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Interactive protocols [GMR] and Arthur-Merlin games [13] have attracted consid- 
erable interest since their introduction a few years ago. These notions make it (prob- 
ably) possible to extend the concept of what is “efficiently” provabk to include, for 
instance, graph mn-isomorphism [GMW]. In this short note, we assume that the 
reader is familiar with interactive protocols, hhur-Merlin games, and the nodol: of 
zero-knowledge [GMR]. 

In the previous paragraph, we put quotes around “efficiently” because it is only 
the Verifier that is required to be efficient (Le.: polynomial time). On the other hand, 
both interactive protocols and Arthur-Merlin games allow the Prover (or “Merlin”) to 
be infinitely powerful. In fact, not only is the Prover allowed to be powerful but she 
is actually required to be so in many of the most interesting theorems concerning these 
notions @,GS,F,etc.]. For instance, in the graph non-isomorphism protocol, the 
Prover must be capable of deciding p p h  isomorphism. 

An important pair of results state that MALAM=IP[k] @,GS], but again this 
requires the Prover to have considerable computing power even if the original MA 
protocol is feusibie! From a practi.cal point of view, this is silly in the sense that a 
polynomial-time Prover can run an MA protocol if only given a polynomid piece of 
advice, whereas it is not at all clear that she could run the corresponding AM protocol 
without additional power and/or information. (This is because the Prover must be able 
to satisfy exponentially many challenges in an AM setting.) 
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For this reason, it is our opinion that MA is the natural extension of NP to ran- 
domness. This opinion is not new: it was already voiced in PC]. However, here we 
claim that this is not merely an opinion but actually a theorem, albeit a rather trivial 
one. To achieve this goal, of course, we must be more precise on what we mean by 
“ Practical IP ” : it is the class of languages that can be handled when both the Prover 
and the Verifier are restricted to being polynomial time. 

This definition raises an important issue: if Prover and Verifier have similar com- 
puting abilities (and algorithmic knowledge), how did the Prover manage to obtain a 
hard enough proof to be of interest to the Verifier? (It is obviously uninteresting if 
the Verifier can figure out the proof by himself.) One possible answer is that the 
Prover was lucky enough or that she worked hard enough to find it (this would 
presumably be the case for an eventual proof of FLT). A much more interesting 
answer, at least in cryptographic settings, is that the Prover obtained the statement of 
her claim together with its proox as a result of running a probabilistic polynomial-time 
process (starting from some randomly chosen trapdoor information). For instance, if 
the Prover wants a statement of the general form “the integer n is the product of 
exactly two distinct primes”, she can simply choose the primes at random and multi- 
ply them. She then knows the factors of the result even though she is not better than 
the Verifier at factoring large integers. Read [AABFH] for a very nice theory on the 
efficient generation of solved hard instances of problems in NP. 

Whatever is the origin of the information that allows the polynomial-time Prover 
to run her share of the interactive protocol, that information is necessarily polynomial 
in length. It is therefore reasonable to assert that “Practical IP” is included in 
“Polynomial-time IP with polynomial advice for the Rover” (PIP/Poly), where of 
course “polynomial-time” restricts both the Prover and the Verifier. (We are not wil- 
ling to claim that “Practical IP” = PIP/Poly because in our view the really practical 
case for cryptography is when the advice comes from trapdoor information rather than 
hard labour or luck) Therefore, in order to prove the assemon given in the title of 
this paper, it suffices to prove that PIP/PolycMA (in fact, these classes are equal. but 
the reverse inclusion is irrelevant for our purpose). 

Consider a language L in PIP/Poly, some x in L ,  and the polynomial-length 
advice a that the (polynomial-time) Prover could use through an IP to convince the 
Verifier that x is in L. The fact that L belongs to MA is obvious: given only x ,  an 
all-powerful Prover (Merlin) can figure out this advice u and simply give it to the 
Verifier (Arthur). The Verifier can then (in polynomial time) simulate the 
polynomial-time Prover and her interaction with him. This complete the proof that 
“Practical IP”GMA. An open question is whether the inclusion is strict: in particu- 
l a .  is it possible in general to generate solved hard instances for every hard languages 
in MA? The reader is referred once more to [AABFHJ for preliminary results con- 
cerning NP. 



AR interesting situation occurs if one is interested in zero-knowledge protocols 
[GMR]. It is shown in PCC] (under cryptographic assumptions) that MA protocols 
can be carried ouc in 2ero-knowledge by a polynomial-rime Prover provided she is 
given the comsponding piece of advice. This is in sharp contrast with the rtsult of 
[GMWl in which an MA protocol must first be transformed into an AM protocol 
before it can be carried out in zero-knowledge, hence even a practical MA protocol 
requires a powerful Prover to be carried out in zero-knowledge if the technique of 
[GMW] is used. (This situation was already pointed out in PCC].) In conclusion, 
PCC] allows us to claim that 

“Practical IP” = “Practical zerc-knowledge”, 

which is the “practical” version of “everyttung provable is provable in zero- 
knowledge” [IY. BGGHKMR]. 
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