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Abstract. This paper surveys computational problems related to integer factorization 
and the calculation of discrete logarithms in various groups. Its aim is to provide theory 
sufficient for the derivation of heuristic running time estimates, and at the same time 
introduce algorithms of practical value. 

0. Introduction 

Several problems in number theory are believed to be computationally intractable, a 
property that is potentially of great use in cryptography. Included in this category are 
problems related to integer factorization and the evaluation of discrete logarithms in vari- 
ous groups. The purpose of this paper is to summarize current knowledge about them, 
from a theoretical viewpoint. 

In line with the long-term goals of complexity theory we should like to settle the 
question of whether these problems are really difficult, ic the sense of having no proba- 
bilistic polynomial time algorithms. However, two features of this program seem inap- 
propriate to the present context. First, a concentration on the asymptotic behavior of 
algorithms may be too restrictive, as a designer of public-key cryptosystems has to make 
compromises between efficiency and security and so must consider problems of a fixed 
size. Second, a restriction to algorithms that can be rigorously analyzed is too smngent if 
one wishes to design a system that will resist all known attacks. Since currently we can- 
not even prove asymptotic lower bounds on the complexity of these problems, design 
decisions must be based on what we believe to be the best algorithms. Such has been the 
state of affairs ever since the invention of public-key cryptology; it seems unlikely to 
change soon. 

Preparation of this paper was supported by the National Science Foundation, via grants DcR- 
8504485 and DCR-8552596. 

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 77-93, 1990. 
0 Springer-Verlag Berlin Heidelberg 1990 



Of course, there have been improvements in OUT ability to solve these problems, 
most strikingly for factorization. A paper written in the early 1980’s [Pomerance 19821 
noted that the available algorithms could factor numbers up to 50 digits; the record now 
stands at 100 digits [Lenstra and Manasse 19881. Thus the size of numbers whose factori- 
zation is feasible has doubled in ten years, and more advances are sure to follow. Cer- 
tainly, some of this progress has come from the use of more powerful computers; what 
may not be so evident is the impact of new techniques, most notably the elliptic c w e  
[Lenstra 19871 and quadratic sieve [Pomerance 19841 algorithms. Both of these algo- 
rithms are easy to pardlelize on currently available machines. 

Given an algorithm, one should always try to find the most general structure to 
which it applies. Thus, to highlight similarities and hide details, I have used algebraic 
language wherever possible. Sometimes the level of abstraction is greater than that 
needed merely to describe an algorithm. I would argue, however, that from this vantage 
point one can see clearly how the algorithms arise from the basic ideas. Necessarily, 
some details are lost; for more complete descriptions I refer to the surveys in the refer- 
ence list (marked with a “*”) as well as to the original papers. 

In considering running times the reader should equate “step” with “bit operation.” 

1. Problems related to factoring 
The problem of factorization makes sense in any unique factorization domain, of 

which the most basic example is the ordinary integers ZZ . Thus we wish to compute the 
prime divisors of a number n presented as input. 

If n is prime, then the problem is easy, as there are efficient randomized algorithms 
to test primality. With no more work than that of evaluating a power modulo n - an 
O ( l o g t ~ ) ~  process - one can tell if a number is prime, with an error probability of at 
most 114 [Rabin 19801. If certainty is needed, then a more complicated deterministic 
algorithm [Adleman et. al. 19831 will prove that n is prime in at most 
(logn loglog*ogn 1 ‘ +a(1) steps. This algorithm also has a randomized version that is likely 
to find such a proof within the same time bound; for this it is conjectured that 
c = Mog2 1.442.... Finally, a new test due to Atkin and based on complex multiplica- 
tion has been recently implemented [Morain 19881; this has proved useful for testing 
numbers up to 571 digits but it has not yet been analyzed. 

In a statistical sense, we understand quite well how numbers factor. One can ima- 
gine that a random number n has prime factors whose lengrhs are selected by a “random 
bisection” process: choose a prime p whose length is uniformly distributed in the inter- 
val (0, logn ), replace n by n / p  and repeat, and so on. From this one gets intuition about 
how typical numbers factor as well as an efficient method for generating random 
numbers together with their factorizations [Bach 19881. 

However, we do not know a polynomial time algorithm for factoring, even if we use 
randomness or make a reasonable assumption such as the extended Riemann hypothesis. 
We do not even know how to zfficiently produce any useful information about the factors 
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of a number. For instance, one might ask (from a formal analogy with polynomials) if 
extracting the squarefree part of a number, or just deciding if it is squarefree, takes less 
time than computing the full factorization; no such result is known. Neither can we 
count the prime factors of a number in any way better than finding them all. 

One often finds factorization problems represented as equation-solving problems. 
For instance, an algorithm to solve the congruence 

x 2  L a ( mod n (1.1) 

can be used to efficiently factor n mabin 19791. One could make a formal analogy with 
(1.1) and speculate that for e relatively prime to the Euler function @(n ), the congruence 

x e  = a ( m o d n )  (1.2) 

cannot be efficiently solved without finding information from which one could easily fac- 
tor n. The security of the RSA cryptosystem [Rivest et. al. 19781 relies on this conjec- 
ture as well as on the belief that factoring is difficult. 

There is also an existence problem related to square mots modulo n : decide whether 

3 x [ x 2  = a (mod n ) I. (1.3) 

This was used in the design of a probabilistic encryption method [Goldwasser and Micali 
19821. A necessary but not sufficient condition for (1.3) to hold is that the Jacobi symbol 
(a In)  equals 1; this is computable in 0 (logn)2 time [Collins and Loos 19821. Problem 
(1.3) clearly has some relation to factoring, for if Q is a quadratic residue modulo n , then 
for each p dividing n , a is a square modulo p . By quadratic reciprocity, the factors of n 
are restricted to certain arithmetic progressions. However, recovering the factors from 
this information seems not to be easy. There is also a relationship between deciding (1.3) 
and computing o(n>,  the number of distinct prime factors of n , since for odd n , the frac- 
tion of quadratic residues in ( Z l n Z ) *  is 2-”(“); however, this does not immediately 
imply a polynomial-time equivalence between these problems. 

More generally, one might wish to decide if, for a number e not prime to @(n ), 

3 x [ x e  =a(modn)] .  ( 1.4) 

This problem has been applied to the design of election protocols [Cohen and Fischer 
19851. It has been argued on heuristic grounds that an efficient algorithm to solve (1.4) 
for general e and n would lead to an algorithm for factoring that, although not polyno- 
mial time, would outperform any currently known on certain numbers [Adleman and 
McDonnell 19831. 

Problems (1.1)-(1.4) are all solvable in random polynomial time for prime moduli 
and hence (by the Chinese remainder theorem and Hensel’s lemma) for moduli whose 
factorization is known. The first two might be called “zero-dimensional” problems, for 
the analogous equations over the complex numbers have only finitely many solutions. 
Despite our intuition that increasing the dimension increases the complexity, similar 
one-dimensional problems are efficiently solvable. In particular, there is an efficient 
algorithm [Pollard and Schnorr 19871 to solve 
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x 2 - d y 2 = a ( m o d n )  (1.5) 

as well as efficient algorithms for related problems in algebraic number rings [Adleman 
et. al. 19871. 

All of the problems (1.1) - (1.4) make sense if ZZ is replaced by a ring and n is 
replaced by an ideal of finite index. Such generalizations appear not to have been studied 
much, although cryptographic schemes similar to the RSA have been proposed using 
algebraic numbers [Williams 19861. 

2. Problems related to discrete logarithms 
Just as the factorization problem is concerned with rings, the discrete logarithm 

problem is concerned with groups. Thus let G denote a finite cyclic group, in which the 
equality predicate, group multiplication, and inverses can be efficiently computed. If g 
is a generator of G and LZ another element of G , we wish to solve 

g x  = a ;  (2.1) 

this is the discrere logarithm problem. (The restriction to cyclic groups is no constraint 
because the group generated by an element is always cyclic.) If G has order m , then 

G ZZImZ.  (2.2) 

One can efficiently compute the reverse direction ( g ' c x )  of this isomorphism by 
repeated squaring, with 0 (logx) group multiplications. The discrete logarithm problem 
is that of computing the forward direction. Of course Z l m Z  has a natural ring struc- 
ture, and one might ask if the multiplication operation can be transplanted to G ; that is, if 
one can efficiently 

compute gxY given g x , g ' .  (2.3) 

This is the Diffre -Hellman problem; clearly an algorithm to compute the forward direc- 
tion of (2.2) (that is, solve (2.1)) can be used to solve it. For most groups of interest, it is 
unknown if the converse holds, although this has been shown in certain cases for 
(22 ip Z)* [den Boer 19881. 

Various groups have been suggested in cryptographic applications of problems (2.1) 
and (2.3). The original key-exchange proposal [Diffie and Hellman 19781 suggested 
(Z / p  Z)* where p is prime; one might also use IF;, the multiplicative group of a finite 
field. There are also possible applications where the ambient group is non-cyclic, 
employing the unit group ( Z / n Z ) *  [Shmuely 1985, McCurley 19871, class groups of 
imaginary quadratic fields puchmann and Williams 19881, and various algebraic groups 
such as elliptic curves Miller 1985, Koblitz 19871, abelian varieties [Koblitz 19881, and 
matrix groups [Varadharajan 19861. 

With such an abundance of examples, one might well ask how far the generalization 
can be pushed. It seems that nothing about (2.1) or (2.3) requires that the group be finite, 
or even that inverses be computable; perhaps one could use semigroups instead of 
groups. 
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3. Algorithms 

apparent running times that are moderate powers of the following function: 
Remarkably, many of the best algorithms for the problems discussed above have 

(3.1) 

(here n is the number to be factored or the size of the group and logn is its natural loga- 
rithm). Before presenting algorithms, it will be worthwhile to discuss this function and 
how it arises. 

L (n ) is often cakd  a subexponentid function because it grows more slowly than nE 
for any E > 0; the appellation “subexponentid” is apt because nE is an exponential func- 
tion of the length logn . However, most of our intuition deals with polynomial time algo- 
rithms, so it is convenient to pretend that L ( n )  is a polynomial in log n with a slowly 
growing exponent, and define E (n) by L (n) = (log n ) E ( n ) .  The following values hold: 

L (n) = e . i lwloglogn 

logn 115 230 460 1151 2303 

E ( n )  4.9 6.5 8.7 12.8 17.2 

From the above chart, if an algorithm requires L (n)‘ steps, a small reduction in c will 
have a large effect on its running time. 

L (n) arises from considerations of smoothness (a number is smoorh with respect to 
a bound M if all its prime factors are less than or equal to M). Briefly, there is a tradeoff 
between making smooth numbers plentiful (M should be large) and making smooth 
numbers easy to recognize (M should be small). 

To quantify this, we can use the random bisection heuristic cited above to get a 
plausible estimate for the “probability” P (a) that a random number near q is composed 
of prime factors less than qa. Conditioning on the first factor’s relative length x (which 
is presumed to be uniformly distributed), 

after the change of variable h = 1 / a this becomes 
- L  

This equation, together with the initial condition p( h) = 1 for 0 < h c 1, defines the Dick- 
man rho-finction. As a rule of thumb, p( h) 2 h-’ ; consequently, 

P r [ x  S q  is qa-smooth] E (3.2) 
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This can be used in a simple argument that underlies many running time calcula- 
tions. Consider a two-phase procedure that first assembles a set of M-smooth numbers 
(with some desired properties) and then processes this set further to complete the algo- 
rithm. The first phase simply chooses random candidates (of size roughly q )  and adds 
them to the set if they are smooth, To find the work for this phase, multiply the requisite 
number of smooth numbers by the work necessary to check a number for smoothness, 
and divide by the probability that a random number near q is smooth. If first two factors 
combined produce a term around M k  and the second phase of the algorithm takes M’ 
steps, then by the approximation (3.2). the total time is roughly 

(3.3) 

where h = (logq) I(1ogM). If T, >> T,, we can minimize logT, by setting its derivative 
to zero and find that asymptotically 

T = Tl+T2  3 M k h ‘ + M 1  

h = d(2k logq)/loglogq, 

so 

T = T 1 + T ,  E L ( 4 )  + L ( q ) v m  (3.4) 

(the first term dominates if 2k 2 1 ) .  Evidently we would like q , k, and 1 to be small; in 
fact, much of the progress in factorization and discrete logarithms has come from reduc- 
ing these parameters. 

Naturally, one would like to justify calculations such as the above, but this can be 
rigorously done only for certain algorithms. The problem is not with the approximation 
(3.2) - which can be sharpened - but with the tacit assumption that the numbers con- 
structed by the algorithm are smooth with the same probability as random numbers of 
comparable size. Because in many important cases we are unable to prove this, there has 
arisen a notion of “heuristic” running time bounds for such algorithms. Thus we distin- 
guish between proofs that an algorithm uses or expects to use only a certain number of 
steps (so-called “rigorous” bounds) and plausibility arguments for such assertions that 
always rely on unproved ad hoc assumptions. Of course, we can always try out a factor- 
ing or discrete logarithm algorithm and see if it works, since any answer produced can be 
quickly checked. For this reason, heuristic arguments are very useful, even if they are 
mathematically suspect. 

In the descriptions below all running times will be heuristic, unless otherwise noted 
(the asymptotic notations ’0 ’ and ’o ’ are reserved for proved results). Furthermore, the 
calculations are what might be called “first-order”: they are only accurate enough to 
derive the correct value of c in an estimate of the form L ( r ~ ) ~ .  In particular, they ignore 
relatively small factors such as powers of log n . 

Algorithms for factoring 

Most factorization algorithms rely on what might be called a “functorial” 
approach. The idea is to associate with each ring Z l n Z  an object X, in a generic 
fashion, so that the factorization given by the Chinese remainder theorem transfers to a 
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factorization of X, , thus: 

Z l n Z  Z l p Z  x Z Z / q Z  (3.5) 

x, xp x xq 
(in this section assume that n has two distinct prime factors p and 4). We then use the 
factorization of X, to recover the factors of n, usually by constructing special elements 
of X,. The easiest way to guarantee that (3.5) occurs is to define X, with polynomial 
equations modulo n , though this may not be the only way to proceed. 

The best algorithms for factoring numbers composed of two equally large primes 
are the quadratic residue family of algorithms. These algorithms work with the group 
X, = { x  : x 2 s  1 mod n ), for any element of X, that is not congruent to +1 mod n (at 
least half of the elements of X, have this property) will allow us to factor n as 
gcd (x-1, n). Equivalently, we can homogenize and seek numbers x and y for which 
x 2 = y  but x & + y  . The algorithms in this family all do this by performing three basic 
steps: 

2 

1) Generate many quadratic residues mod n . 
2) Try to factor them using primes p IM, to construct congruences of the form 

2 
r I p s M P e p  =?- * 

3) Using linear algebra on the exponents modulo 2, combine the congruences 

The continued-fraction factoring algorithm [Momson and Brillhart 19701 gen- 
erates residues around 6 in size by evaluating the continued fraction of 6, factors 
them by trial division, and uses Gaussian elimination for the linear algebra. Since 
roughly M linear equations are needed, we can take q = n ln, k = 2, and I = 3 in (3.4) to 
find that the running time is approximately L (n)JZ.  

The quadratic sieve algorithm [Pomerance 19841 dispenses with the need for trial 
division, by using values of a polynomial to form residues around 6 in size. Instead of 
factoring each residue separately, the algorithm processes polynomial arguments one 
prime at a time, only examining those for which the corresponding value will be divisible 
by that prime. Neglecting log factors, the amortized cost of factorization per residue may 
be taken as constant. Using the notation of (3.3), the number of polynomial arguments 
processed must be the number of smooth residues needed ( M )  times the inverse smooth- 
ness probability (1’). If Gaussian elimination is used for the linear algebra, then the run- 
ning time is the result of taking k = 1 and I = 3  in (3.3). A good choice for M is obtained 
by balancing T I  (the cost of sieving) and T ,  (the cost of equation solving), which leads to 
a running time of approximately L (n )m. 

Since a number m has no more than log2m prime factors, the running time of this 
and similar algorithms can be improved by exploiting the sparsity of the linear equations. 

multiplicatively to find x and y with x 2  t y 2 . 
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A randomized algorithm based on shift-register synthesis miedemann 19841 will solve 
an M x M linear system of equations over a finite field with 0 ( Mw ) field operations, if 
there are w nonzero coefficients. Therefore, for theoretical purposes we may take I = 2 in 
analyzing the Gaussian elimination phase of the quadratic sieve algorithm; this leads to 
the improved estimate L (n) for the running time. 

If one wishes to factor a number with a known or suspected small prime factor p , 
the algorithm of choice is the elliptic curve method [Lenstra 19871. This takes X,, to be 
the set of solutions to y 2  E x 3  +ax + b (mod n). By h e  Chinese remainder theorem, 
X,, Xp x X,, but Xp has some additional structure. Augmented by an additional 
“point at infinity” (O:l:O), it forms an abelian group f p  with (0:l:O) as the identity (this 
group is written additively). The group operations are given by rational functions, which 
can be evaluated mod n. By the Riernann hypothesis for finite fields, 
p + 1 - 2 6  I I I I p + 1 + 2 6 ,  and the group order can be randomized within this 
interval by varying a and b . If we are lucky and find an M-smooth group (that is, one of 
M-smooth order), then any element must become the identity when multiplied by 
E = r I p < M P  LlogpMJ . course, no rational operations can produce the point at 
infinity, so a factor is detected when one attempts this multiplication and divides by a 
non-unit in 22 In SZ . For success, we expect to need only one M -smooth group, but by 
the prime number theorem, multiplication by E requires roughly M operations. The run- 
ning time is therefore estimated by taking q = p  , k = 1 and 1 = O  in (3.4); one expects to 
extract p in approximately L (ply‘ steps. 

A related algorithm - it does not fit the paradigm (3.5)! - is based on class groups 
[Schnorr and Lenstxa 19841. Here one chooses a random small multiplier p, and forms a 
group from the invertible ideals modulo similarity of a subring A of Q(.(Icm). In the 
simplest case, -pn is the field discriminant, whose divisors are exactly the ramified 
primes. Solutions to x 2 =  1 in the class group lead in a straightforward way to these 
primes. (Factors can also extracted from square roots of 1 in the general case, but the 
theory is more complicated). If the group order h depends “randomly” on p, as sug- 
gested by heuristic considerations [Cohen and Lenstra 19841, we may try many values of 
p and hope that one of the resulting groups is M-smooth. If so we can annihilate the odd 
part of the group by brute force, then square repeatedly to find solutions to x 2  = 1. Since 
h 5 ‘&-, we can evaluate the running time by taking q =G, k = 1 and I =O in (3.4) and 
find it to be roughly L (n). 

The above discussion cites three factorization methods with a conjectured running 
time near L(n) ,  and one might suspect that this is the true complexity of factoring. How- 
ever, the algorithms are all based on similar ideas, so it is equally plausible that the L (n) 
running times are simply a consequence of this similarity. Of these algorirhms, the qua- 
dratic sieve is the best algorithm in practice (unless we think the number to be factored 
might have a small prime divisor). It is superior because a typical step in its execution is 
a single-precision subtraction; a step of the elliptic curve algorithm must evaluate a pair 
of rational functions (at a cost of 0 (log t ~ ) ~ ) ,  and a step of the class group algorithm 
must perform a gcd calculation followed by a ’-dimensional lattice reduction (again, an 
o (log n >* operation). 
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The cycloromic family of factoring algorithms takes X, = ( A  /n A ) * ,  where A is a 
ring of algebraic integers. In these cases, Xp is a direct sum of finite fields, each of order 
p k - 1  for some k, and we can easily factor n when any algebraic factor of p k  -1 is 
smooth [Bach and Shallit 19851. The practically important cases are k = 1,2; that is, the 
method is useful when p f: 1 is smooth. For example, if A = Z, then the unit group 
modulo p has order p -1, and by raising to a large enough power E we can annihilate 
this group, factoring n with gcd(xE-1,n) [Guy 19761. T h e p + l  method [Williams 
19821 works in a similar fashion with the group of elements in the finite field FP2 that 
have norm 1. Both methods have a refinement in which the running time is proportional 
to the square mot of the smoothness bound [Montgomery 19871; they are useful as prel- 
iminary steps in factorization, before a complicated method like the quadratic sieve is 
used. 

Some attention has also been paid to the effects of “second-order’’ smoothness, that 
is, smoothness of the automorphism group of ( A  / p  A ) * .  For example, if the map x + x e ,  
an automorphism of ( Z / p Z ) * ,  has a small order r ,  then we can split n with 
gcd(xe ‘ - x , n ) .  This leads to a requirement that $(p-l), the order of the automorphism 
group, have at least one large factor ifp is going to be hfficult to remove from n . Simi- 
larly, by considering automorphisms of the group of norm-1 elements in IFp 2, we see that 
$(p+l) should be chosen to have a large factor. 

By properly building primes, the methods of the previous two paragraphs are easy 
to defend against. What appears to be more difficult is constructing a number that resists 
the elliptic curve or class group factorization methods. No one knows how to make the 
smoothness of the groups that occur in these algorithms less likely than the smoothness 
of random numbers of a comparable size. 

A few words should be said here about rigorous analyses of factorization algo- 
rithms. Surprisingly, the best known running time for a deterministic factoring algorithm 
is n1’4+o(1) [Pollard 19741; this can be lowered to n1/5+0(1) if the Extended Riemann 
Hypothesis is assumed [Schoof 19821. The best randomized algorithm for factoring 
takes expected time L ( n ) * + O ( l )  [Vallde 19881, although assuming the ERH, a random- 
ized algorithm related to the class group method has an expected running time of 
L ( n ) l + O ( l )  steps [Lenstra 19871. 

Contrasted with the variety of factoring algorithms, very little seems to be known 
about direct attacks on the RSA encryption scheme (1.2) or the residue problems (1.3) 
and (1.4). It has been shown that an algorithm to find or guess individual bits of a solu- 
tion to (1.2) could be used to efficiently find complete solutions [Chor 19861, and that the 
cost of obtaining individual solutions to (1.3) can be reduced by accumulating other solu- 
tions [Desmedt and Odlyzko 19861, but no method to attack these problems has surfaced 
that is substantially better than factorization. Unfortunately, we cannot rule out the pos- 
sibility that one exists. 
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Algorithms for discrete logarithms 
The complexity of the discrete logarithm problem depends very much on the group 

considered. The most general algorithms are “canonical” in the sense that they use only 
the group operations; however their running times are exponential. In several important 
cases, though, we know methods with subexponential Nnning times, equal to or better 
than those of the best factorization algorithms. However, these methods require the 
group to be specified as part of a larger structure. 

The baby-steplgiant-step algorithm [Shanks 19711 works in any group, as fol- 
lows. Assume that I G I 5 r2 ,  then a solution to g* =a can be written x o + x I t  with 
0 <xi < t . By computing the 2r elements gxO and a -g-* lr and looking for a match (one 
can either sort or use hashing), x can be found in roughly I G I steps (the space require- 
ment is comparable; if I G I is known, this can be reduced with a variant of the “rho” 
algorithm Pollard 19781). 

This idea can be extended [Pohlig and Hellman 19781 i fG is smooth in the sense of 
having a long chain factorization, where I Gi /Gi-l I = p : 

l = G o C G l C G 2 C  . . .  c G , = G .  

Then the index x is expressible as x x i p ’ ,  O I x i  cp , and via the homomorphism 
Gi + G 1 (raise to the power p computation of the xi’s reduces to the solution of k 
discrete logarithm problems in G Using the above algorithm, the complexity is roughly 
k $ .  

mi. where the 
mi ’s are relatively prime. This induces a factorization of G into groups of relatively 
prime order, and if the mi ’s are small we can solve the discrete log problem by going 
counterclockwise around the following diagram: 

Finally, assume that the factorization of rn = I G I is known: rn = 

1 t 

(to project G into Gi , raise to the power m/mi ,  to go across, solve the problem in each 
group G; , and to go up, use the Chinese remainder theorem). 

By combining the last two algorithms one sees that, except for a factor that is poly- 
nomial in log IG I ,  the discrete log problem for a p-smooth group is solvable in time 
roughly 6. 

In certain groups one can use the index -calculur family of algorithms, which work 
essentially by doing factorization on the left of (2.2) and linear algebra on the right. To 
use these algorithms G must be specifiable in the following way: start with a ring A that 
has unique factorization (or more generally, unique ideal factorization), take the free 
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Abelian group generated by the primes (certain “exceptional” primes may be omitted), 
and form the quotient group modulo a set of multiplicative identities. If G is represented 
as such a group, then factorizations in A lead to identities in G , which can be exploited 
to compute discrete logarithms. An important feature of this family of algorithms is that 
once one logarithm is computed, others can be found relatively quickly (typically in time 
equal to the square root of that needed to compute the first logarithm). 

For example, take G = ( Z / p  22 )* and A = 22 [Adleman 19801. For a smoothness 
bound M ,  roughly M smooth numbers of the form g x  will serve to tell us the discrete 
logarithms of all primes up to M. To find them, we try to factor random powers of g 
using primes less than or equal to M ;  each successful factorization gives a linear equa- 
tion in 22/@-1)Z for the logarithms. The time required to construct this “database” 
can be estimated by taking k = 1 and 1 = 2 in (3.3), assuming that a subexponential factor- 
ization algorithm and sparse matrix techniques (generalized to finite rings) are used This 
gives a time of roughly L(p)’? for the first phase of the algorithm. Once this is com- 
pleted, computing the logarithm of a requires one smooth number of the form u . g r ;  if t 
is chosen at random, this will succeed after approximately k’ trials, in approximately 
L (plfit2 steps. 

This method can be modified so that it uses smooth numbers near 6 rather than 
near p [Coppersmith et. al. 19851. In the analysis one has to replace p by p’“ in the 
above formulas; if this is done one finds that roughly L ( p )  steps are needed to find the 
logarithms of small primes, and the work per additional logarithm is close to L ( P ) ” ~ .  

Similar methods are available for lFi when q = 2” (or, more generally, a power of a 
small prime); they have been exhaustively sumeyed [Odlyzko 19851. To study them, one 
needs an analog of (3.3) for polynomials (since elements of IFzn are represented in this 
fashion). Calling a polynomial (over IF,) d-smooth if all of its irreducible factcrs have 
degree at most d , the analogous approximation to (3.2) is 

Pr [ f of degree d is ad - smooth ] (3.6) 
Assume that the algorithm requires a collection of m-smooth polynomials, each of 
degree roughly d . Again, the work in assembling them is the size of the collection times 
the work required to test a candidate (estimated as 2mk) times the inverse smoothness 
probabiIity 1’. Taking h = d h ,  and assuming a second phase of complexity Zmf, the 
total time is 

a”a. 

T = T I  + T2 2 2mkh‘+2mi (3.7) 
which is minimized asymptotically for m = d(dlogd)/(2klog2), and leads to 

T, + T ,  Z M ( d ) -  + M(d)“1210g2/2k  (3.8) 
where M ( d )  = e 

The basic indexcalculus algorithm in IF;. first tries to find m -smooth polynomials 
g x  which have degree n . Ignoring log factors, roughly 2m polynomials are needed. Tak- 
ing d = n  , k = 1 and I = 2 in (3.8) (the time to factor can be neglected perlekamp 19671, 
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and as usual the linear equations are sparse), we find the time for the first phase to be 
roughly M ( n ) m ,  and the time to extract addtional logarithms to be about 
M ( n ) m .  As with (22 / p  ZZ )* , this can be improved by working with smooth polyno- 
mials whose degree is a constant fraction of n [Odlyzko 19851. 

is an extension 
of the index-calculus idea that works with smooth polynomids of degree around nm 
[Coppersmith 19841. It requires time roughly K ( ~ I ) ~ ,  where K ( n )  = exp (n '"log2"n) 
and c 

The above algorithms will compute discrete logarithms in IF;m when p is small or 
rn is 1. Perhaps due to a lack of applications, there are no algorithms known to be 
efficient when both m and p vary. The basic algorithm can be generalized by replacing 
22 by a ring of algebraic integers [EIGamal 19861; this handles IF;m when m is fixed, 
but it is unclear how it can be generalized to take account of all cases. 

One can use the index-calculus method to find logarithms in ( Z / n Z ) *  (this was 
used in Desmedt and Odlyzko's attack on the RSA scheme), but there is a simpler 
approach: just factor the group (by factoring n), and solve the problem in each group 
separately. In some sense, this is the best possible method, because an algorithm to solve 
arbitrary discrete logarithms modulo n can be used to efficiently factor n . It can also be 
shown that discrete logarithms in (22, / p  Z )* reduce in polynomial time to discrete log- 
arithms in (ZZ / p  Z)* , via p -adic logarithms [Bach 19841. The group (Zh 22)" does 
have one advantage: we know that the Diffie-Hellman problem (2.3) for this group is 
difficult, if factoring is hard [Shmuely 19851; this holds in some cases even if the genera- 
tor g is fixed [McCurley 19871. 

There is also an index-calculus algorithm for the class group of an imaginary qua- 
dratic field of discriminant -A, if the class number h is known [McCurley 19881. In this 
case, an ideal A is called M -smooth if each prime ideal p dividing it satisfies Np 5 M 
(the number of prime ideals of norm at most M is roughly the number of ordinary primes 
at most M ,  by the prime ideal theorem). Each ideal class contains an ideal of norm at 
most %, and we can attempt to find the indices of all small prime ideals in the group 
generated by g by factoring enough M-smooth ideals of the form g' (factorization of an 
ideal reduces to factorization of its norm in ZZ), and using linear algebra in Z l h Z .  
Analogously to (3.2), 

(3.9) 
[Hazlewood 19771, so that the asymptotic complexity of the first stage can be found by 
taking 9 =a, k = 1, and 1 = 2 in (3.3); it is roughly L (A). To solve g' = A given loga- 
rithms of all small prime ideals requires one smooth ideal (of the form $A), therefore 
time roughly L (A)'". 

Discrete logarithms in elliptic curves and abelian varieties have also been con- 
sidered [Miller 1985, Koblitz 1987, Koblitz 19881. These groups have the advantage that 
the index-calculus algorithm appears not to generalize to them, and if the order of the 
group is properly chosen, the exponential-time algorithms outlined earlier in this section 
can be made very expensive. 

The asymptotically fastest algorithm for discrete logarithms in 

1.41 (nor the square root of 2!). 

FV [A with NA I q is qa- smooth] 



Since all the discrete logarithm algorithms (except for the baby-step/giant-step pm- 
cedure) require knowledge of the group order, it is worthwhile to summarize how 
difficult this is to compute. For IF,., the group order is just 4-1. The orders of the last 
three groups are more refractory. It is known that any algorithm to compute 4(n) ,  the 
order of (Z In Z )* , allows one to easily factor n [Miller 19761; a similar result holds for 
the class number [Shanks 19711, although h(-A) can be computed in roughly L(A)m 
steps [McCurley 19881. Finally, although the number of solutions to 

this bound is too high for the algorithm to be practical. 
Perhaps because the problem lacks the notoriety of factoring, the rigorous analysis 

of discrete logarithm procedures has not received as much attention. The exponential- 
time algorithms are easy to analyze; the index-calculus methods, relying on smoothness, 
are not. However, there are randomized algorithms for discrete logarithms in ( Z l p  ZZ )* 
and IF;n whose expected running times can be proved to be L ( P ) ~ + O ( ~ )  and 
M ( n ) m + o ( l ) ,  respectively [Pomerance 19871. 

In contrast to factorization, there is also not much known about the special cases in 
which discrete logarithms are easy to compute. If the group is smooth, then one can use 
the factorization of the group to advantage as explained above. In particular, taking 
G = ( Z / p  Z)*, discrete logarithms can be easily found if p-1 is smooth. No one 
knows if the smoothness of p +1 (or higher cyclotornic polynomials) helps in this case. 

An intriguing unanswered question asks if the complexity of the discrete logarithm 
problem in (ZZ / p  Z)* equals that of the factorization problem. More generally, one 
would like to classify these and similar problems into degrees of difficulty; although par- 
tial results along these lines are known [Shallit and Shamir 1985, Woll 1987, Landau 
19881, a complete theory has not yet been developed. 

y 2 -  - x  3 + a x + b ( m o d p )  can be found in O(logp)*  steps [Schoof 1985], the degree of 

4. Practical considerations 
From the above discussion, if one wishes to concoct difficult instances of a factori- 

zation or discrete logarithm problem, one must avoid smoothness. In particular, not only 
must the original structure not be smooth, but neither must any related structures have 
this property. Unfortunately, without any good lower bounds on computational complex- 
ity, we are uncertain exactly what structures count as related. In addition, all of the algo- 
rithms discussed in this paper are in some sense algebraic, but this does not eliminate the 
possibility that methods of a more combinatorial nature could be useful. 

In using the heuristic running times developed above, it is important to recognize 
that first-order formulas like (3.3) tend to overestimate running times, often by several 
orders of magnitude. For example, evaluating L (n)* (the running time of the quadratic 
sieve algorithm with Gaussian elimination) at n = gives 3 ~ 1 0 ' ~  operations, or almost 
a year if an operation takes 8 nanoseconds. However, an actual 92-digit factorization [te 
Riele 19881 took 3 days on an NEC SX-2, a machine whose cycle time is 8 nanoseconds. 
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For factorization and discrete logarithms, it would be useful to have a simple 
“second-order” theory accurate enough to account for such discrepancies. This has yet 
to be worked out in any detail, but some techniques for improving the estimates can be 
suggested. 

First, although the rough estimate p(h)rh-’ is surprisingly useful for values of 
practical interest (if 5 I h 5 10, it overestimates p, by a factor of 4 at most), it is not hard 
to get better estimates. For example, if 4 denotes the positive root of e t -  1 = h t ,  and 
Ei(6) denotes the exponential integral function (that is, the Cauchy principal value of 

6 t-’e dt >, then as + -, I, 

[de Bruijn 19511. This is already quite accurate; when h=5 the error is only 10%. To 
get more precision, one can replace the integral in the deh t ion  of p by an approxha- 
tion such as Simpson’s rule and solve for p(h) in terms of “previous” values; this gives 
an iterative scheme from which it is easy to compute p numerically [van de Lune and 
Wattel 19691. There is also an asymptotic expression for p in terms of elementary func- 
tions (h-’ is its dominant factor), but it is not very precise unless h is large. 

From the published data [Schnon and Lenstra 19841 it appears that the probability 
of smoothness is estimated very well by the Dickman rho-function; this conclusion is 
also supported by the asymptotic theory [Canfield e t  al. 19831. Once one has a good 
method to estimate this function, it is not hard to restore the “missing” log factors in for- 
mulas such as (3.3) and find a good value for k numerically. This has been done at least 
for the continued fraction algorithm [Wunderlich 19851. 

For polynomials over IF2, analogs to the Dickman rho-function have been tabulated 
and the running times of various discrete logarithm algorithms worked out [Odlyzko 
19851. However, much less is known about the accuracy of estimates such as (3.91, 
which give the smoothness probability of ideals in algebraic number fields and therefore 
affect running time estimates for computing discrete logarithms in class groups and 
extension fields of iZ / p  ZZ . 

Of course, one can simply try out algorithms and see how they perform on a variety 
of machines. The most comprehensive such experiments have been performed with fac- 
toring algorithms, most notably using benchmark numbers from the Cunningham project 
[Brillhart et. al. 19831. For algorithms such as the quadratic sieve that collect many rows 
of a matrix, one expects by the law of large numbers that the running time can be extra- 
polated from the time needed to find a few rows. The elliptic curve and similar algo- 
rithms are more chancy; since only one smooth group is required, there is no reliable way 
to predict when the algorithm will finish. 

Finally, some mention should be made of the parallel versions of these algorithms. 
Algorithms such as the elliptic curve and class group factorization method have a 
straightforward parallelization: give each processor its own group to try. For the qua- 
dratic sieve, much benefit can be gained by using the multiple-polynomial version 
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[Silverman 19871. This has the theoretical advantage that the residues sieved are smaller 
than those of the unadorned algorithm, as well as the practical advantage that each pro- 
cessor can be given its own polynomial from which to generate values for sieving. This 
was the algorithm that factored the 100-digit Cunningham number (1 1 ‘04 + 1) / (1 l8 + 1). 
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