
Intractable Problems in Number Theory

Eric Bach
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

Abstract. This paper surveys computational problems related to integer factorization
and the calculation of discrete logarithms in various groups. Its aim is to provide theory
sufficient for the derivation of heuristic running time estimates, and at the same time
introduce algorithms of practical value.

0. Introduction

Several problems in number theory are believed to be computationally intractable, a
property that is potentially of great use in cryptography. Included in this category are
problems related to integer factorization and the evaluation of discrete logarithms in vari-
ous groups. The purpose of this paper is to summarize current knowledge about them,
from a theoretical viewpoint.

In line with the long-term goals of complexity theory we should like to settle the
question of whether these problems are really difficult, ic the sense of having no proba-
bilistic polynomial time algorithms. However, two features of this program seem inap-
propriate to the present context. First, a concentration on the asymptotic behavior of
algorithms may be too restrictive, as a designer of public-key cryptosystems has to make
compromises between efficiency and security and so must consider problems of a fixed
size. Second, a restriction to algorithms that can be rigorously analyzed is too smngent if
one wishes to design a system that will resist all known attacks. Since currently we can-
not even prove asymptotic lower bounds on the complexity of these problems, design
decisions must be based on what we believe to be the best algorithms. Such has been the
state of affairs ever since the invention of public-key cryptology; it seems unlikely to
change soon.

Preparation of this paper was supported by the National Science Foundation, via grants DcR-
8504485 and DCR-8552596.

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 77-93, 1990.
0 Springer-Verlag Berlin Heidelberg 1990

Of course, there have been improvements in OUT ability to solve these problems,
most strikingly for factorization. A paper written in the early 1980’s [Pomerance 19821
noted that the available algorithms could factor numbers up to 50 digits; the record now
stands at 100 digits [Lenstra and Manasse 19881. Thus the size of numbers whose factori-
zation is feasible has doubled in ten years, and more advances are sure to follow. Cer-
tainly, some of this progress has come from the use of more powerful computers; what
may not be so evident is the impact of new techniques, most notably the elliptic c w e
[Lenstra 19871 and quadratic sieve [Pomerance 19841 algorithms. Both of these algo-
rithms are easy to pardlelize on currently available machines.

Given an algorithm, one should always try to find the most general structure to
which it applies. Thus, to highlight similarities and hide details, I have used algebraic
language wherever possible. Sometimes the level of abstraction is greater than that
needed merely to describe an algorithm. I would argue, however, that from this vantage
point one can see clearly how the algorithms arise from the basic ideas. Necessarily,
some details are lost; for more complete descriptions I refer to the surveys in the refer-
ence list (marked with a “*”) as well as to the original papers.

In considering running times the reader should equate “step” with “bit operation.”

1. Problems related to factoring
The problem of factorization makes sense in any unique factorization domain, of

which the most basic example is the ordinary integers ZZ . Thus we wish to compute the
prime divisors of a number n presented as input.

If n is prime, then the problem is easy, as there are efficient randomized algorithms
to test primality. With no more work than that of evaluating a power modulo n - an
O (l o g t ~) ~ process - one can tell if a number is prime, with an error probability of at
most 114 [Rabin 19801. If certainty is needed, then a more complicated deterministic
algorithm [Adleman et. al. 19831 will prove that n is prime in at most
(logn loglog*ogn 1 ‘ +a(1) steps. This algorithm also has a randomized version that is likely
to find such a proof within the same time bound; for this it is conjectured that
c = Mog2 1.442.... Finally, a new test due to Atkin and based on complex multiplica-
tion has been recently implemented [Morain 19881; this has proved useful for testing
numbers up to 571 digits but it has not yet been analyzed.

In a statistical sense, we understand quite well how numbers factor. One can ima-
gine that a random number n has prime factors whose lengrhs are selected by a “random
bisection” process: choose a prime p whose length is uniformly distributed in the inter-
val (0, logn), replace n by n / p and repeat, and so on. From this one gets intuition about
how typical numbers factor as well as an efficient method for generating random
numbers together with their factorizations [Bach 19881.

However, we do not know a polynomial time algorithm for factoring, even if we use
randomness or make a reasonable assumption such as the extended Riemann hypothesis.
We do not even know how to zfficiently produce any useful information about the factors

79

of a number. For instance, one might ask (from a formal analogy with polynomials) if
extracting the squarefree part of a number, or just deciding if it is squarefree, takes less
time than computing the full factorization; no such result is known. Neither can we
count the prime factors of a number in any way better than finding them all.

One often finds factorization problems represented as equation-solving problems.
For instance, an algorithm to solve the congruence

x 2 L a (mod n (1.1)

can be used to efficiently factor n mabin 19791. One could make a formal analogy with
(1.1) and speculate that for e relatively prime to the Euler function @(n), the congruence

x e = a (m o d n) (1.2)

cannot be efficiently solved without finding information from which one could easily fac-
tor n. The security of the RSA cryptosystem [Rivest et. al. 19781 relies on this conjec-
ture as well as on the belief that factoring is difficult.

There is also an existence problem related to square mots modulo n : decide whether

3 x [x 2 = a (mod n) I. (1.3)

This was used in the design of a probabilistic encryption method [Goldwasser and Micali
19821. A necessary but not sufficient condition for (1.3) to hold is that the Jacobi symbol
(a In) equals 1; this is computable in 0 (logn)2 time [Collins and Loos 19821. Problem
(1.3) clearly has some relation to factoring, for if Q is a quadratic residue modulo n , then
for each p dividing n , a is a square modulo p . By quadratic reciprocity, the factors of n
are restricted to certain arithmetic progressions. However, recovering the factors from
this information seems not to be easy. There is also a relationship between deciding (1.3)
and computing o(n>, the number of distinct prime factors of n , since for odd n , the frac-
tion of quadratic residues in (Z l n Z) * is 2-”(“); however, this does not immediately
imply a polynomial-time equivalence between these problems.

More generally, one might wish to decide if, for a number e not prime to @(n),

3 x [x e =a(modn)] . (1.4)

This problem has been applied to the design of election protocols [Cohen and Fischer
19851. It has been argued on heuristic grounds that an efficient algorithm to solve (1.4)
for general e and n would lead to an algorithm for factoring that, although not polyno-
mial time, would outperform any currently known on certain numbers [Adleman and
McDonnell 19831.

Problems (1.1)-(1.4) are all solvable in random polynomial time for prime moduli
and hence (by the Chinese remainder theorem and Hensel’s lemma) for moduli whose
factorization is known. The first two might be called “zero-dimensional” problems, for
the analogous equations over the complex numbers have only finitely many solutions.
Despite our intuition that increasing the dimension increases the complexity, similar
one-dimensional problems are efficiently solvable. In particular, there is an efficient
algorithm [Pollard and Schnorr 19871 to solve

80

x 2 - d y 2 = a (m o d n) (1.5)

as well as efficient algorithms for related problems in algebraic number rings [Adleman
et. al. 19871.

All of the problems (1.1) - (1.4) make sense if ZZ is replaced by a ring and n is
replaced by an ideal of finite index. Such generalizations appear not to have been studied
much, although cryptographic schemes similar to the RSA have been proposed using
algebraic numbers [Williams 19861.

2. Problems related to discrete logarithms
Just as the factorization problem is concerned with rings, the discrete logarithm

problem is concerned with groups. Thus let G denote a finite cyclic group, in which the
equality predicate, group multiplication, and inverses can be efficiently computed. If g
is a generator of G and LZ another element of G , we wish to solve

g x = a ; (2.1)

this is the discrere logarithm problem. (The restriction to cyclic groups is no constraint
because the group generated by an element is always cyclic.) If G has order m , then

G ZZImZ. (2.2)

One can efficiently compute the reverse direction (g ' c x) of this isomorphism by
repeated squaring, with 0 (logx) group multiplications. The discrete logarithm problem
is that of computing the forward direction. Of course Z l m Z has a natural ring struc-
ture, and one might ask if the multiplication operation can be transplanted to G ; that is, if
one can efficiently

compute gxY given g x , g ' . (2.3)

This is the Diffre -Hellman problem; clearly an algorithm to compute the forward direc-
tion of (2.2) (that is, solve (2.1)) can be used to solve it. For most groups of interest, it is
unknown if the converse holds, although this has been shown in certain cases for
(22 ip Z)* [den Boer 19881.

Various groups have been suggested in cryptographic applications of problems (2.1)
and (2.3). The original key-exchange proposal [Diffie and Hellman 19781 suggested
(Z / p Z)* where p is prime; one might also use IF;, the multiplicative group of a finite
field. There are also possible applications where the ambient group is non-cyclic,
employing the unit group (Z / n Z) * [Shmuely 1985, McCurley 19871, class groups of
imaginary quadratic fields puchmann and Williams 19881, and various algebraic groups
such as elliptic curves Miller 1985, Koblitz 19871, abelian varieties [Koblitz 19881, and
matrix groups [Varadharajan 19861.

With such an abundance of examples, one might well ask how far the generalization
can be pushed. It seems that nothing about (2.1) or (2.3) requires that the group be finite,
or even that inverses be computable; perhaps one could use semigroups instead of
groups.

81

3. Algorithms

apparent running times that are moderate powers of the following function:
Remarkably, many of the best algorithms for the problems discussed above have

(3.1)

(here n is the number to be factored or the size of the group and logn is its natural loga-
rithm). Before presenting algorithms, it will be worthwhile to discuss this function and
how it arises.

L (n) is often cakd a subexponentid function because it grows more slowly than nE
for any E > 0; the appellation “subexponentid” is apt because nE is an exponential func-
tion of the length logn . However, most of our intuition deals with polynomial time algo-
rithms, so it is convenient to pretend that L (n) is a polynomial in log n with a slowly
growing exponent, and define E (n) by L (n) = (log n) E (n) . The following values hold:

L (n) = e . i lwloglogn

logn 115 230 460 1151 2303

E (n) 4.9 6.5 8.7 12.8 17.2

From the above chart, if an algorithm requires L (n)‘ steps, a small reduction in c will
have a large effect on its running time.

L (n) arises from considerations of smoothness (a number is smoorh with respect to
a bound M if all its prime factors are less than or equal to M). Briefly, there is a tradeoff
between making smooth numbers plentiful (M should be large) and making smooth
numbers easy to recognize (M should be small).

To quantify this, we can use the random bisection heuristic cited above to get a
plausible estimate for the “probability” P (a) that a random number near q is composed
of prime factors less than qa. Conditioning on the first factor’s relative length x (which
is presumed to be uniformly distributed),

after the change of variable h = 1 / a this becomes
- L

This equation, together with the initial condition p(h) = 1 for 0 < h c 1, defines the Dick-
man rho-finction. As a rule of thumb, p(h) 2 h-’ ; consequently,

P r [x S q is qa-smooth] E (3.2)

82

This can be used in a simple argument that underlies many running time calcula-
tions. Consider a two-phase procedure that first assembles a set of M-smooth numbers
(with some desired properties) and then processes this set further to complete the algo-
rithm. The first phase simply chooses random candidates (of size roughly q) and adds
them to the set if they are smooth, To find the work for this phase, multiply the requisite
number of smooth numbers by the work necessary to check a number for smoothness,
and divide by the probability that a random number near q is smooth. If first two factors
combined produce a term around M k and the second phase of the algorithm takes M’
steps, then by the approximation (3.2). the total time is roughly

(3.3)

where h = (logq) I(1ogM). If T, >> T,, we can minimize logT, by setting its derivative
to zero and find that asymptotically

T = Tl+T2 3 M k h ‘ + M 1

h = d(2k logq)/loglogq,

so

T = T 1 + T , E L (4) + L (q) v m (3.4)

(the first term dominates if 2k 2 1) . Evidently we would like q , k, and 1 to be small; in
fact, much of the progress in factorization and discrete logarithms has come from reduc-
ing these parameters.

Naturally, one would like to justify calculations such as the above, but this can be
rigorously done only for certain algorithms. The problem is not with the approximation
(3.2) - which can be sharpened - but with the tacit assumption that the numbers con-
structed by the algorithm are smooth with the same probability as random numbers of
comparable size. Because in many important cases we are unable to prove this, there has
arisen a notion of “heuristic” running time bounds for such algorithms. Thus we distin-
guish between proofs that an algorithm uses or expects to use only a certain number of
steps (so-called “rigorous” bounds) and plausibility arguments for such assertions that
always rely on unproved ad hoc assumptions. Of course, we can always try out a factor-
ing or discrete logarithm algorithm and see if it works, since any answer produced can be
quickly checked. For this reason, heuristic arguments are very useful, even if they are
mathematically suspect.

In the descriptions below all running times will be heuristic, unless otherwise noted
(the asymptotic notations ’0 ’ and ’o ’ are reserved for proved results). Furthermore, the
calculations are what might be called “first-order”: they are only accurate enough to
derive the correct value of c in an estimate of the form L (r ~) ~ . In particular, they ignore
relatively small factors such as powers of log n .

Algorithms for factoring

Most factorization algorithms rely on what might be called a “functorial”
approach. The idea is to associate with each ring Z l n Z an object X, in a generic
fashion, so that the factorization given by the Chinese remainder theorem transfers to a

83

factorization of X, , thus:

Z l n Z Z l p Z x Z Z / q Z (3.5)

x, xp x xq
(in this section assume that n has two distinct prime factors p and 4). We then use the
factorization of X, to recover the factors of n, usually by constructing special elements
of X,. The easiest way to guarantee that (3.5) occurs is to define X, with polynomial
equations modulo n , though this may not be the only way to proceed.

The best algorithms for factoring numbers composed of two equally large primes
are the quadratic residue family of algorithms. These algorithms work with the group
X, = { x : x 2 s 1 mod n), for any element of X, that is not congruent to +1 mod n (at
least half of the elements of X, have this property) will allow us to factor n as
gcd (x-1, n). Equivalently, we can homogenize and seek numbers x and y for which
x 2 = y but x & + y . The algorithms in this family all do this by performing three basic
steps:

2

1) Generate many quadratic residues mod n .
2) Try to factor them using primes p IM, to construct congruences of the form

2
r I p s M P e p =?- *

3) Using linear algebra on the exponents modulo 2, combine the congruences

The continued-fraction factoring algorithm [Momson and Brillhart 19701 gen-
erates residues around 6 in size by evaluating the continued fraction of 6, factors
them by trial division, and uses Gaussian elimination for the linear algebra. Since
roughly M linear equations are needed, we can take q = n ln, k = 2, and I = 3 in (3.4) to
find that the running time is approximately L (n)JZ.

The quadratic sieve algorithm [Pomerance 19841 dispenses with the need for trial
division, by using values of a polynomial to form residues around 6 in size. Instead of
factoring each residue separately, the algorithm processes polynomial arguments one
prime at a time, only examining those for which the corresponding value will be divisible
by that prime. Neglecting log factors, the amortized cost of factorization per residue may
be taken as constant. Using the notation of (3.3), the number of polynomial arguments
processed must be the number of smooth residues needed (M) times the inverse smooth-
ness probability (1’). If Gaussian elimination is used for the linear algebra, then the run-
ning time is the result of taking k = 1 and I = 3 in (3.3). A good choice for M is obtained
by balancing T I (the cost of sieving) and T , (the cost of equation solving), which leads to
a running time of approximately L (n)m.

Since a number m has no more than log2m prime factors, the running time of this
and similar algorithms can be improved by exploiting the sparsity of the linear equations.

multiplicatively to find x and y with x 2 t y 2 .

a4

A randomized algorithm based on shift-register synthesis miedemann 19841 will solve
an M x M linear system of equations over a finite field with 0 (Mw) field operations, if
there are w nonzero coefficients. Therefore, for theoretical purposes we may take I = 2 in
analyzing the Gaussian elimination phase of the quadratic sieve algorithm; this leads to
the improved estimate L (n) for the running time.

If one wishes to factor a number with a known or suspected small prime factor p ,
the algorithm of choice is the elliptic curve method [Lenstra 19871. This takes X,, to be
the set of solutions to y 2 E x 3 +ax + b (mod n). By h e Chinese remainder theorem,
X,, Xp x X,, but Xp has some additional structure. Augmented by an additional
“point at infinity” (O:l:O), it forms an abelian group f p with (0:l:O) as the identity (this
group is written additively). The group operations are given by rational functions, which
can be evaluated mod n. By the Riernann hypothesis for finite fields,
p + 1 - 2 6 I I I I p + 1 + 2 6 , and the group order can be randomized within this
interval by varying a and b . If we are lucky and find an M-smooth group (that is, one of
M-smooth order), then any element must become the identity when multiplied by
E = r I p < M P LlogpMJ . course, no rational operations can produce the point at
infinity, so a factor is detected when one attempts this multiplication and divides by a
non-unit in 22 In SZ . For success, we expect to need only one M -smooth group, but by
the prime number theorem, multiplication by E requires roughly M operations. The run-
ning time is therefore estimated by taking q = p , k = 1 and 1 = O in (3.4); one expects to
extract p in approximately L (ply‘ steps.

A related algorithm - it does not fit the paradigm (3.5)! - is based on class groups
[Schnorr and Lenstxa 19841. Here one chooses a random small multiplier p, and forms a
group from the invertible ideals modulo similarity of a subring A of Q(.(Icm). In the
simplest case, -pn is the field discriminant, whose divisors are exactly the ramified
primes. Solutions to x 2 = 1 in the class group lead in a straightforward way to these
primes. (Factors can also extracted from square roots of 1 in the general case, but the
theory is more complicated). If the group order h depends “randomly” on p, as sug-
gested by heuristic considerations [Cohen and Lenstra 19841, we may try many values of
p and hope that one of the resulting groups is M-smooth. If so we can annihilate the odd
part of the group by brute force, then square repeatedly to find solutions to x 2 = 1. Since
h 5 ‘&-, we can evaluate the running time by taking q =G, k = 1 and I =O in (3.4) and
find it to be roughly L (n).

The above discussion cites three factorization methods with a conjectured running
time near L(n) , and one might suspect that this is the true complexity of factoring. How-
ever, the algorithms are all based on similar ideas, so it is equally plausible that the L (n)
running times are simply a consequence of this similarity. Of these algorirhms, the qua-
dratic sieve is the best algorithm in practice (unless we think the number to be factored
might have a small prime divisor). It is superior because a typical step in its execution is
a single-precision subtraction; a step of the elliptic curve algorithm must evaluate a pair
of rational functions (at a cost of 0 (log t ~) ~) , and a step of the class group algorithm
must perform a gcd calculation followed by a ’-dimensional lattice reduction (again, an
o (log n >* operation).

05

The cycloromic family of factoring algorithms takes X, = (A /n A) * , where A is a
ring of algebraic integers. In these cases, Xp is a direct sum of finite fields, each of order
p k - 1 for some k, and we can easily factor n when any algebraic factor of p k -1 is
smooth [Bach and Shallit 19851. The practically important cases are k = 1,2; that is, the
method is useful when p f: 1 is smooth. For example, if A = Z, then the unit group
modulo p has order p -1, and by raising to a large enough power E we can annihilate
this group, factoring n with gcd(xE-1,n) [Guy 19761. T h e p + l method [Williams
19821 works in a similar fashion with the group of elements in the finite field FP2 that
have norm 1. Both methods have a refinement in which the running time is proportional
to the square mot of the smoothness bound [Montgomery 19871; they are useful as prel-
iminary steps in factorization, before a complicated method like the quadratic sieve is
used.

Some attention has also been paid to the effects of “second-order’’ smoothness, that
is, smoothness of the automorphism group of (A / p A) * . For example, if the map x + x e ,
an automorphism of (Z / p Z) * , has a small order r , then we can split n with
gcd(xe ‘ - x , n) . This leads to a requirement that $(p-l), the order of the automorphism
group, have at least one large factor ifp is going to be hfficult to remove from n . Simi-
larly, by considering automorphisms of the group of norm-1 elements in IFp 2, we see that
$(p+l) should be chosen to have a large factor.

By properly building primes, the methods of the previous two paragraphs are easy
to defend against. What appears to be more difficult is constructing a number that resists
the elliptic curve or class group factorization methods. No one knows how to make the
smoothness of the groups that occur in these algorithms less likely than the smoothness
of random numbers of a comparable size.

A few words should be said here about rigorous analyses of factorization algo-
rithms. Surprisingly, the best known running time for a deterministic factoring algorithm
is n1’4+o(1) [Pollard 19741; this can be lowered to n1/5+0(1) if the Extended Riemann
Hypothesis is assumed [Schoof 19821. The best randomized algorithm for factoring
takes expected time L (n) * + O (l) [Vallde 19881, although assuming the ERH, a random-
ized algorithm related to the class group method has an expected running time of
L (n) l + O (l) steps [Lenstra 19871.

Contrasted with the variety of factoring algorithms, very little seems to be known
about direct attacks on the RSA encryption scheme (1.2) or the residue problems (1.3)
and (1.4). It has been shown that an algorithm to find or guess individual bits of a solu-
tion to (1.2) could be used to efficiently find complete solutions [Chor 19861, and that the
cost of obtaining individual solutions to (1.3) can be reduced by accumulating other solu-
tions [Desmedt and Odlyzko 19861, but no method to attack these problems has surfaced
that is substantially better than factorization. Unfortunately, we cannot rule out the pos-
sibility that one exists.

86

Algorithms for discrete logarithms
The complexity of the discrete logarithm problem depends very much on the group

considered. The most general algorithms are “canonical” in the sense that they use only
the group operations; however their running times are exponential. In several important
cases, though, we know methods with subexponential Nnning times, equal to or better
than those of the best factorization algorithms. However, these methods require the
group to be specified as part of a larger structure.

The baby-steplgiant-step algorithm [Shanks 19711 works in any group, as fol-
lows. Assume that I G I 5 r2 , then a solution to g* =a can be written x o + x I t with
0 <xi < t . By computing the 2r elements gxO and a -g-* lr and looking for a match (one
can either sort or use hashing), x can be found in roughly I G I steps (the space require-
ment is comparable; if I G I is known, this can be reduced with a variant of the “rho”
algorithm Pollard 19781).

This idea can be extended [Pohlig and Hellman 19781 i fG is smooth in the sense of
having a long chain factorization, where I Gi /Gi-l I = p :

l = G o C G l C G 2 C . . . c G , = G .

Then the index x is expressible as x x i p ’ , O I x i cp , and via the homomorphism
Gi + G 1 (raise to the power p computation of the xi’s reduces to the solution of k
discrete logarithm problems in G Using the above algorithm, the complexity is roughly
k $.

mi. where the
mi ’s are relatively prime. This induces a factorization of G into groups of relatively
prime order, and if the mi ’s are small we can solve the discrete log problem by going
counterclockwise around the following diagram:

Finally, assume that the factorization of rn = I G I is known: rn =

1 t

(to project G into Gi , raise to the power m/mi , to go across, solve the problem in each
group G; , and to go up, use the Chinese remainder theorem).

By combining the last two algorithms one sees that, except for a factor that is poly-
nomial in log IG I , the discrete log problem for a p-smooth group is solvable in time
roughly 6.

In certain groups one can use the index -calculur family of algorithms, which work
essentially by doing factorization on the left of (2.2) and linear algebra on the right. To
use these algorithms G must be specifiable in the following way: start with a ring A that
has unique factorization (or more generally, unique ideal factorization), take the free

a7

Abelian group generated by the primes (certain “exceptional” primes may be omitted),
and form the quotient group modulo a set of multiplicative identities. If G is represented
as such a group, then factorizations in A lead to identities in G , which can be exploited
to compute discrete logarithms. An important feature of this family of algorithms is that
once one logarithm is computed, others can be found relatively quickly (typically in time
equal to the square root of that needed to compute the first logarithm).

For example, take G = (Z / p 22)* and A = 22 [Adleman 19801. For a smoothness
bound M , roughly M smooth numbers of the form g x will serve to tell us the discrete
logarithms of all primes up to M. To find them, we try to factor random powers of g
using primes less than or equal to M ; each successful factorization gives a linear equa-
tion in 22/@-1)Z for the logarithms. The time required to construct this “database”
can be estimated by taking k = 1 and 1 = 2 in (3.3), assuming that a subexponential factor-
ization algorithm and sparse matrix techniques (generalized to finite rings) are used This
gives a time of roughly L(p)’? for the first phase of the algorithm. Once this is com-
pleted, computing the logarithm of a requires one smooth number of the form u . g r ; if t
is chosen at random, this will succeed after approximately k’ trials, in approximately
L (plfit2 steps.

This method can be modified so that it uses smooth numbers near 6 rather than
near p [Coppersmith et. al. 19851. In the analysis one has to replace p by p’“ in the
above formulas; if this is done one finds that roughly L (p) steps are needed to find the
logarithms of small primes, and the work per additional logarithm is close to L (P) ” ~ .

Similar methods are available for lFi when q = 2” (or, more generally, a power of a
small prime); they have been exhaustively sumeyed [Odlyzko 19851. To study them, one
needs an analog of (3.3) for polynomials (since elements of IFzn are represented in this
fashion). Calling a polynomial (over IF,) d-smooth if all of its irreducible factcrs have
degree at most d , the analogous approximation to (3.2) is

Pr [f of degree d is ad - smooth] (3.6)
Assume that the algorithm requires a collection of m-smooth polynomials, each of
degree roughly d . Again, the work in assembling them is the size of the collection times
the work required to test a candidate (estimated as 2mk) times the inverse smoothness
probabiIity 1’. Taking h = d h , and assuming a second phase of complexity Zmf, the
total time is

a”a.

T = T I + T2 2 2mkh‘+2mi (3.7)
which is minimized asymptotically for m = d(dlogd)/(2klog2), and leads to

T, + T , Z M (d) - + M(d)“1210g2/2k (3.8)
where M (d) = e

The basic indexcalculus algorithm in IF;. first tries to find m -smooth polynomials
g x which have degree n . Ignoring log factors, roughly 2m polynomials are needed. Tak-
ing d = n , k = 1 and I = 2 in (3.8) (the time to factor can be neglected perlekamp 19671,

88

and as usual the linear equations are sparse), we find the time for the first phase to be
roughly M (n) m , and the time to extract addtional logarithms to be about
M (n) m . As with (22 / p ZZ)* , this can be improved by working with smooth polyno-
mials whose degree is a constant fraction of n [Odlyzko 19851.

is an extension
of the index-calculus idea that works with smooth polynomids of degree around nm
[Coppersmith 19841. It requires time roughly K (~ I) ~ , where K (n) = exp (n '"log2"n)
and c

The above algorithms will compute discrete logarithms in IF;m when p is small or
rn is 1. Perhaps due to a lack of applications, there are no algorithms known to be
efficient when both m and p vary. The basic algorithm can be generalized by replacing
22 by a ring of algebraic integers [EIGamal 19861; this handles IF;m when m is fixed,
but it is unclear how it can be generalized to take account of all cases.

One can use the index-calculus method to find logarithms in (Z / n Z) * (this was
used in Desmedt and Odlyzko's attack on the RSA scheme), but there is a simpler
approach: just factor the group (by factoring n), and solve the problem in each group
separately. In some sense, this is the best possible method, because an algorithm to solve
arbitrary discrete logarithms modulo n can be used to efficiently factor n . It can also be
shown that discrete logarithms in (22, / p Z)* reduce in polynomial time to discrete log-
arithms in (ZZ / p Z)* , via p -adic logarithms [Bach 19841. The group (Zh 22)" does
have one advantage: we know that the Diffie-Hellman problem (2.3) for this group is
difficult, if factoring is hard [Shmuely 19851; this holds in some cases even if the genera-
tor g is fixed [McCurley 19871.

There is also an index-calculus algorithm for the class group of an imaginary qua-
dratic field of discriminant -A, if the class number h is known [McCurley 19881. In this
case, an ideal A is called M -smooth if each prime ideal p dividing it satisfies Np 5 M
(the number of prime ideals of norm at most M is roughly the number of ordinary primes
at most M , by the prime ideal theorem). Each ideal class contains an ideal of norm at
most %, and we can attempt to find the indices of all small prime ideals in the group
generated by g by factoring enough M-smooth ideals of the form g' (factorization of an
ideal reduces to factorization of its norm in ZZ), and using linear algebra in Z l h Z .
Analogously to (3.2),

(3.9)
[Hazlewood 19771, so that the asymptotic complexity of the first stage can be found by
taking 9 =a, k = 1, and 1 = 2 in (3.3); it is roughly L (A). To solve g' = A given loga-
rithms of all small prime ideals requires one smooth ideal (of the form $A), therefore
time roughly L (A)'".

Discrete logarithms in elliptic curves and abelian varieties have also been con-
sidered [Miller 1985, Koblitz 1987, Koblitz 19881. These groups have the advantage that
the index-calculus algorithm appears not to generalize to them, and if the order of the
group is properly chosen, the exponential-time algorithms outlined earlier in this section
can be made very expensive.

The asymptotically fastest algorithm for discrete logarithms in

1.41 (nor the square root of 2!).

FV [A with NA I q is qa- smooth]

Since all the discrete logarithm algorithms (except for the baby-step/giant-step pm-
cedure) require knowledge of the group order, it is worthwhile to summarize how
difficult this is to compute. For IF,., the group order is just 4-1. The orders of the last
three groups are more refractory. It is known that any algorithm to compute 4(n) , the
order of (Z In Z)* , allows one to easily factor n [Miller 19761; a similar result holds for
the class number [Shanks 19711, although h(-A) can be computed in roughly L(A)m
steps [McCurley 19881. Finally, although the number of solutions to

this bound is too high for the algorithm to be practical.
Perhaps because the problem lacks the notoriety of factoring, the rigorous analysis

of discrete logarithm procedures has not received as much attention. The exponential-
time algorithms are easy to analyze; the index-calculus methods, relying on smoothness,
are not. However, there are randomized algorithms for discrete logarithms in (Z l p ZZ)*
and IF;n whose expected running times can be proved to be L (P) ~ + O (~) and
M (n) m + o (l) , respectively [Pomerance 19871.

In contrast to factorization, there is also not much known about the special cases in
which discrete logarithms are easy to compute. If the group is smooth, then one can use
the factorization of the group to advantage as explained above. In particular, taking
G = (Z / p Z)*, discrete logarithms can be easily found if p-1 is smooth. No one
knows if the smoothness of p +1 (or higher cyclotornic polynomials) helps in this case.

An intriguing unanswered question asks if the complexity of the discrete logarithm
problem in (ZZ / p Z)* equals that of the factorization problem. More generally, one
would like to classify these and similar problems into degrees of difficulty; although par-
tial results along these lines are known [Shallit and Shamir 1985, Woll 1987, Landau
19881, a complete theory has not yet been developed.

y 2 - - x 3 + a x + b (m o d p) can be found in O(logp)* steps [Schoof 1985], the degree of

4. Practical considerations
From the above discussion, if one wishes to concoct difficult instances of a factori-

zation or discrete logarithm problem, one must avoid smoothness. In particular, not only
must the original structure not be smooth, but neither must any related structures have
this property. Unfortunately, without any good lower bounds on computational complex-
ity, we are uncertain exactly what structures count as related. In addition, all of the algo-
rithms discussed in this paper are in some sense algebraic, but this does not eliminate the
possibility that methods of a more combinatorial nature could be useful.

In using the heuristic running times developed above, it is important to recognize
that first-order formulas like (3.3) tend to overestimate running times, often by several
orders of magnitude. For example, evaluating L (n)* (the running time of the quadratic
sieve algorithm with Gaussian elimination) at n = gives 3 ~ 1 0 ' ~ operations, or almost
a year if an operation takes 8 nanoseconds. However, an actual 92-digit factorization [te
Riele 19881 took 3 days on an NEC SX-2, a machine whose cycle time is 8 nanoseconds.

90

For factorization and discrete logarithms, it would be useful to have a simple
“second-order” theory accurate enough to account for such discrepancies. This has yet
to be worked out in any detail, but some techniques for improving the estimates can be
suggested.

First, although the rough estimate p(h)rh-’ is surprisingly useful for values of
practical interest (if 5 I h 5 10, it overestimates p, by a factor of 4 at most), it is not hard
to get better estimates. For example, if 4 denotes the positive root of e t - 1 = h t , and
Ei(6) denotes the exponential integral function (that is, the Cauchy principal value of

6 t-’e dt >, then as + -, I,

[de Bruijn 19511. This is already quite accurate; when h=5 the error is only 10%. To
get more precision, one can replace the integral in the deh t ion of p by an approxha-
tion such as Simpson’s rule and solve for p(h) in terms of “previous” values; this gives
an iterative scheme from which it is easy to compute p numerically [van de Lune and
Wattel 19691. There is also an asymptotic expression for p in terms of elementary func-
tions (h-’ is its dominant factor), but it is not very precise unless h is large.

From the published data [Schnon and Lenstra 19841 it appears that the probability
of smoothness is estimated very well by the Dickman rho-function; this conclusion is
also supported by the asymptotic theory [Canfield e t al. 19831. Once one has a good
method to estimate this function, it is not hard to restore the “missing” log factors in for-
mulas such as (3.3) and find a good value for k numerically. This has been done at least
for the continued fraction algorithm [Wunderlich 19851.

For polynomials over IF2, analogs to the Dickman rho-function have been tabulated
and the running times of various discrete logarithm algorithms worked out [Odlyzko
19851. However, much less is known about the accuracy of estimates such as (3.91,
which give the smoothness probability of ideals in algebraic number fields and therefore
affect running time estimates for computing discrete logarithms in class groups and
extension fields of iZ / p ZZ .

Of course, one can simply try out algorithms and see how they perform on a variety
of machines. The most comprehensive such experiments have been performed with fac-
toring algorithms, most notably using benchmark numbers from the Cunningham project
[Brillhart et. al. 19831. For algorithms such as the quadratic sieve that collect many rows
of a matrix, one expects by the law of large numbers that the running time can be extra-
polated from the time needed to find a few rows. The elliptic curve and similar algo-
rithms are more chancy; since only one smooth group is required, there is no reliable way
to predict when the algorithm will finish.

Finally, some mention should be made of the parallel versions of these algorithms.
Algorithms such as the elliptic curve and class group factorization method have a
straightforward parallelization: give each processor its own group to try. For the qua-
dratic sieve, much benefit can be gained by using the multiple-polynomial version

91

[Silverman 19871. This has the theoretical advantage that the residues sieved are smaller
than those of the unadorned algorithm, as well as the practical advantage that each pro-
cessor can be given its own polynomial from which to generate values for sieving. This
was the algorithm that factored the 100-digit Cunningham number (1 1 ‘04 + 1) / (1 l8 + 1).

5. Acknowledgements
I would like to thank Josh Benaloh, Susan Landau, Kevin McCurley, Fraqois

Morain, Andrew Odyzko, Carl Pomerance, and Jeffrey Shallit for helpful comments.
The support of the National Science Foundation is also gratefully acknowledged.

6. References
L.M. Adleman, A subexponential algorithm for the discrete logarithm problem with applications to cryp-
tography, in Proceedings of the 1980 IEEE Symposium on Foundations of Computer Science, New Y o k
IEEE (1980).
L.M. Adleman and R. McDonnell, An application of higher reciprocity to computational number theory, in
Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, New York: IEEE (1983).
L.M. Adleman, C. Pomerance, and R.S. Rumely. On distinguishing prime numbers from composite
numbers, Annals of Mathematics 117 (1983), pp. 173-206.

* L.M. Adleman and K.S. McCurley, Open problems in number theoretic complexity, in Discrete Algorithms
and Complexity (Proceedings of the Japan-US Joint Seminar), London: Academic Press (1987).
L.M. Adleman, DR. Estes, and KS. McCurley, Solving bivariate quadratic congruences in random poly-
nomial time, Mathematics of Computation 48 (1987). pp. 17-28.
E. Bach, Discrete logarithms and factoring, University of California at Berkeley Computer Science Divi-
sion Report 84/186 (1984).
E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Mathematics of Computation 52 (1989).
E. Bach, How to generate factored random numbers, SIAM Journal on Computing 17 (1988), pp. 179-193.
E.R. Berlekamp, Factoring polynomials over finite fields, Bell System Technical Journal 46 (1%7). pp.

B. den Boer, Diffie-Hellman is as strong as discrete log for certain primes, preprint, Centre for Mathernat-
ics and Computer Science, Amsterdam (1988).
J. Brillhart, D.H. Lehmer, J L . Selfridge, B. Tuckerman, and S.S. Wagstaff, Jr., Factorizations of b”+ 1,
b = 2,3,5,6,7,10,11,12 up to High Powers, Providence: American Mathematical Society (1983).
N.G. de Bruijn, The asymptotic behavior of a function occurring in the theory of primes, Journal of the
Indian Mathematical Society 15 (1951), pp. 25-32.
J. Buchmann and H.C. Williams, A key-exchange system based on imaginary quadratic fields, Journal of
Cryptology l(1988).
E.R. Canfield, P. Erdijs, and C. Pomerance, On a problem of Oppenheim concerning “Factorisatio
Numerorum,” Journal of Number Theory 17 (1983), pp. 1-28.
B.Z. Chor, Two Issues in Public Key Cryptography, Cambridge: MIT Press (1986).
H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, in Number Theory (Lecture
Notes in Mathematics 1068), Berlin: Springer (1984).
J.D. Cohen and M.J. Fischer, A robust and verifiable cryptographically secure election scheme, in proceed-
ings of the 26th Annual ACM Symposium on Foundations of Computer Science, New York: IEEE (1985).
G. Collins and R. Loos, The Jacobi symbol algorithm, SIGSAM Bulletin 16 (1982). pp. 12-16.

1853-1859.

92

D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE Transactions on Infor-
mation Theory 30 (1984). pp. 587-594.
D. Coppersmith, A.M. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p), Algorithmica 1 (1986)-

Y. Desmedt and A.M. Odlyzko, A chosen text attack on the RSA cryptosystem and some discrete loga-
rithm schemes, in Proceedings of CRYPTO '85 (Lecture Notes in Computer Science 218), Berlin: Springer
(1986).
W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory 22
(1978), pp. 644-654.
T. ElGamal, On computing logarithms over finite fields, in Proceedings of CRYPTO '85 (Lecture Notes in
Computer Science 218). Berlin: Springer (1986).
S. Goldwasser and S. Micah, Probabilistic encryption, Journal of Computer and System Sciences 28

*R.K. Guy, How to factor a number, in Proceedings of the Fifth Manitoba Conference on Numerical
Mathematics (1976).
D.G. Hazlewood, On ideals having only small prime factors, Rocky Mountain Journal of Mathematics 7

N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48 (1987), pp. 203-209.
N. Koblitz, A family of Jacobians suitable for discrete log cryptosystems, Proceedings of CRYPT0 '88,
Berlin: Springer (1989).
S. Landau, Some remarks on computing the square parts of integers, Information and Computation 78

A.K. Lenstra, Fast and rigorous factorization under the generalized Riemann hypothesis, University of Chi-
cago Computer Science Department Report 87-007 (1987) [to appear, Indagationes Mathematicael.

* A.K. Lenstra and H.W. Lenstra, Jr., Algorithms in number theory, to appear in Handbook of Theoretical
Computer Science. Amsterdam: North-Holland.
A.K. Lenstra and M. Manasse, 100 digit factorization, announcement (1988).
H.W. Lenstra, Jr.. Factoring integers with elliptic curves, Annals of Mathematics 126 (1987), pp. 649-673
J. van de Lune and E. Wattel, On the numerical solution of a differential-difference equation arising in ana-
lytic number theory, Mathematics of Computation 23 (1969), pp. 417-421.
K.S. McCurley, A key distribution system equivalent to factoring, preprint, IBM Almaden Research Center
(1987).
K.S. McCurley. Cryptographic key distribution and computation in class groups, to appear in Promedings
of the NATO Advanced Study Institute on Number Theory and Applications (Banff, May 1988). Dor-
drechr Reidel. [Available as IBM Almaden Research Center Technical Report W33.1
GL. Miller, Riemann's hypothesis and tests for primality, Journal of Computer and System Sciences 13

v. Miller, use of elliptic curves in cryptography, in Proceedings of CRYPTO '85 (Zecture Notes in Com-
puter Science 218). Berlin: Springer (1986).
P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factoring. Mathematics of Computa-
tion 48 (1987), pp. 243-2a.
F. Morain. Implementation of the Goldwasser-KiEan-Atkin primality testing algorithm, University of
Limoges / INRIA Report (1988).
M A . Morrison and J. Brillhart, A method of factoring and the factorization of F,, Mathematics of Compu-
tation 29 (1975), pp. 183-205.
J.M. Pollard, Theorems on factorization and primality testing, Proceedings of the Cambridge Philosophical
Society 76 (1974), pp. 521-528.
J.M. Pollard. Monte Car10 methods for index computation (mod p) , Mathematics of Computation 32

pp. 1-15.

(1984), pp. 270-299.

(1977), pp. 753-768.

(1988), pp. 246-253.

(1976). pp. 300-317.

(1978). pp. 918-924.

93

J.M. Pollard and C.-P. Schnorr, An efficient solution of the congruence x2+ky2= m(mod n) . IEEE Tran-
sactions on Information Theory IT-33 (1987), pp. 702-709.
S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over GF(p) and its crypto-
graphic significance, IEEE Transactions on Information Theory 24 (1978), pp. 106-110.

* C. Pomerance, Analysis and comparison of some integer factoring algorithms, in Computational Methods
in Number Theory (v. 1). edited by H.W. Lenstra, Jr., and R. Tijdeman, Amsterdam Mathematical Centre
Tract #I54 (1982).
C. Pomerance, The quadratic sieve factoring algorithm, in Proceedings of EUROCRWT 84 (Lecture
Notes in Computer Science 209) Berlin: Springer (1985).
C. Pomerance, Fast rigorous factorization and discrete logarithm algorithms, in Discrete Algorithms and
Complexity, Proceedings of the Japan-US Joint Seminar, London: Academic Press (1987).

* AM. Odlyzko, Discrete logarithms and their cryptographic significance, Proceedings of EUROCRYPT '84
(Lecture Notes in Computer Science 209). Berlin: Springer (1985).
M.O. Rabin, Digitalized signatures and public-key functions as inmtable as factorization, MIT Labora-
tory for Computer Science Report TR-212 (1979).
M.O. Rabin, Probabilistic algorithm for testing primality. Journal of Number Theory 12 (1980). pp. 128-
138.
H. te Riele, W. Lioen and Dik Winter, New factorization records, announcement (1988).
R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosys-
terns, Communications of the ACM 21 (1978), pp. 120-126.
D. Shanks, Class number, a theory of factorization, and genera, in Proceedings of Symposia in Pure
Mathematics 20, Providence: American Mathematical Society (1971).
C. Schnorr and H.W. Lensna, Jr., A Monte Carlo factoring algorithm with linear storage, Mathematics of
Computation 43 (1984), pp. 289-311.
R. Schoof, Quadratic fields and factorization, in Computational Methods in Number Theory (v. 2), edited
by H.W. Lenstra, Jr.. and R. Tijdernan, Amsterdam Mathematical Centre Tract #I55 (1982).
R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p . Mathematics of
Computation 44 (1985). pp. 483-494.
J. Shallit and A. Shamir, Number-theoretic functions which are equivalent to number of divisors, Informa-
tion Processing Leners 20 (1985). pp. 151-153.
Z. Shmuely, Composite Diffie-Hellman public-key systems are hard to break, Technion Computer Science
Department Report 356 (1985).
R.D. Silverman, The multiple polynomial quadratic sieve, Mathematics of Computation 48 (1987), pp.

B. Valltk, Quasi-uniform algorithms for finding small quadratic residues and application to integer facmri-
sation, preprint, Universitk de Caen (1988) msented at 1988 Ails Computational Number Theory
Conference].
V. Varadharajan, Trapdoor rings and their use in cryptosystems, in Proceedings of CRYPTO '85 (Lecture
Notes in Computer Science 218). Berlin: Springer (1986).
D.H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions on Information
Thery 32 (1 986). pp. 54-62.
H.C. WilIiams, A p +I method of factoring, Mathematics of Computation 39 (1982), pp. 225-234.
H.C. Williams, An M 3 public-key encryption scheme, in Proceedings of CRYPTO '85 (Lecture Notes in
Computer Science 218). Berlin: Springer (1986).

* H. Woll, Reductions among number-theoretic problems, Information and Computation 72 (1987), pp. 167-
169.
M. Wunderlich, Implementing the continued fraction factoring algorithm on parallel machines, Mathemat-
ics of Computation 44 (1985). pp. 251-260.

329-339.

	Abstract.
	Introduction
	Problems related to factoring
	Problems related to discrete logarithms
	Algorithms
	Practical considerations
	Acknowledgements
	References

