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ABSTRACT 

The goal of this paper is to give a unified view of various known results 
(apparently unrelated) about numbers arising in crypto schemes as RSA, by considering 
them as variants of the computation of approximate L-th roots modulo n. Here one may 
be interested in a number whose L-th power is "close" to a given number, or in finding a 
number that is "close" to its exact L-th root. The paper collects numerous algorithms 
which solve problems of this qpe. 
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I. INTRODUCTION 

That a lot of public-key cryptosystems or digital signature schemes are based on 
the computation of L-th roots modulo n is today a very well known fact. Roughly 
speaking, and assuming that n is a large integer (say, at least, a 320-bit long one), this 
computation is easy when n is prime or when all its prime factors are known, hard when 
n is composite and its factors unknown. The cryptographic validity of the famous system 
RSA [RSA] (as well as many cther systems) is based on this dissymmetry. 

But very often in public-key cryptology, the problem is raised of extracting 
approximate L-th roots modulo n, in a sense that will be stated more precisely in next 
section. As this problem is weaker than the problem of extracting m c r  L-th roots 
modulo n, we may hope that it will be solved even when the factors of n remain hidden. 
As shown below, that hope is often fulfilled, provided that we do not demand a "too 
good" approximation. 

For example, in the Morrison-Brillhart factorization algorithm [MB], the most 
consuming part is the quest of integers x such that xz (mod n) is as small as possible 
(hoping that it is "smooth"), 'where n is the number to be factored. The continued 
fraction algorithm allows us to  find such values of x, but most of the time, 9 (mod n) has 
still too large factors to be useN.  Fortunately, from time to time, one of them is smooth 
enough to be factored in the so-called factor base, and will contribute to discovering a 
factor of n. But this factorization algorithm would become much more efficient if 
another method was discovered, which finds square roots modulo n of still smaller 
integers. 

Another example is provided by Okamoto and Shiraishi's digital signature 
scheme [OS]. In this scheme, the signature of the message m is an integer s such that s' 
(mod n) is close to h(m) -where h is a one-way hash-function- instead of being exactly 
equal, as in the Rabin scheme (the "square root variant" of RSA). The claimed 
advantage of this scheme was a very fast signature computation compared to the 
computation time necessary tc extract an exact square root modulo n. But Brickell and 
Delaurentis broke the scheme by showing that s can be efficiently computed, even when 
the factors of n are hidden [BD]. Now, it remains an open question: can their attack be 
generalized to the version of Okamoto and Shiraishi's scheme in which the signature s is 
such that sL # h(m) (mod n) with I24 - ? 

This paper aims at collecting the results already established concerning these 
questions and improving them whenever possible. First (section II), we state the 
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problems we are going to deal with. Then (section 111), we recall how such problems 
naturally arose in public-key cryptology and briefly indicate how they were solved (or 
not...). Finally (section IV), we describe most of the algorithms sketched in section 111, 
generally with enough details to effectively implement them. 

11. THE PROBLEMS 

What do we mean by approximate L-th roots modulo n? In fact, this includes a 
lot of various questions amongst which we will consider the following ones (n, L and yo 
are three given positive integers, with L>2 and yo<n): 

Firstly, we wish to find an integer whose L-th power modulo n is close to the 
given integer yo. We subdivide this problem into three ones: 

(1): Find x such that xL # yo (mod n) (no matter where x stands). 
(la): Given ~0 such that yo = xoL (mod n), find x # ~0 (x = ~ 0 )  such that xL # yo (mod n). 
(lb): Given ~ 0 ,  find x # ~0 such that xL #yo (mod n). 

Secondly, we wish to get some information about an (existing but unknown) exact 
L-th root ~0 of the given integer yo. We subdivide this problem into both which are 
complementary : 

(2a): Find x such that x # x,,. 
(2b): Given x such that x # x,,, frnd ~ 0 .  

(Note that problems (2a) and (2b) cannot be both efficiently solved with the same order 
of approximation, or there is an efficient algorithm which finds exact L-th roots modulo 

n.1 

Of course, the symbol # may have various significations, upon which depends 
whether the problem is efficiently solvable or not. In order to be more specific, we state 
again the above problems by replacing "x # x,," with "x = ~0 + O(na) (mod n)" and "xL # 
yo (mod n)" with "xL = yo + O(nb) (mod n)", where a and b are real numbers picked in 
the interval ]O,l[. Note that, if some of these problems are easily solved when prime 
factors of n are known, this knowledge apparently does not help to solve other ones, for 
example (la) and (lb). 
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111. HOW PROBLEMS AROSE 

111-1. Problem (1) and its variants 

As already noted in the introduction, problem (1) was considered by Morrison 
and Brillhart (using an idea from Lehmers & Powers) with L=2 and yo=O [MB]. By 
computing continued fractions of nm, one obtains values of x such that x2(mod n) = 

O(dn). But only a few of them are useful to factorize n, because the quadratic residues 
modulo n which are required are generally much smaller than n". Unfortunately, no 
efficient algorithm is known, which solves (1) with b<l/2. On the other hand, we show in 
section IV that continued fraction algorithm can still be used to solve (1) for small 
exponents greater than 2, but with b growing rapidly with L. 

The case ( L 2 ;  any yo) was solved by Brickell and Delaurentis [BD], when they 
cryptanalysed Okamoto and Shiraishi's signature scheme [OS]. In this scheme, the 
signature of the message m (or rather of its hashed version h(m)) is an integer s, not too 
small in absolute value, and such that s2 (mod n) = h(m) + O(nm). The public modulus n 
of the signer is in the form n=p2q (p and q distinct primes), because this permits a very 
fast computation of s when p and q are known, which was the claimed advantage of this 
scheme. Unfortunately for it, Brickell and Delaurentis showed that s can be computed 
with the same efficiency without knowing the factors of n and no matter what form n 
takes! We will see that their method can be easily extended to any exponent b greater 
than 1/2 (hence solving the problem (1) for L=2, yo=O and b>1/2). Moreover, it solves the 
variant ( lb) with Lr2 and b>1/2, but only if a+b/2>5/4. The Brickell and Delaurentis 
method can also be used for Lr3 [BO] but does not seem to work for e 4 .  

One year later, the cryptanalysis of some hash-function using modulo-n 
operations due to Davies and Price is reduced in [GI to solving (la) for L=2 and 
a=b=7/8. First, the problem is linearized by putting x = x,, + u. It can then be stated as 
follows: find a "very small" u such that 2ux0 # 0 (mod n). Now, the equation 2w, = v 
(mod n) with small unknowns u and v is solvable by developing 2xdn in continued 
fractions, i.e. by applying the extended Euclid's algorithm to the integers 2x,, and n. As 
the solutions provided are shown to be such that luvlcn, the problem (la) appears to be 
solved for L=2, a+bi l  and b>2/3. 

Does this last method allow us to solve (lb) (and consequently the problem (1) 
itself) for the same values of L, a and b? In this case, since we have no more yo = %* 
(mod n), we are led to an "affine" problem rather than a linear one; explicitly: find a 
very small u such that 2% # zo (mod n), where zo = x:-yo (mod n). In [OS], is 
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presented a variant of Euclid's algorithm which allows to do that. Ironically enough, 
Shamk used it to give another cryptanalysis of the 0 s  signature scheme discussed above 
and presented in the same paper, as well as the cryptosystem proposed one year after by 
Okamoto in [Ol]! 

Recently, the authors have described in [VGTl] (or [VGT2]) a different 
technique powerful enough to  solve also variant (lb) for L=2, a+b>l and b>2/3. First, the 
problem is linearized as above. Then, the linear equation (E): 2% = v (mod n) is 
interpreted as the equation of the integer lattice R spanned by (1,2x,,) and (0,n). This 
point of view allows us to transform the problems into lattice ones ("find a short vector 
in R" or "find a point of the lattice close to a given point"), for which algorithmic 
solutions are known in all dimensions, based on the LLL basis reduction algorithm 
[LLL]. Moreover, this method can be refined in order to find x in a "quasi-uniform 
way", leading to a factorisation algorithm [V] whose proven complexity is smaller than 
Dixon's one [D]. 

111-2. Problems (2a) and (2b) 

Problem (2a) with L=2 was first solved by Blum, Blum and Shub .[BBS], when 
they analysed the left-unpredictability of the so-called x2 (mod n) generator. In their 
paper, n is a Blum integer so that the mapping "squaring modulo n" is a permutation 
over the set of quadratic residues modulo n. So, by working in this set, the square root of 
a quadratic residue is defined in an inambiguous manner. It is shown in [VVl that the 
location of x,, (equal to 0 if %<I-$?, 1 if not) cannot be guessed, even with a very small 
advantage, unless factoring is easy. It follows that (2a) with L 2  is not efficiently 
solvable for any a < l  since even the location of ~0 cannot be found. 

The same problem is solved for all the L which are coprime to phi(n) -the RSA 
context- by (first) Goldwasser, Micali and Tong [GMTJ, then many others until Alexi, 
Chor, Goldreich and Schnorr [ACGS], when they studied the security of the RSA bits. It 
can be proved that the location of xo cannot be guessed, even with a small advantage, 
unless inverting RSA (i.e. finding xo in full) is easy. 

The problem (2b) has been partly solved by Shamir when he cryptanalysed the 
first version of Okamoto's cryptosystem [Ol]. In this cryptosystem, the public modulus n 
is in the form n=p2q, as for Okamoto and Shiraishi's signature scheme. Moreover, the 
public key contains another integer x, itself of a very particular form. With the notations 
of (2b), ~ 0 - x  plays the role of the plaintext and yo is the ciphertext. Shamir found two 
cryptanalysis for this system. The first one, based on the OS-variant of Euclid's 
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algorithm, does not make use of the form of n but is valid only for L=2. The second one 
works for any L but does make use of the particular form of n and x. At this stage, the 
problem (2b) appears to be solved for {L=2, aLlL3) and only in very particular cases if 
b2. 

In [VGTl], the authors, using the lattice technique already mentioned in section 
III.1, specify an efficient algorithm solving (2b) for {L2,  azln} and more generally for 
any reasonably small L, sufficiently large n and sufficiently small a (in the order of about 
1/L2). So, an L-th root modulo n can always be calculated, if we are given a sufficiently 
good approximation of this root. Moreover, the technique is general enough to apply to 
other types of approximations, such as used in the second version of Okamoto's 
cryptosystem [02 ] .  This version hence appears to be broken too. 

These results have incidences on the predictibility of congruentiel pseudo- 
random generators. In particular, the truncated x2 (mod n) generator, obtained by 
removing the 1/3 least significant bits of the sequence, is right-predictible (in a sense 
section V will make clear). 

IV. THE ALGORITHMS 

We now describe the algorithms with more details. Frow now on, n is a positive 
integer and Z(n) denotes the ring of the integers modulo n that we identlfy with the 
interval of length n centered at  0. For any u in Z(n), lul denotes the absolute value of u, 
i.e. the maximum of u and -u (for example, 121 (mod 25)1=1-41=4). 

The symbols x, ~ 0 ,  y, yo, u denote elements of Z(n) whilst a and b denote real 
numbers in ]0,1[. The notation O(f(n)) stands for any function g(n) such that Ig(n)l 5 
kf(n) for some integer k and any sufficiently large n. 

For L a positive integer, we ask if the equation: 
xL=ymodn  (E) 

admit solutions (xy) which satisfy some closeness requirements, and if we can discover 
them. For example, can we frnd (x,y) such that x is "close" to a given integer x,, and y 
"close" to another one yo? Or without conditions on x but such that y is exactly equal to 

YO? 
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Of come,  we can (and will often have to ...) reduce our ambitions and claim our 
satisfaction if we succeed in inferring some partial information about such solutions, or, 
conversely, if some additional information about these solutions permit us to recover 
them entirely. The most famous case is the computation of an exact square root modulo 
n (n a large integer), where two extreme situations are possible. Either the factors of n 
are known and such a computation is child's play; or they are hidden and we can infer 
almost nothing about the solution. 

It must be noticed that most of the algorithms which are presented below do not 
work for all the values of their inputs. Only in some cases (e.g. algorithms VGTl and 
VGT2), the set of values for which they fail has been carefully analysed in the original 
papers. But the fact they provide solutions must ofthe fime is satisfactory enough for 
cryptologic applications. This is particularly true for cryptanalytic ones, which only 
require that the algorithm work for a non-negligible fraction of the input values. 

IV-1. Finding roots with small residual 

IV-1.1. Without conditions for x 

We first consider the problem of finding solutions of (E) where y is close to yo: 

u): Given n, L, b and yo, find x such that lxL -yo (mod n)liO(nb).  

Of course, if b is big enough, there is a straight-forward way of fiiding some of 
them, which consists in detecting the elements of [yo4(nb),yo+O(nb)] which are true L-th 
powers (as opposed to  L-th powers modulo n) of an integer x. For instance, if L=2 and 
bLl/2, ~ = [ y ~ ' ~ ]  (where [z] denotes the closest integer to the real number z) is a trivia1 
solution of our problem since: 

x2 = (yo'n + n)2 with lalfl,2 
+ 1 .z c nb. = yo + 213y0'R + 02 ==> 1x2 - yo] (yo - 

In case b is a little bit too small and [yo-O(nb),yo+O(nb)] does not contain true L-th 
powers, other intervals [y,+kn-O(nb),yo+kn+O(nb)] can be tried, for k=1,2, .... Solutions 
which are found in this way may be considered as trivial ones. As they are necessarily 
small, with the same order of magnitude of nln, we may define trivial solutions of (1) as 
solutions x = O(nm). It may occur that the algorithms which are presented below 
provide trivial solutions, but they (generally) provide also non-trivial ones. 
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The quadratic version (b2) of Pb (1) has been solved in the general case by 
Morrison and Brillhart for yo=O [MB]. They find approximations in the order of 
magnitude of nln. More precisely: 

Alporithm MI3 
*Input: n 
*Ourput: some x such that Ix' (mod n)lL2nm 

*Method: develop nln in continued fractions; call x/yi the convergents of .In; 

output the xi- 

*Pro@ from a well-known inequality of continued fractions theory, we have: 

then: 
lnln + x o i l ~ 2 n m  + l/(yiyi+,) 

lyi% - xi2\ 5 2 n 9 / y i + ,  + l / y , + ? ~ 2 n ' ~  ==>Ixf(mod n)k2n1". 

Inm - X / Y , l L  W i Y i J  

In - X:/y.'I l -  < 2nrn/(yIYi+,> + 1/(Y,Yi,J2 

*Remark. when the periodicity of the development of ,In is small (for example 
if n=mz+l), this algorithm only provides trivial solutions; if not, there may be a 
lot of (non-trivial) solutions. 

We now show that the MB idea can be extended to small exponents other than 2, 
but with less efficiency because only first convergents have a good chance to lead to 
success : 

Algorithm MB' 
*Input: n, L (small integer = O(log n) andz3), 5 (realLl/L) 
*Output: nothing or some x such that IxL (mod n)/,Ln(L-i)'L+o 

*Method: develop .In in continued fractions; call x/yi the convergents of ,In; 

output the xi until (say) yi>noifl-2). 



108 

(because the second term of the sum is easily shown to be smaller than 
Ln~~1)n(y~-2-y~-1@iyi+,) except perhaps in some very particular cases) 

IxiL (mod n)I ,Lnfi-l)n+O. 
finally: 

But continued fractions do not seem to help in solving the problem when yo is 
non zero. In [BD], Brickell and Delaurentis describe an algorithm which solves the case 
+2; any yo}With b=2/3 (i.e. approximations of nm). But, as their original algorithm can 
be easily extended to b=1/2+e, for O<e*1/2, it appears to be almost as efficient than 
algorithm MB, and much more general. 

The idea is the following one: not only b:n] is a solution of Pb (1) but also k[zlR] 
where z = yok-z (mod n), for any positive integer kLnCR, as shown in the proof below. 
These new solutions are not trivial ones but are in O(nmen). In order to find solutions 
of any magnitude, Brickell and Delaurentis proceed as follows: 

Alporithm BD 
*Input: n, yw e (Ocecl/2) 
*Outpzdt: some x such that (x2 - yo (mod n)l = O(nmce) 

*Step I :  find k (coprime with n) and x’ such that k=O(nen) and 2kx’ (mod n) = 

‘Step 2: calculate y = yo - x ’ ~  (mod n) 
o(nC); 

z = yY2 (mod n) 
t = [Z’R] = z* + 8 with lok1/2 ; 

*Step 3: output x = x’ + kt. 

*Remark: for step 1, it suffices to choose x’ in one of the intervals Ii centered 
in [ni/2k] of radius [nc/2k]. 

*Proofi in a straightforward manner (all the equalities standing modulo n): 
x2 = f Z  + kZt2 + 2k’t  

= f Z  + k*(zm+B)2 + 2k’t  
= X” + k% + 2k%*B + k202 + 2h’t 
= f 2  + yo - x’‘ + 2k3mfi + k2S2 + 2Wt 
= yo + O(n=*) +O(ne) + O(nm+e) 
= yo + o(nm*) 
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Does algorithm BD extend to LL 2 ? One can remark that the above proof does 
not work for b3, except if one makes some very particular choices, namely : x' = [n/3] 
and k = 1. Then, choosing y = yo - x ' ~  (mod n) and t = nearest integer to ym divisible by 3, 
leads to success for b = 2/3; details may be found in [BO]. For L4, - the method does not 
seem to work at  all. 

IV-1.2. With conditions for x 

We now come to algorithms which not only solve Pb (1) but provide solutions 
which are themselves close to a given integer xo. This new problem can be subdivided 
into Mo subproblems. In first one, Pb (la), yo is nothing but the L-th power of ~ 0 ;  in 
other words, we have to find a solution (x,y) of (E), close to another already known 
solution. In second one, Pb (lb), yo and xo are any two elements of Z(n). It is clear that 
this last problem is harder than both Pb (1) and Pb (la). Note also that knowledge of 
the factors of n completely solves Pb (1) but does not seem to help to solve Pb (la) and 
Pb (lb). 

Pb (la): Given n7 L, a, b, ~0 and yo such that yo = xoL (mod n), find x = xo such that Ix - xg[ 5 
O(na) and IxL -yo (mod n)l - c O(nb). 

Pb (lb): Given n, L a, b, ~0 and yo, find x such that (x - xo( cO(na) and (xL - yo (mod n)I 5 
o(nb). 

First, a closer look at BD-algorithm shows that it solves (but not very well) 
Problem (lb): 

Aborithm BD' 
'Input: n, % y, a, b (s.t. a+b/2>514 and b>ln)  
'Output: some x such that Ix - xoI cO(na) and Ixz -yo (mod n)lLO(nb) 

*Method: as in algorithm BD with e=b-1/2, by choosing k close to ncn and x' in 
the interval Ii which is the closest one to x,, . 

*Proof: the distance between two consecutive intervals Ii and I,+, , defined in 
the remark of algorithm BD, is smaller than w'2k = O(n'<"). 

Better solutions to Pb ( lb)  are obtained by linearizing it, as will be explained in 
subsection IV.1.1.2. Beforehand, we have to make a digression into Euclid's algorithm 
and some of its extensions. 
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IV-1.2.1. A Euclidean digression 

We consider here the equation: 
dx = y (mod n) (E') 

where d is a positive integer smaller than n, and ask if there are solutions (x,y) close to a 
given pair (%,yo): x = ~0 + O(na) and y = yo + O(nb). 

Let us start with the case 9 = yo = 0. It is proven in [DC] (or [GI) that such 
solutions certainly exist if a+b = 1. More precisely, for any pair (X,Y) whose product is 
greater than n, there is at  least one solution (x,y) such that Ix/<X and lyl<Y. In order to 
discover it (or them), it is useful to remark that finding small (x,y) satisfying (E') comes 
to finding a good approximation of the fraction a n .  So, here again, we (almost) always 
find such a solution by developing it in continued fractions i.e. applying Extended 
Euclid's algorithm t o  d and n: 

Algorithm EE 
*Input: n, d, a, b (s.t. a+b>l) 
*Ouput: nothing o r  some x such that 1x1 2"' and Idx (mod n)l Lnb 

*Method: apply Extended Euclid's algorithm to n and d; one obtains 
coefficients li and mi such that lin + mld = rl where the ri are the successive 
remainders (the last non-zero remainder being equal to the greatest common 
divisor of n and d); output the smallest (in absolute value) mi such that nl-b 2 
lmi+ll (the case "such a mi does not exist" is very rare). 

*Proofi the fractions ll{mll = -l/mi are in fact the convergents of the 
development of d/n in continued fractions; hence: 
Id/n + I/miI ~ l / l m l m i + , I  ==> ldml + nlll (rVlml+,l ==> ldml (mod n)l ~ d l m ~ + , l  2 
nb. 
Moreover, Iml/ ,nl-bc-na since a+bLl.  

Now, what happens if x,, and yo are non-zero? Of course, it is enough to solve the 
problem for ~0 = 0 and any yo (if xo is not equal to zero, it suffices to replace yo with yo- 
dx, (mod n)). Okamoto and Shiraishi provide in [OS] an extension of Extended Euclid's 
algorithm which very often solves this problem. We hope that we do not deform it too 
much by presenting it as follows: 
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AlPorithm 0s 
*Input: n, d, a, b (s.t. a+b>l), yo 
*Ouput: nothing or some x such that Ixl(na and / d x  - yo (mod n)l (nb 

*Step 1: apply Extended Euclid's algorithm to d and n (as in algorithm DC); 
"Step 2: introduce a sequence y whose first term is yo and following ones are 
defined by: y, = y,.* - q',r, where q', is the quotient in the division of yl-l by rI; 
"Step 3: introduce also the sequences hl and kl whose f is t  terms h, and \ are 
zero and following ones are defined by: h, = h,-l + q',ll and k, = k,-l + q',ml; 
"Step 4: output k, such that nl-b 5 lk,l (ria (mind: its existence is questionable, 
especially if a+b is close to 1). 

"Proof: From: 1,n + m,d = r,, we easily deduce: 
hln + k,d = hl-,n + k,-,d + (y,.,-y,); then : 
h p  + k,d = 0 + (yo-yl) + (y,-y2) + .... + ( ~ , - ~ - y ~ )  = yo - y, ==> kld (mod n) = yo - y,. 
Moreover, when it can be shown that Iklly, < n (it is very often the case), we 
have : lk,lLnl-b ==> y, - <nb. 

IV-1.2.2. Come back to our problems 

In [GI, one of the authors shows that the quadratic version of ( la)  can be solved 
with a+b;l and b72a - (which is equivalent to: a+bzl and a<l/3 or: a+bzl and b22/3). The 
idea consists in reducing the problem to a linear one by caking advantage of the fact we 
already know a solution of (E) : 

Aleorithm G 
*Input: n, a, b (s.t. a+bzl and b12a), ~ 0 ,  yo (s.t. yo = ~ 0 '  (mod n)). 
*Output: nothkg or some x such that 0 <lx - x,,( (na and (x2 - yo (mod n)l (2nb) 

*Method: perform algorithm EE with inputs n, 2x,,, a. b; output x = xo + ml. 

x2 = ( ~ 0  + mi)' = x,,~ + m: + 2m1xO2 
= yo + m: + 2mlx0 

(mod n)  
(mod n) 

We know from previous section that: 12ml% (mod n)/ (nb. 
Moreover, ImilLna ==> m2 I -  < n2a - < nb since bL2a. 
It follows that 1x2 - yo (mod n)l-2nb. 
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Let us now consider Pb (lb). If, in algorithm G, we substitute algorithm 0 s  to 
Euclid’s one, we obtain a new algorithm that Shamir used to cryptanalyse 0 s  signature 
scheme: 

AlForithm S1 
*Input: n, a, b (s.t. a+bi l  and bi2a), ~ 0 ,  yo 
*Output: nothing or some x such that Ix - 2”’ and Ixz - yo (mod n)l 5 2 n b  

*Method: perform algorithm 0s with inputs n, 2x,,, a, b, zo = yo - q2 (mod n) ; 
output x = ~0 + ki. 

*Proofi xz = ( ~ 0  + ki)’ = ~ 0 ’  + kf + 2ki% (mod n) 
We know from previous section that, very often: 12kix, - zo (mod n)l I n b .  
Moreover, /kil Lna ==> k2 c nza c nb, since bz2a. 
It follows that lxz - yo (mod n)l 52nb. 

1 -  - 

Another point of view has been recently considered by the authors in [VGTl or 
21. Using the theory of lattice basis reduction, they present an algorithm which solves Pb 
(lb) in the same conditions as algorithm S1 but is more adapted to generalizations (see 
IV.2). The starting point is identical: we want x = % + u, and xz (mod n) = yo + v with u 
and v small. These two equalities imply: 2% = zo + w (mod n) with zo = yo - x,,* (mod n) 
and w = v - uz (mod n). But the set of vectors (u,u’) such that 2% = u’ (mod n) may be 
seen as the lattice R(Q spanned by vectors (1,2xJ and (0,n). If we find a point (u,u’) of 
R(xJ close to (0,zd in that u = O(na) and u’ = zo + O(nb), then v = w+uz = O(nb) + 0 ( n a )  
= O(nb), since b22a, and the problem is solved. We now see how to find such a point 
(u,u’): 

AlPorithm VGTl 
*Input: n, a, b (s.t. a+b>l and b>2a), ~ 0 ,  yo 
*Output: nothing or some x such that Ix - 2 O(na) and 1x2 - yo (mod n)l 5 

O(nb) 

*Step I: consider the lattice M(xo) spanned by vectors (k,2k’xJ and (0,k‘n) 
where k = [II@”)~] and k‘ = l/k. 
*Step 2: use LLL algorithm [LLL] to find a point (t,t’) of M(%) very close to 
the point (O,k‘z,) with zo = yo - x: (mod n). 
*Step 3: output x = X.J + t/k (mind: its existence is questionable, especially if a+b 
is close to  1). 
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*Proofi let e = (a+b-1)/2. Except in some exceptional cases (see details in 
[VGTl]), the shortest vector of the lattice M(%) is not too small, of length, 
nm*. The lattice theory tells us that any ball B(P,r) with r > (2HZ)1%1R+e, 
where H, is Hermite's constant in dimension 2 (for definition see e.g. [LLL] or 
[VGT2]), contains at least one point of the lattice. Moreover, LLL algorithm 
(i.e. Gauss' algorithm in dimension 2 )  allows us to find such a point, say T(t,t'). 
Let P be the point (O,k'z,,). Since the distance between T and P is smaller than 
r, we have It1 and It'-k'zol 2 (~H,) '%I~~+~.  It remains to put u=t/k and u'=t'/k' 
(remark that u and u' are necessarily integers). Then: lul 5(21-4)%'/2+en(aAb)R - < 

O(na) and I ~ ' - ~ l ~ ( 2 ~ ) ' ~ ' ~ + ~ n @ ~ ) ~ ~ O ( n ~ ) ,  the inequalities we wanted. 

IV-2. Finding something about exact mots 

We now consider the problem of finding x,,, an exact L-th root modulo n of a 
given integer yo. Here again, there are situations in which the problem can be considered 
as trivial: when yo is a me L-th power or when factorization of n is known. At the 
opposite, the problem is specially hard in almost all other cases, since one (presently) 
does not know how extract L-th roots modulo n without factors of n. Between these two 
extreme situations, we may consider intermediary ones. First, can we at least infer some 
partial information about where stands x,,? Or, on contrary, if we are given some 
information about location of xo, can we recover it entirely? 

IV-2.1. Inferring some partial information about location of % 

We first consider the following problem: 

Pb 12a3: Given n, I a and yo (known to be the L-th power modulo n of an integer xo), 
find x such that Ix - %[zO(na). 

This question has been widely discussed between 1982 and 1984, since it is 
related to security of RSA (or Rabin) bits [BBM],[GMT],[W],[ACGS]. The conclusion 
was that Pb (2a) has definitely no solution at all, even when a is very close to 1 (we refer 
the reader to the introduction). 

IV-2.2. Finding x,, with some help 

Let us come now to our last problem: 

Pb (2b): Given n, L, a, yo (known to be the L-th power modulo n of an integer %), and x 
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Pb (2b): Given n, L, a, yo (known to be the L-th power modulo n of an integer x,,), and x 
such that ]x - O(na), find x,,. 

In [02], Okamoto presents an algorithm due to Shamir which solves the 
quadratic version of this problem (it is the little sister of algorithm Sl): 

Algorithm S2 
*~nput: n, yo, x (s.t. Ix - xJ _ro(n")) 
*Output: nothing or x,, 

*Method: apply algorithm 0 s  to n, 2x0, ID, u3, zo = x2 - yo (mod n) ; output x 
= % + ki for ki # nU3; check that ya = x,,~ (mod n). 

*Proofi let x = x,, + u; then 2 x 0 ~  = zo - u2 (mod n) and we are reduced to finding u 
= O(nm) such that 12x0~ - zo (mod n)l (O(nm). Such an u is likely to be one of 
the ki close to nm, provided by algorithm 0s. 

In [VGTl], the authors, using the lattice technique imoduced in IV-1. solve Pb 
(2b) for any (reasonably small) L and a in the order of about 2/L2. We only state here a 
weak version of this result (more generally, x,, can be found even if yo is not exactly 
known, provided the approximation on yo is in the order of about 2/L) and we suppose n 
square-free for simplicity: 

Aleorithm VGT2 
*Input: n (square-free), a=2/[~&+1)], yo, x (s.t. Ix - XJ cO(na))  
*Output: nothing or x,, 

*Sketch ofthe method: similar to algorithm [VGTl] (but mind: now x is known 
and ~0 is the unknown!). 

*Sketch offhe proof : similar to VGT1; the property used here is the following 
one: if the shortest vector of M(x) is not too small, of length 2 nm2, then the 
ball B(P,r) with r < dmZ)/2 contains at most one point of the lattice. This 
point is found, if it exists and lies in a slightly smaller ball, by LLL algorithm. 

To be more explicit, let us consider the case G-3. In that case, the lattice 
R(x) is the one spanned by the vectors (1,0,3$), (0,1,3x) and (O,O,n) and the 
lattice M(x) is obtained by multiplying the first (resp. second, resp. third) 
coordinate by k (resp. k', resp. k") such that ha = k'nh = k"nb and kk'k"=l. 
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The general result of [VGTl] can interestingly be applied to pseudo-random 
number generators (PRNG). Corsider for example the case L=2 (hence a=lD) and the 
sequence : sirl = s; (mod n) where so is a secret seed. Let ti be the number obtained by 
removing the [(logp)/3] least significant bits of si, for izl. It results from PGTZ] that 
this PRNG is not secure, since we can recover s1 and s2 (hence all the si, hence all the ti!) 
from t, and t,. 

V. CONCLUSION 

We have shown how various known algorithms may be considered as variants of 
the computation of approximate L-th roots modulo n, and have given a unified 
description of all these {often revisited) algorithms. Except for the most complicated 
ones, for which given references should be consulted, enouph details are provided to 
implement them. 

On the way, we have improved or extended some of these algorithms (see 
algorithm MB', extension of algorithm BD to any small exponent e, algorithm BD', and 
"new look" of algorithm 0s). 

Some questions remain open amongst which we point out: 

1) can we solve xL # yo (mod n) for Q4 with an approximation on y of order nm (this 
problem is related to generalized Okamoto-Shiraishi signature scheme) ? 

2) can we solve x2 # yo (mod n) with an approximation on y of order less than nln (this 
problem is related to Morrison-Brillhart factorization algorithm) ? 

3) can we solve x # ~0 and x2 # yo (mod n) wirh an approximation on x and y of order .In 
(this problem is related to quadratic congruentiel pseudo-random number generator) ? 
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