 cannot obtain the value of s1, 
then his probability of deceiving Al is decreased to 1 / q, since he might choose s2' 
t o  be a point on H,. 

Let's now consider the general case t 2 3. Recall that H is a (t - 1)-dimensional 
subspace and H, is a hyperplane. D constructs w random (t - 1)-dimensional 
subspaces, denoted Hi (1 I i I w). We require that the intersection of H with j - 1 
of these Hi's is a subspace of dimension t - j ,  if j I t. (In the case t = 2, this 
condition reduces to  the previous requirement that the Hi's (1 5 i 2 w) be distinct 
from H.) The w - 1 supershadows D gives to each Aj are the parallel hyperplanes 
Hji = H j  + si, 1 si I w, i # j .  
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One way to select the His is as follows. First, choose w subspaces of H, denoted Ki 
(1 I i 5 w), each of dimension t - 2, in general position. Then select w points not in 
H, denoted gi (1 I i I w). These points need not be distinct. Finally, define Hi to 
be the subspace spanned by K, and q; (1 5 i 2 w). 

First, we show that knowledge of the supershadows does not enable any t - 1 
participants to determine the key. Suppose that participants Ai, 1 S i 5 t - 1, 
attempt to  determine the key. They know that H, contains F, the (t - 2)- 
dimensional flat generated by s1, ... , st - 1. They know also that a shadow sj 
(t 5 j 5 w) occurs on the line 4 which is the intersection of the Hij, 1 I i I t - 1. 
(Since 4 meets H, in a point, it has dimension one and is indeed a line.) Notice 
that any two of these lines 4 are parallel, since the hyperplanes Hij are parallel 
(for any fixed i). 

We claim that for any j, t 5 j I w, 4 and F generate the whole n-dimensional space 
(consequently, 4 n F = 0). This is seen as follows. Suppose 4 and F are contained 

in some hyperplane H', for some j ,  t 5 j S w. Since sj E 4 and s1, ... , s t  - 1 E F, 
H' = H ,. Then 4 G Hp n Hlj n H2.j n ... n H(t - 11,. It follows that H n H1 n H2 n 

... n H(t - 1) has dimension at  least one, which is ruled out by the way in which the 
hyperplanes Hi were chosen. 

Next, we observe that F n C= 0. It is impossible that Cr H, since H, n C= {pl and 
F G H,. Also, F and [cannot intersect in a point, for this point would have to be p, 
which would contradict the requirement that the shadows are in general position 
with respect to  p. 

It is now easy t o  verify that there is a unique point p' on C such that the 
hyperplane determined by F and p' is parallel to  each 4 ,  t 5 j I w. Then, the key p 
+ p'. For, if p = p', then H, n 5 = 0; but sj E H, n 4 ,  a contradiction. This enables 
the participants Ai (1 I i 5 t - 1 )  to  rule out one possible value for the key. 
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There are in fact other points that can be ruled out as possible values for the key. 
We saw earlier that when t = 2, the w - 1 points Cn 4 (t 5 j w) can also be 
eliminated as possible values for p. In general, the number of possible keys that 

can be ruled out (other than the point p') is (w;-tl+l)* 

We can see this as follows. Let j 1, ... , jt - 1 be distinct integers such that t I j; S w 
(1 I i 5 t - 11, and let U be the flat spanned by the 6 (1 I i I t - 1). Since the lines 

4 are all parallel, U has dimension at most t - 1. The flat T spanned by the points 
sji (1 I i I t - 1) has dimension t - 2, and is contained in U n H,. As well, 4 n H, = 

(sj), for any j, t S j 5 w. It follows that the dimension of U is exactly t - 1 and T = 
UnH,. 

Next, we observe that it is impossible that Cc U. Since Cn H, = (p), this would 
' and p would then be force p E T. But then the t - 1 shadows sjl, ... , s , ~  - 

contained in the flat T having dimension at  most t - 2. Hence, either Cn U is 
empty, or C n  U is a point, say r. In the latter case, r cannot be the key, since (as 
before) the t - 1 shadows sj1, ... , sjt - and r would then be contained in the flat T. 

Hence, it is possible that t - 1 participants can rule out as many as 1 + 
possible values for the key. 

Example: Suppose we have a (3, 5)-threshold scheme over GF(q), for some large 
prime q. Suppose Cis the line (6,0, 0) (6  E GF(q)), sl = (1,1, 2) and s2 = (1,1, 6). 
Thus, F is the line (1,1, 6 )  (6 E GF(q)). Suppose also that 6 is the line (1 + a, 3 - a, 
2) ( a  E GF(q)), 4 is the line (1 + a, -a, l), and 6 is the line (8 + a, -a, 3) (these three 
lines are parallel, having direction vector (1, -1,O)). Al and A2 would analyze the 
situation as follows. Suppose the key is p = (xg, 0, 0). Then, H, is the plane 
x + y(xg - 1) = xo. This plane intersects 4,  b, and 6 if and only if xo f 2. Thus, 
(2,0,0) is ruled out as the key. Three other points can also be ruled out. For 
example, 6 and 4 generate the plane U having equation x + y - 32 = -2. U meets 
in the point (-2, 0, 0). If-2 were the key, then H, would have equation x - 3y = 
-2. Hence, it would follow that s3 = (5 / 2, 3 / 2, 2) and s4 = (1 / 4, 3 / 4, 1) (all 
arithmetic being done in GF(q)). Then s3, s4, and p are all collinear, a 
contradiction. In a similar manner, 4 is ruled out by consideration of 5 and &, 
and -5 / 2 is eliminated by consideration of C, and 6 .  
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The last topic we examine in this section is the probability of successful cheating. 
Suppose w - 1 participants, say Ai (2 I i I w) form a coalition in order to  try to  
convince A1 that the key is some value p' # p. Their best strategy is to  leave t - '2 
of their shadows unchanged, and lie about the remaining w - t + 1 shadows. The 
probability that A1 will detect that any particular shadow is a forgery is 1 / (q - 11, 
as in the t = 2 case. The chance that Al is fooled by at  least one of the w - t + 1 
altered shadows is at most (w - t + 1) / (q - 1). 

3. A cut-and-choose procedure to eliminate dealer disruption 

We can eliminate the possibility of the dealer disruption by using a cut -and-  
choose procedure, as in  [41 and [l]. Let K be some security parameter (say 
K = 50). Suppose H, is the hyperplane axT = c, where the superscript "T' denotes 
transpose. The following protocol will be repeated K times. 

1. D generates a random non-singular matrix M and a random t-tuple b. D then 
computes q' = s i c  + b and gives si' to Ai, 1 I i I w. (So, the si' are obtained 
from the si by a random f i n e  transformation.) 

2. Depending on a coin flip f, D performs a) or  b). 

a) 

b) 

i f f  = "heads", then D reveals M and b, and each Ai verifies that si' = 

i f f  = "tails", then D computes a' = aM-1 and c' = c + a'bT, and reveals a' 
and c'. Then, each Ai verifies that a'(s{ )T = c'. 

s ~ W  + b. 

If the dealer can answer both challenges a) and b), then it must be the case that 
c = asiT, 1 I i I w. That is, the shadows all lie on a hyperplane. If the dealer 
attempts to  cheat, he can answer only one of the two challenges in any given 
round of the protocol. Hence, the probability of the dealer fooling any given set o f t  
honest participants after K rounds is 2-K. 

It is also easy t o  see that no information is revealed to the participants by this 
protocol. If operation 2a) is performed in any round of the protocol, then the 
participants learn only the affine transformation used in that round. This is of no 
use in determining the key. If 2b) is performed, then the participants obtain the 
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hyperplane a'xT = c'. This tells them nothing about H,, since any hyperplane can 
be mapped to any other hyperplane by means of an atline transformation. 

Notice that we require the existence of a broadcast channel in step 2) of this 
protocol. This is a channel in which it is guaranteed that every participant 
receives the same information from the dealer (i.e. the vdues of M and b in 2a); or  
a' and c' in 2b)). If a broadcast channel is not used, then the dealer could attempt 
t o  cheat during this protocol by giving different information to  different 
participants. 

We can also do a cut-and-choose procedure on the supershadows. Here, the object 
is to convince each participant A; that sj E Hij, i # j, without revealing sj. Suppose 
the hyperplane Hij is given by the equation ai.x = bij, 1 2 i, j I w, i # j .  The 
following protocol will be repeated K times. 

1. For 1 I j 5 w, D generates a random t-tuple s,', and gives s,' to  Aj. D then 
computes bij' = aisj ' and gives bij' to  A;, 1 I i, j 2 w, i # j. 

2. Depending on a coin flip f, D performs a) orb). 

a) 

b) 

i f f  = "heads", then D reveals all sj', 1 5 j 5 w, and each A; verifies that 

i f f  = "tails", then D reveals all sj + ?I, 1 I j 5 w, and each Ai verifies that 
ar(sj + 9') = bij + bij', 1 5 j I w. 

b..' = a..s.'. 
1J 1 J 

The analysis of dealer disruption is similar to  the previous situation. If the dealer 
can answer both challenges a) and b) in any given round of the protocol, then it 
must be the case that ai-sj = bij, 1 s i, j I w, i # j. That is, the shadow sj lies on the 
hyperplane a;x = bij. As before, the probability of the dealer fooling any t honest 
participants in all K rounds is 2 4 .  

Next, we consider whether any  information about the shadows is released by this 
protocol. As before, if operation 2a) is performed in any round of the protocol, then 
dearly no information about the shadow is released. If operation 2b) is done, then 
Ai learns all values s j  + sj', but this tells him nothing about any sj. 

Finally, observe that we require a broadcast channel in step 2), as in the previous 
protocol. 
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Although the protocol protects against dealer disruption, we cannot guard against 
collusion of the dealer and any participant. For suppose D colludes with 
participant A l .  D can tell A1 all the supershadows H;1, and all the shadows sir 
2 2 i I w. No collusion can be detected in the cut-and-choose procedure, since A1 
never reveals any information. Then, suppose a group of t  participants including 
A l ,  say {Ai: 1 I i I t), attempt to  determine the key. A, can compute the 
intersection 1; of the t - 1 hyperplanes Hi,, 2 5 i I t. Note that 1; is a line. If A1 
claims that his shadow is any point on 4 other than s1, then the other t - 1 
participants will not detect that he is cheating, and they will calculate an incorrect 
key. In this way, A1 can make the other t - 1 participants believe the key is any 
value he desires. 

4. Remarks 

There are many variations of this threshold scheme. For example, the threshold 
scheme could be implemented in a projective space rather than in an affine space. 
In the case t = 2,  less partial information is revealed in a projective setting. D 
would fix a line [in a projective plane P. As before the key p would be a point on L 
D also picks a random line H intersecting [in p, and distribute points on H \ {p) as 
the shadows. Supershadows are obtained as follows. For each participant Ai, D 
picks a point qi E l\ (p) (these points need not be distinct). The supershadow Hij 
is the line sjq;. With supershadows defined in this way, each participant Ai can 
only rule out the point qi as the key (note that A; can compute qi as the 
intersection of any two of the supershadows he possesses). 

It is an interesting open question t o  determine if there is a perfect threshold 
scheme satisfying all the other properties of our scheme (i.e. one in which m 
possible keys can be ruled out). 

Another question is the amount of computation required. The dealer must verify 
certain conditions, including that the shadows are in general position. This is not 
difficult for small t and w, but could require a lot of time if t and w are large. Is 
there a scheme which is still computationally efficient for large t and w? (Note 
that the Shamir scheme [7] is computationally efficient; but it is not clear how to 
modify it to  detect cheating.) 

Yet another issue is the amount of (secret) information that needs to  be 
communicated, in the form of shadows and supershadows. We ask if a scheme can 
be constructed which requires less information t o  be distributed. 
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Finally, we ask if it is possible to  construct a threshold scheme that provides 
unconditional security against collusion of the dealer and one o r  more 
participants. 
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Added in proof 

After writing this paper, we discovered that Tal Rabin was working independently 
on a related problem. Her results were presented at  CRYPTO ‘88, in a paper 
entitled “Robust sharing of secrets when the dealer is honest o r  cheating”. The 
techniques she employs can also be used to  solve the problem we consider in o u r  
paper. Our approach requires that less secret information be communicated, but 
is slightly less efficient computationally. 
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