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ABSTRACT 

An interactive p m f  is called perfect zero--ledge if the probability distribution gen- 
erated by any probabilistic polynomial-time verifier interacting with the prover on input a 
theorem $, can be generated by another probabilistic polynomial time machine which only gets 0 
as input (and interacts with nobody!). 

In this paper we present a perfecr zero-knowledge proof system for a decision problem 
which is computationally equivalent to the Discrete Logarithm Problem. Doing so we provide 
addirional evidence to the belief that perfect zero-knowledge proofs exist in a non-mvial manner 
(i.e. for languages not in BPP). Our results extend to the logarithm problem in any finite Abelian 
group. 

1. INTRODUCTION 

One of the most basic questions in complexity theory is how much knowledge should be 
yield in order to convince a polynomial-time verifier of the validity of some theorem. This ques- 
tion was I;lised by Goldwasser, Micali and Rackoff [GMR]. with special emphasis on the extreme 
case where nothing but the validity of the theorem is given away in the process of proving the 
theorem. Such pmfs  are known as zero-kmfedge  proofs and have been the focus of much 
attention in recent years. Loosely speaking, whatever can be efficiently computed after participat- 
ing in a zero-knowledge proof can be efficiently computed when just assuming the validity of the 
assertion. 

The definition of zero-knowledge considers two types of probability distributions: 

1) 

2 )  
Zero-knowledge means that for each distribution of type (I) there exists a dismbution of type (2) 
such that these two distributions are “essentially equal”. The exact definition of zero-knowledge 
depends on the exact interpretation of “essentially equal” distributions. Two extreme cases are 
of particular interest: 

A distribution generated by a probabilistic polynomial-time verifier after participating in an 
interaction with the prover. 

A distribution generated by a probabilistic polynomial-time machine on input the theorem. 

Research was partially supported by the Fund for Basic Research Administered by the Israeli Acadmy of 
Sciences and Humanities. 
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b Perfect zero-knowledge. This notion is derived when interpreting “essentially equal” in the 
most conservative way; nameIy. exactty equal. 
Computational zero-&ledge. This notion is derived when interpreting “essentially 
equal” in a very liberal way; namely, requiring that the distribution ensembles are polyno- 
mially indistinguishable. Loosely speaking, two distribution ensembles are polynomially 
indistinguishable if they can not be told apart by any probabiIistic polynomial time test. For 
definition see [Y]. 

0 

1.1. Known Results 
Assuming the existence of one-way permutations, Goldreich, blicali and Wigderjon 

showed that any language in N P  has a computational zero-knowledge proof [GMW]. Using this 
result one can also show that whatever can be proven through an efficient interactive proof, C a n  

be proven through such a computational zero-knowledge proof [BGGHMRJY]. Thus, assuming 
the existence of om-way permutations, the question of which languages have computational 
zero-knowledge proofs is closed. 

Much less is known about perfect zero-knowledge. Clearly any language in BPP has a 
trivial perfect zero-knowledge proof (in which the prover is inactive...). Several languages 
believed not to be in BPP were shown to have perfect zero-knowledge proofs. These includes 
Quadratic Residuosiry and Quadratic non-Residuosity [GIMR], Graph Isomorphism and Graph 
non-Isomorphism [GMW]. and membership and non-membership in a subgroup generated by a 
given group element W]. ( It should be noticed that Tompa and Woll’s proof of “possession of 
the Discrete Logarithm” is in fact a proof of membership in a subgroup generated by a primitive 
element. So are the proofs given by [CEGP,CGI). 

The complexity of languages which have a perfect zero-knowledge interactive proofs was 
studied by Formow Fl and then by Aiello and Hastad [AH]. They prove that if a language L has 
a perfect zero-knowledge interactive proof system then both L and L have two-step interactive 
proofs. This implies that languages having perfect zero-knowledge proofs fall quite low in the 
polynomial time hierarchy (i.e. as low as I$nI$). Using a result of Boppana. Hastad and 
Zachos [BHZ]. such languages can also not be NP-complete. unless the polynomial time hierar- 
chy collapses to its second level. 

Perfect zero-knowledge proofs should not be confused with the perfect zero-knowledge 
pseudo-proofs presented by Brassard and Crepeau [BC]. By a pseudo-proof we mean that the 
verifier is convinced only if he believes that the prover is a polynomial-time machine with some 
auxiliary input (which is fixed before the protocol starts), and if some intractability assumption 
does hold. For example, i f  facro;ing is imracfable then every NP language has a perfect zero- 
knowledge pseudo-prmf [BC]. Brickell et. al. presented a perfect zero-knowledge pseudo-proof 
for a problem equivalent to the discrete logarithm problem, assuming the existence of any one- 
way permutation [BCDG]. It should be noted however that the class of languages having perfect 
zero-knowledge pseudo-proof does not seem to have the same complexity as the class of 
languages having perfect zero-knowledge proofs. Furthermore, assuming the intractability of fac- 
toring every language having an interactive proof has a perfect zero-knowledge pseudo-proof, 
and thus the class of languages having such proofs collides with the class of languages having 
computational zero-knowledge proofs. 
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12. Our Results 
In this paper we present a peeect zero-knowledge proof system for a decision problem 

which is computationally equivalent to the Discrete Logarithm Problem. Doing so, we present a 
perfect zero-knowledge p m f  for a problem which is widely believed to be intractable. Thus, we 
provide additional evidence to the belief that perfecr zero-knowledge proofs exist in a non-trivial 
manner (i.e. for languages not in BPP). 

Let p be a prime, and g be a primitive element in the multiplicative group modulo p , The 
Discrete Logarithm Problem (DLP)  is to find, given integers p , g and y , an integer x such that 
g x  = y  mod p . Solving DLP is considered intractable, in particular when p -1 has large prime 
factors. The best algorithms known for this problem run in subexponential time 
(exp(U(4logp loglogp )I>,  see Odlyzko's survey [O].  It has been shown that determining. 

whether x I p-l is cornputationally equivalent to finding x ,  on inputs p ,g and g' mod p [BMI. 

This is the case even if x is guaranteed to lie either in the interval [ 1 , q ]  or in the interval 

[q+l,?+vl, where O<&<1/6 is a constant or a function bounded below by (Zogzp)-'('). 

This promise problem is hereby referred to as DLP 1. 

In this paper, we present a perfect zero-knowledge proof for DLP 1. Using the computa- 
tional equivalence with DLP , we have a perfect zero-knowledge proof for a problem considered 
computationally hard. Both our protocol and the computational equivalence of DLP and DLP 1 
extend to any finite Abelian group, in which the group opxation can be implemented in 
polynomial-time and the order of the group is known (or can be efficiently found). (In the case of 
acyclic groups, one needs first to define the problems.) 

it should be noted that DLP is always at least as hard as testing membership in a subgroup 
generated by an element of the group. In some cases, for example whenp-1=24 and 4 is prime, 
determining membership in a subgroup is easy (see Appendix), while solving DLP in the multi- 
plicative group mod p is considered hard. 

2 

2. PRELIMINARIES 
2.1. Promise Problems and Interactive Proofs 

Loosely speaking a promise problem is a partial decision problem. That is, a decision prob- 
lem in which only a subset of all possible inputs is being considered. 
FormaIIy a promise problem is a pair of predicates (Q ,R ). A Turing machine M solves the prom- 
ise problem (Q R )  if for every z which satisfying Q (2 )  machine M halts and it answer "yes" iff 
R ( 2 ) .  WhenTQ (z) we do not care what M does. This definition is originates from [ESYI. 

*) In fact, Blum and Micali proved a much monger statement. Namely, that guessing this bit with success 
probabiliry greater than %i-E is as hard as repieving X [BM]. 
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We are going to extend the definition of interactive proofs given in [GMR] to promise prob- 
lems. Intuitively, an interactive proof system for a promise problem (Q J )  is a two-party pmto- 
col for a "powerful" prover P and a probabilistic polynomial-time verifrer V satisfylng the fol- 
lowing two conditions with respect to the common input, denoted z. If Q ( z ) A R  (z) then with a 
very high probability the verifier is "convinced" of R ( z ) ,  when interacting with the prover. If 
Q ( z )  A-A (2) then no matter what the prover does, he cannot fool the verifier (into believing that 
"R (z) is true"), except for with very low probability. When 7Q (z) nothing is required. 
Definition 1: An intermrive prooffor LI promise problem (Q J?)  is a pair of interacting Turing- 
machines -3' ,V>, satisfying the following three conditions: 

0) V is a probabilistic polynomial-time machine which share its input with P and they can 
communicate to each other using special communication tapes. 

1) Completeness condirion: For every constant c >O, and all sufficiently long z if Q (z ) A R ( z )  
then 

Prob(V will accept z after interacting with P) 2 1-1 z I*. 

Soundness condirion: For every Turing machine P* , every constant c SO, and all suffi- 
ciently long z if Q ( 5 )  A -,I? ( z )  then 

Prob (V will reject z after interacting with P O )  2 1- I z I * . 

2) 

22.  Perfect Zero-Knowledge Proofs for Promise Problems 
Here, again, we are going to extend the definition given by [GMR] to promise problems. 

Definition 2: Let <P ,V> be an interactive proof system for a promise problem (Q ,R 1, and V *  be 
an arbitrary verifier. Denote by <p ,V* >(z) the probability distribution on all the read-only tapes 
of VL when interacting with P (the prover) on common input z .  We say that the proof system 
<P ,V> is a perfect-zero-knowledge for (Q J ? )  if for all polynomial-time verifier V* , there exists 
a probabilistic machine MV. running in expected polynomial-time such that for every z satisfying 
Q (z) A R  (2) the distributions M,-(z) and 0 ,V* > ( z )  are equal. 

23. The Discrete Logarithm Problem and a Related Promise Problem 

Letp be a prime. The set of integers [ l g - I ]  forms a cyclic group of p-1 elements under 
multiplication mod p which is denoted Zp'. The Discrete Logarithm problem (DLP) with input 
p .g  andy i s t o f i n d x e  [lg-I]  suchthaty =gx mdp.(Weusethenotationx=Dlog,y). 

Let y be an element of Z; and let g be a primitive element (a generator). We define the 
Half predicate H as follows: 

H @ , g , y ) a D l o g g y  E [e+lp-l] 
2 

We define the follow- Let n=logp and let & ( n ) c -  be a fraction bounded below by n0(1). 1 
2 

ing predicate: 

Q,@ , g , y ) o g  is a generatorof 2; and Dlog,y in [l,e(n)(p-l)I or [ 5 + 1 , 5 + ~ ( n ) @ - I ) l  

When it will be clear from the context we will shorten H ( p , g , y )  and Q,@,g,y) by HQ) and 
Q 01 ) respectiveIy . 
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The promise problem defined by the pair of predicates (Q&) will be called in this work DLP 1. 
Blum and Micali have shown that the DLP 1 is plynomially-equivalent to the original DLP in 
the group Zp' [BMI. 

2.4. Notations 

1) 

2) 

Let s and t be two integers such that 19,tSp-1. [SJ]  is denoted the set of integers 
( s , s+l ; . .  ,t-l,r} i n c a s e s 9  or (s,s+I;~-g-1,1,2 ...., t )  i n c a s e s ~ .  
Let S be a set. The notation r E R S  means that r is chosen at random with uniform proba- 
bility distribution among the elements of S . 

3. THE PROTOCOL FOR DLPl IN Zp' 

In this section we will introduce a perfect zero-knowledge protocol for the promise problem 
DLP 1. In order to make the protocol more clear we will first introduce a protocol which is per- 
fect zero-knowledge with respect to the honest verifier. 

3.1. Protocol 1 - Perfect Zero Knowledge Proof with respect to the Honest Verifier 

such that O<c11/6: 

common input: The integers p ,g and y as previously defined. 

Here is a protocol for the promise problem (a,@ , g y ) s I @ . g , y ) )  where c is a constant 

The following 3 steps are executed n=logzp times (unless the verifier rejects previously), each 
time using independent random coin tosses. 

Vl) The verifier chooses at random a bit b E {O,l) and an integer r E R[1,2c@-1)1. The 
verifier computes cc=y g' and sends a to the prover. 

PI) The prover computes PH(a) and sends it to the verifier. 
V2) If p f b , then the verifier rejects. 
If all n rounds are completed without the verifier rejects then the verifier accepts. 

Theorem 1: Assuming c < 116 then protocol 1 constitutes an interactivepruof system for DLPI. 

Proof: Recall that x denoted D b g ,  y (i.e y s g x  mod p ) .  

Completeness: If Q 6 ) A H Q )  then x E [ + 1 , 9 + c @ - l ) ]  and then, according to the 

ranges in which b and r are chosen from, ineach round P=H(a)=HO1b.g')=H(gbxc')=b. 
Soundness: If Q Cy ) A 4 0,) then we have x E [ 1 ,c (p -l)]. Therefore if the verifier chooses b=O 
then DloggaE [1,2c@-1)1 and if he chooses b=l then Dloggas [x+l;x+2c@-1)]. In this case, 
for any prover P' we are looking for the probability that V does not reject in a single round: 
Prob (V does not reject)= Prob [P' [a)=b) 

=Prob(b=O).Prob(P(a)=b I b 4 )  + Prob(b=l).Prub(P'(a)zb I b=l)  
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Therefore in n iterations the probability that the verifier will not reject this input is exponentially 
low. (i.e. (3/4)") 0 

Remark: It is clear that this protocol is perfect zero-knowledge with respect to the honest verifier 
V. The simulator MY chooses the random tape for V .  and therefore knows the b which V will 
choose and can compute &H (a)=b . 

The interactive proof for DLPl presented above is probably not zero-knowledge with 
respect to arbitrary verifiers: a cheating verifier interacting with the prover may send a's which 
he wants to know H ( a ) ,  he could also choose r # [1,2c@-l)] and get in this way some addi- 
tional information about x .  The way to prevent this, is to let the verifier first "prove" to the 
prover that he "knows" H (a). This is done in the Following protm~l. 

32. Protocol 2 - Perfect Zero Knowledge Proof with respect to Any Verifier 

also in [GMWI and simplified by [Bh]. However in our case the modification is more complex. 
The previous protocol will be modified. The modification follows an idea of [GMRI used 

In the following protocol we provide an interactive proof to the promise problem 
1 
12 

(Q @.g,y)sI@,g,y))  wherec isaconstantsuchthatOcc5-. 

common input: The integers p .g and y as previously defined. 

The following 5 steps are repeated n=logp times (unless the verifier rejects previously), each 
time using independent random coin tosses. 

V1) The verifier chooses at random a bit b E (0,l) and an integer 

r E R l l ? ]  +I.[? J +C@-I)]. The verifier computes q b g r  and sends a to the 

prover. In addition to a he computes n pairs of integers. The i-rh pair is denoted q and is 
constructed in the following way: The verifier chooses at random yi E ( O , l }  and 

y,+l mod 2. r,.*.t 4 1 and at last r,,o,ri,l E ~[ l , c@- l ) I .  He computes q,o_=y'.gr'.* and q,l=y g 
sets a, =(ai ,o,ai .i). The verifier sends the list of pairs to the prover. 

- 
"2  



63 

PI) The prover chooses at random, a subset I s { 1.2, ..., n } with uniform probability dismbution 
among all 2" subsets. The prover sends I to the verifier. 

V2) If I is not a subset of (1,2, ..., n ) then the verifier halts and rejects. Otherwise, the verifier - 
replies with ((y; , ri.0, ri.l) : i E I )  and ((fi=yi+b+l mod 2, fi=r+ri,b+l d 2 )  : i E I ) .  
(where I=[ 1,2 ,..., n ) - I). 

F2) For every i E I the prover checks that ai is constructed according to the protocol. (i.e. 
ri,O,ri.l E [l,c@-1)] and ai=(yy'.g''.v, yY,+lmod 2~grE*v'd~).  He also checks for every i E 

that fi E [ p-l +2, * +2cip-1)] and y ' g  If either conditions is 

violated the prover stops. Otherwise, the prover computes PH (a) and sends it to the venf- 
ier. 

V3) If p f b , then the verifier rejects. Otherwise he continues. 
If all n rounds are completed without the verifier rejects then the verifier accepts. 

/ 

1 4 1  I 4 1  

Theorem 2: Protocol 2 constitutes a petfect zero-knowledge interactive proof system for DLPI. 
Proof: We will first prove that Protocol 2 is an interactive proof for DLPl and then we will show 
that it is perfect zero-knowledge. Recall again that x = D f o g , y .  
CompIereness: Similar to the completeness in theorem 1. 
Soundness: We are going to prove that although a and the list of pairs S = ( a ,  . . . a, ) can give 
infomation to the prover, there is a big enough probability that a and S will not give him any- 

thing that will help him to convince V that x E [e+l.F+a] when in fact 
2 n2 

c@-')]. 
n2 

We call a good if it is constructed using r E [ 

Otherwise a is bad. Intuitively, when a is good the prover can not ieam kything about b from 
a , f o r a n y x E [ l ,  (since in this case Pro6 ( 5 4  I y .g'=a)=-). The probability that a 

is bad is 2. 

1 
n2 2 

2 
n 

Similarly we will call a pair g. good if both ri,o and r i , l  are in [w+l, c(p-1)- co]. 
n* n2 

Otherwise ai is bud. The list of pairs S is good if every ai is good, and is bad othenvise. The 

probability that a pair (xi is bad is less than 2 ana the probability that S is bad is therefore less 4 
n 

4n 
n 

than 7. 

We remark here that since P' has infinite power we can assume without loss of generality that P 
is deterministic. Therefore for any a and S the prover P' always chooses the same subset I ,  
denoted f (as). 
Our first claim is the following: 
V good a V good S VI b'fi '#fi 
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1 
Prob(b=O I ybg'=a A f (a .S)=I A Vi  E ~ ( ~ ~ g " ' * ~ . y ,  ~ / i = r + r i * y , ) )  = 2 
The reason is that when a and S are good then assigning any value to b yields a unique Values to 
all the other variables r , rise and T ~ , ~ .  Thus, assuming I=f(aS).  there are only two elements in 
the conditional probability space, one corresponds to 6 4  and the other to b=l. Ushg this claim 
we will show now that the probability that P' will convince V 'in single round is low: 
Prob(P'(aS . (yi,ri.o,risl:i ~f(aS)}, tYi,fi:i $ f ( a S ) l ) = b )  

+Prub (a is bad or S is bad) 

1 4n+2 I- + - 
2 n2 

Therefore the probability that P will mislead V (i.e. provide correct p's) in all n rounds is 
exponentially low. 

Zero-knowledge: For every interactive machine V' , we will present a machine MV- so that for 
every input satisfying Q @ , g . y ) ~ H ( p , g , y )  then Mv@,g,y)=<p,V '>@g,y) .  The machine 
Mv. uses V' as a subroutine. 

The idea of the simulator MV- is to cause V' to yield all the information needed for calcu- 
lating H(a) .  This is done by executing V' several times with the same random tape, so that V' 
will send the same a and S. Machine MV- will try to get for one of the pairs a; the information 
IYi qri,osri,1) in one round and "fi ,f i ) in another. If this information is constructed according to 
the protocol (Mv. wil l  check it) then this is enough for calculating H (a). 

Following is a detaiIed description of M V - .  Machine Mv starts by choosing a a d o r n  tape 
r E R ( O , l } q  for V ' ,  where q = p o f y ( l p , g , y  I)  is abound on the running time of V' on the current 
input (Clearly, V' reads at most q bits from its random tape). Mv. places r on its record tape 
and proceeds in n rounds as follows. 
Round j :  

M,- initiates V *  on the input (p ,g and y )  and random tape r , and reads from the communi- 
cation tape of V' the pairs a and a1 . . a,. M,. chooses a random subset I and places it on 
the communication tape of V *  . Mv. also appends I to its record tape. 

MV-  reads from the communication tape of V' ((yi ~ ~ , ~ , r ~ , ~ ) : i  E I ) and [ (fi .f i ) : i  E F). For 
every i E I machine M,. checks whether yi E [O,l}, ri,o.ri,lE [l.c@-l)] and whether 
ai+~q .grt., r.+l 2. - * Y  g 3. It also checks for every is 7 whether 

/; E 11 9 1 +*,I 9 1 +2c (p-1)] and y .gr''=a-q,f,. If either conditions is violated 

M,- outputs its record tape and stops. Otherwise, MV. continues to step (S3). 

The purpose of this step is to find H (a). This is done by repeating the following procedure 
(until H (a) is found): 
(S3.1) Machine MV.  chooses at random a subset K s (L2, ..., n } not equal to I .  Machine 
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Mv- initiates V *  on the same input and the same (!) random tape r and places K as the first 
message on the read-only communication tape of V * .  Consequently. machine Mv- reads 
from the communication tape of V *  ((6; .si,~s; J:i E K 1 and ((Xi ,s'i):i E 
(S3.2) MV- checks whether the information he received is ok. (.The same tests as he does for 
the answers to I). If it  is not ok he return back to step (S3.1). Otherwise Mv* finds i such 
that i E I n!? or i E T n K .  Such an i exists since I # K ,  without loss of generality we 
assume that i E I nk. Machine MV. sets 9=(Y;+6';+l)mod2. 
(S3.3) In parallel to (S3.1) and (S3.2), try to find H (a) by exhaustive search. (Make one try 
per each invocation of V *  .) 

S4) Once p is found, machine Mv- appends p to its record tape, thus completing round j . 
If all rounds are completed then Mv- outputs its record tape and halts. 

). . 

We now have to prove the validity of the construction. First. we will prove that the simula- 
tor Mv- indeed terminates in expected polynomial-time. Nexs we will prove that the output dis- 
tribution produced by MV. does equal the distribution over V* 's tapes (when interacting with P). 
Once these two claims are proven, the Theorem follows. 

Claim 1: Machine M,. terminates in expected polynomial time. 

Proof: We consider the expected running time on a single round with respect to a particular ran- 
dom tape r .  We call a subset I E; [ 1,2, ..., n ) good if V' answers pmperly on message I with ran- 
dom tape I. Denote by g, the number of good subsets with respect to random tape r . Clearly, 
Wg, a". We will compute the expected number of times V' is invoked in round j as a function 
of g, . We need to consider three cases: 

Case 1 (g, 22): In case the subset I chosen in step (Sl)  is good, we have to consider the proba- 
bility that another subset K is also good. In case the set 1 chosen in step (Sl) is bad, the round is 
completed immediately. Thus, the expected number of invocations is 

g, &.[["I' +1 ] f--. 2"-g, 1 <- + l I  3 
2" 2"-1 2" gr-1 

Case 2 (g, = 1): With exponentially small probability (i.e. 2") the subset I chosen in step (Sl) is 
good. In this case we find (3 by exhaustive search (in stage (S3.3)). Otherwise, the round is com- 
pleted immediately. Thus, the expected complexity of MV.  in case 2 is bounded by one invoca- 
tion of V* and an additional (p-1).2-"5 1 step. 

Case 3 (g, =O): The subset I chosen in step (Sl) is always bad, and thus M,. invokes V' exactly 
once and then halts. 
The claim follows by additivity of expectation and the fact that V *  is polynomial-time. 0 

Claim 2: The probability distribution Mv-@ ,g .y ) is identical to the distribution <P ,V* >(p ,g ,y). 

Proof: Both distributions consists of a random r ,  and sequence of elements. each k i n g  either 
(I $1 (with good I) or a bad I, with random I .  In <p ,V* >@ ,g ,y)  we have pH(a) we need to 
show that this is the case also in Mv.(p ,g y ) .  i.e. we will prove that when I is good then Mv- 
succeeds in finding H (a). But this is true because either he finds H ( a )  by exhaustive search or 
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find an i in which y,- , rifl , r,:>1, 5',- and / ; are all correct, (i.e. r; 0,r, j

£z!
4

+2,
4

- l ) ] , a,-j=yY '+;mod2-«r '-w-" and ygs''=aaifi'.). In this case

we have:

Y; 2 D

The Theorem follows. •

Remark 1: It is not hard to see that instead of executing the protocol sequentially, we can execute
all the rounds in parallel.

Remark 2: Let s and t be two integers such that IZsjZp-l. We define dist(s,t) to be the
minimal distance between s and t over the circle of numbers [1^-1]. Consider the following
promise problem hereby referred to as DLP2: Promised that xs[s,t] or

xe {{s+^-)mod (p-l),(t+^-)mod (p-l)] and dist(s,t)<-^^ does
2 2 12n

x e [Cr-M ) mod (p-l) ,(t+-^—) mod (p-\)] ? An easy modification to protocol 2 yields a

perfect zero-knowledge interactive proof system for DIP 2:

Protocol 3
common input: p ,g and y as before and also s.

1) P and V both perform / := y g~s+l

2) P and V perform protocol 2 on input p ,g and / .

Theorem 2': Protocol 3 constitutes a perfect zero-knowledge interactive proof system for DLP2.

Proof: Since it is promised that Dloggye[s,t] or

Dloggy e [(S-K ) mod (p—l),(t+" ) mod (p-1)] and that dist(s,t)<-^—r- then after exe-
2 2 12n

cuting step 1 we have Dlogg/ e [1, ̂ ~ 2 1 or Dloggy' e [^-+l,^=—+-^:—] and now our

theorem follows from theorem 2.

4. EXTENSIONS

4.1. Generalization of the Protocol to other Cyclic Groups

Let G be an arbitrary cyclic group such that the following conditions holds:

1) The group operation of G can be implemented in polynomial-time.

2) The order of G (to be denoted N) is either given or can be computed in polynomial-time.
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We can extend the definitions of the DLP and the DLP 1 in the obvious way. The needed modifi- 
cations are to replace any multiplication mod p by the groupoperation of G and to replace p -1 
by the group order (N). 

With the same modifications our protocol will be a perfect zero-knowledge proof for the 
promise problem DLP 1 in G (since the protocol does not makemy use of the special structure of 
Zp, but merely its being cyclic). What we still have to show is that the DLP 1 is polynomially 
equivalent to the DLP itself in any cyclic group. The Blum-Micali proof (used in 2;) extends 
easily only to groups in which N is even and both testing quadratic-residuosity and taking 
square-root can be performed in polynomial time. Unfortunately, this does not seem to be the 
case in all groups and a different argument is needed. We present a proof for the equivalence of 
DLP and DLP 1 based on ideas of Kaliski [Ka]. 

We define the oracle W G G  as follows: 
LOGG(g,ysdd)=OifDbggy E [s,(s+d)mod N l  

LOGG(g,y,sSkl ifDlog,y E [(s+ ~ ~ ] ) m d N , ~ s + ~ ~ ~ + d ~ m d  - Nl 

In any other case the answer of the oracle LOGc is unexpected. 

N 
12n 

It should be noticed that when d c z  this oracle solves the promise problem DLP2 for which 

protocol 3 is a perfect zero-knowledge proof. 

Theorem 3: The following 2 problems are polynomiaUy equivalent for any cyclic group G of N 
elements and a generator g : 

1) . Given g,y E G such that g is a generator of G findx such thatx=Dloggy. (DLP)  

2) Given y E G ,  a generator g E G , O < s d  and d such that Ocdc- compute 
12n2 

L O G  (s Y J d).  ( D p  2) 
Proof: It is obvious that if we know to solve the first problem we can solve the second one. We 
will prove the other direction by presenting an algorithm that solves the DLP using the oracle 
W G G  (g ,y ,s 4). The algorithm is based on the following elementary lemma: 

Lemma 1: For any cyclic group G of order N and for eve y E G : 

IfDbggy2E [s .t 1 then Dbggy is in c 1 1 ,I i J 1 or in 1 .I J 1 
Proof (of the Lemma): Let x E [s , t ]  s (0,L . . . fl-l} and try to find a number w such that 
x = 2 w .  We deal with two cases: 

Care I : N is odd. Since N is odd there exists a unique number 2-’ mod N. In this case one can 
r 1 1  I 

easily verify that if x is even then w=- E [ /  1 ,I + I ]  and if x is odd then 
I I L  J 

W 2 . E  2 “y] I. 

Case 2 : N is even. Since N is even 2-‘ mod N not exists. In this case only for even x ’s we have 
X such w . Actually we have two such numbers: wI=- and w ~ e .  It is easy to verify that 
2 2 
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r 1 1  I 

Now taking x=Dfoggy2 the lemma follows for every N. 0 

Note that if the interval in which Dfoggy2 is found is of size d then the intervals in which Dbggy 
can be found are of size rd/21. This is used in the following algorithm. 

Algorithm 1: we input is y E G and a generator g) 

(I) Let n=logZN 

(3) Let s=o. 

(2) Computeyl=y .Y*: , Y ~ ? Z  . . . ~ ~ ? ~ - i  2 . /*Y;=Y 21-1 */ 

N (4) Letd=- 
12n2 

The idea is that we are trying to find an s such that Dfoggyn=Dlog,yr is in the range of size 

N starting from s .  Assume that we are in the right interval then according to the lemma in 
1212’ 

each round in step (5) we reduce by a factor of 2 the size of interval in which we are looking for 
Dfog,yk. Therefore at the end after n=fogzN rounds we are looking for DloggyI=Dbggy in an 
interval of size 2. Now, we check which of the two numbers in the internal is Dbggy. If both are 

not fitted then the current s is wrong and we increase it by - A’ and try again. After at most 
12n2 

d 
execute steps (4-6) is O(n2). Now, assuming that LOGG is polynomial-rime and recall the 
assumptions about G (i.e. N is known or can be computed in polynomial-time and the group 
operation can also be implemented in polynomial time) then this algorithm is also polynomial- 
time. 0 

_- N-12n2 iterations we should find the right s .  Therefore the number of times we wiU have to 

42. Generalization of the Results to Acyclic Groups 
In an acyclic group which is finite and Abelian we do not have a generator but a 

generating-tuple g = (gl,g2, . . . ,gk). Any element y E G can be uniqely expressed as 
y=gy -g?. The order of each gi is denoted Ni and the number of elements in the group is 
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N=N 1.N2-.Nk. The DLP and the DLP 1 are defined with respect to g 1. (For example the DLP in 
such a group is: Given y - find x such that 3xz . . . xk I y=gf’ --gg). 
Our protocol with some modifications will work here too. We have to assume that we know (or 
can compute in polynomial-time) not only the group size N but also N1. We should replace 
every occurance of N in the previous protocol by N and also everything done with respect to g 
has to be done with respect to gl. In addition we should randomize everything by elements 
chosen at random from the subgroup generated by (Bz,g3,. . . ,gk). For example in step (V1) of 
the protocol . .  the verifier should compute a==b.gil.gF-.gp, where 

Using the same modifications described above we can also modify theorem 3 to show that 
the DLP and the DLP 1 are st i l l  equivalent in an acyclic group. 

APPENDIX: Determining Membership in a Subgroup - Special Case 
In this Appendix we consider the problem of determining membership in a subgroup gen- 

erated by an element g in Zi, when p - l = 2 q  and q is prime. We will show that in this special 
case, testing membership in a subgroup is easy. This should be contrasted with the believed 
intractability of DLP also for this case. 

One can readily verify that if p-l=2q with q prime then 2; has q-1 primitive elements 
(i.e. elements of orderp-1). 4-1 elements of order q ,  one element of order 2, and one element of 
order 1 (i.e. the identity). Furthermore. all  the elements of order 4 and h e  identity element form 
a subgroup which is generated by any of the elements of order q . Thus, the question of whether 
a is in the subgroup generated by g reduces (in this case!) to testing the order of both u and b (a 
is in the subgroup gene- by b iff  the order of a divides the order of 6 ) .  Finally note that test- 
ing the order of an element is easy (in this case!). 
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