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The earliest definition of 1-way function is due to Berman [Ber77], who considered 
polynomial-time computable, length-increasing, 1- 1 functions that do not have a polynomial- 
time computable inverses. Recently, more powerful notions are considered, e.g., polynomial- 
time computable, length-increasing, 1-1 functions f such that the probability that a BPP 
algorithm can compute z from f(z) for a randomly selected z is superpolynomidly small 
[CYaS2]. Whatever definition is used, these functions are necessarily easy invert on some 
inputs: 

Proposition 1 If f is a polynomial-time computable, length-increasing, 1-1 function, and 
if p is a polynomial, then there is a polynomial time algorithm that for suBciently large n 
inverts f on at least p ( n )  strings of length less than n. Therefore, the range of every such 
function must contain a polynomial-time computable subset of arbitrarily large polynomial 
census. 

We ask whether or not Proposition 1 is optimal. 

Definition 2 A polynomial-time computable, length-increasing 1-1 function f is an annihi- 
lating function if every polynomial time decidable subset of the range o f f  is sparse. 

Polynomial-time computations can do little to invert an annihilating function. The defini- 
tion, although originally intended as a tool to overthrow the Berman-Hartmanis isomorphism 
conjecture [BH77, KMR891, can be motivated on a purely cryptographic basis: To defeat a 
traffic analysis, two sites will send invalid messages to maintain a constant level of virtual 
traffic, irrespective of the actual traffic. If an eavesdropper could distinguish valid from in- 
valid messages, this strategm would fail. The point behind the definition of an annihilating 
function is that a polynomial-time algorithm will not permit an eavesdropper to  pick out 
enough valid messages upon which to base a traffic analysis. 

We would like t o  know whether or not annihilating functions exist. It probably doesn't 
make sense to attack this question directly, as annihilating functions are 1-way functions in at 
least the Grollman-Sehan sense, and so their existence would entail P # UP and therefore 
P # NP. As a surrogate, we obtain: 
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Theorem 3 With probability 1 relative to a mndom omcle, annihilating functions ezist. 

The instant reaction to Theorem 3 is to ask whether or not it gives us any meaningful 
insight into the unrelativized case. In general, we do not believe that i t  is reasonable to  base 
one’s intuitions about unrelativized computational world upon relativized worlds. After all, 
unrestricted relativizations can be used to produce conflicting “worlds.” 

Random relativizations, on the other hand, cannot conflict with one another. The “mea- 
sure l’’ relativized theory is consistent and well-defined. More importantly, the successful 
use of pseudo-random number generators in lieu of truly random numbers in probabilistic 
factoring algorithms makes i t  seem plausible that computational complexity theory relative 
to a random oracle is similar t o  unrelativized computation complexity theory. This intu- 
ition was formalized by Bennett and Gill [BG81] as the random oracle hypothesis. Although 
the formal hypothesis was refuted [Kur83], the informal hypothesis is still compelling, and 
remains a basis for assigning credibility to random relativizations. 

This brings us to a crucial point: do we believe that annihilating functions exist? We are 
divided ourselves on this question, and await further evidence. 
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