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Abstract. A critical analysis of the modified cryptographic checksum algorithm of 

Cohen and Huang points out some weaknesses in the scheme. We show how to exploit 

these weaknesses with a chosen text attack to derive the first bits of the key. This 

information sufices to manipulate blocks with a negligible chance of detection. 

1. INTRODUCTION 

The protection of the integrity of data stored in computers and of messages in a com- 

munication network is becoming a problem of paramount importance. Data integrity 

can only be achieved through adding controlled redundancy under protection of a 

secret key. Two major approaches can be distinguished [9]. The first solution is a 

compression of the plaintext with a non-keyed hash function or Manipulation Detec- 

tion Code (MDC) followed by an encryption of the plaintext and/or the result of the 

hash function. The other option is the compression of the plaintext under control of a 

secret key. In this case, the compression function is called a Message Authentication 

Code (MAC). 

The first approach has the advantage that the authentication and encryption can 

be separated and results in a simplified key management (only one key). Moreover 

the design of a fast collision free hash function is in general less complicated than the 
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design of a good MAC. However, the security of the scheme is completely dependent 
on the subsequent encryption. More details on the requirements for non-keyed hash 
functions can be found in [4, lo]. In case when no secrecy of the data is required, a 
MAC can offer a secure and economical solution. The requirements that are imposed 
on a MAC are the following: 

1. The description of the MAC(. , . )  must be publicly h o r n  and the only secret 
information lies in the key (extension of Kerckhoff’s principle). 

2. The data X can be of arbitrary length and the MAC has a fixed length n. 

3. Given X and K, the computation of MAC(K,X)  must be “easy”. 

4. Given X, it is computationally infeasible to determine MAC(K,X)  with a prob- 
ability of success significantly higher than 1/2”. Even when a large set of pairs 
(Xi, M A C ( K ,  X2)} are known, it is computationally infeasible for an opponent 
to determine the key K or to compute MAC(K,X‘) for any X‘ # Xi with a 

probability of success significantly higher than 1/2”. 

5. The MAC must be collision free: this means that it is computationally infeasible 
to find two distinct messages which hash to the same result without knowing 
the secret key K. 

However, a good MAC is only a first step in obtaining integrity protection. A 
secure system should also provide a serial number, time icformation, a specification 
of the number of blocks and provide a procedure to deal with plaintexts whose length 
is not an integer multiple of the blocklength. 

2. THE SCHEME OF COHEN AND HUANG 

The design of a fast and secure MAC or MDC based on blockciphers can certainly 
not be considered as a trivial task. One only has to look at the long list of proposals 
coming from reputed cryptographers that were broken [I, 9, 11, 121. The scheme 
proposed in [3] and modified in [8] is based on modular exponentiation (RSA, [13]). 
The factorization of the modulus is discarded so that the built-in trapdoor cannot be 
opened. 

The plaintext consists of 1 blocks X o  through X1-l where Xo is the filename or 
the first plaintext block. The logical EXOR operation is denoted with $. 
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Algorithm 1 - A Revised checksum algorithm. 

Key 
Initialization 
Main loop 

Result 

Select an RSA key ( K , , N )  and a seed K. 
Set Yo = RSA(Xo 63 K) 
For i = 1 to 1 - 1 : 
'k: = RSA (1  + [(X, 63 K) mod (Y+* - l)]) 
The result of the checksum is Y;-l 

Here RSA(X) denotes the RSA encryption of the plaintext X with the key (&, N). 
As indicated in (31, there is no reason to keep the pair ( K , , N )  secret, so the actual 
key of the cryptographic checksum algorithm is the seed K. The use of the RSA 
algorithm implies that certain parts of the algorithm are cryptographically strong. 
However, the computation of modular exponentiations is very slow, even with fast 
dedicated hardware available [2, 71 (17-20 kbit/s for a modulus and an exponent of 

512 bits). The performance can be improved by means of a preliminary compression 
of the plaintext. This can be looked at as a tradeoff between two extremes: in the 
first case, there is no compression which results in a secure but slow compression 
algorithm ; on the other hand, the message could be compressed with an MDC and 
then the result could be encrypted with the RSA algorithm. In the last case, the RSA 
does not improve directly the cryptographicd strength of the MDC. Our attack is 
worked out under the assumption that there is no preliminary compression such that 
the scheme takes maximal profit of the strength of the RSA. Because the compression 
C ( X , )  was not specified in [3, 81 we are obliged to omit it. A last remark concerns 
the length of the result. We believe that there is no reason to keep the full 512 bits 
of the result. Without decreasing the security level significantly, the result can be 
reduced to 128 bits by EXORing lower and higher parts. 

3. WEAKNESS OF THE MODULO REDUCTION 

The coupling of the blocks by a modulo reduction results in specific weaknesses like 
non-uniform distributions of the intermediate variables. When x and y are indepen- 
dent random integers between 0 and N - 1, the probability that x mod y equals i is 
given by2: - 

J 
1 N - l + k - i  

k P [ ( x  mod y) = 4 = - 1 
N2 k=:+1 

2we define 2 mod 0 = z mod N = t. 
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where 1.1 denotes the largest integer smaller than or equal to z .  For i = N - 1 this 
probability equals instead of k for a uniform distribution. For i = 0 the sum can 
be worked out to 161 

L A  

- I n ( N - 1 ) + 2 7 4 0 ( - )  , 
N '[ f i  l l  

where 7 = 0.5772156649.. . is Euler's constant. 

Because K is a uniform random variable, the same holds for Xi @ K. The good 
randomness properties of the RSA cause the result Y, of the RSA operation also to 
be random. As a consequence, 

1 2  
2 N' P [ X i $ K  < K - 1 -  11 = - - - 

In that case, E; is independent of all previous blocks. 

Under the assumption that the plaintext blocks are independent, uniformly dis- 
tributed random variables, one can easily prove the following theorem. 

Theorem 1 If the Frst t bits of Yi-k (2 5 k 5 I )  are equal to 1, the probability that 
x-, U independent of Y;-k - and thus of the data blocks xo to X1-k - i.3 approzi- 
mateIy equal to 1 - 1/2~+'- ' .  

This opens the door to tamper with messages by changing individual blocks and 
combining blocks of different plaintexts in one new plaintext with a low probability 
of detection. There is especially a very small dependence of the checksum result on 
the first plaintext blocks. This clearly violates the imposed requirements. One can 
wonder how an attacker can obtain the intermediate result, but this is very easy 
when he can compute the checksum for a shorter version of the plaintext. The error 
probability of an attack could be significantly lowered when he would know K or at 
least the first bits of K. In the following paragraph we wil l  show how the first s bits 
of K can be derived by means of an adaptive chosen plaintext attack. 

4. DEFUVING THE FIRST s BITS OF THE KEY K 

We assume that an attacker can compute the checksum for messages consisting of 

one block X; and of two blocks [Xo,X,]. Later it will be shown that the attack also 
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works for longer messages. The corresponding checksums are given by the following 
equations: 

y0 = R S A ( X o @ K )  

K = R S A  (1 + [(X, @ K) mod (y0 - l)]) 

Because the modular exponentiation is bijective, we can extract information on the 
most significant bits of K by comparing Yo and x. For a given Xo, we are looking 
for a XI such that Yo equals Y1. 

= K Xo @ K = 1 + [(XI @ K) mod (Yo - l)] 

If (XI @ K )  4 y0 - 1 the modulo operation has no influence and thus 

X , @ K =  l + ( X * @ K ) .  

The fact that K is unknown cannot prevent us from solving it for XI if X I @ K  < YO-1. 

We will denote the components of a vector A with 

The vector Ei is defined as follows: 

Algorithm 2 - Solving for XI. 

i = O  
compute Yo 
repeat i = i + 1 

Xi = Xo @ Ex 
compute Yl 
until (Yo = Y,) or (i 2 j) 

The expected number of trials for this algorithm is 2. It would be possible to try all 

n possibilities, but in order to speed up the algorithm, we limit the number of trials 
to j. The error probability equals then 1 / 2 J .  

We are now able to describe our attack. We will show first how to determine the 
most significant bit of K and then it will be indicated how the attack can be extended 
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to the higher order bits. 

4.1 Deriving the most significant bit of K 

results in a special Yo and in step 2 we look for a corresponding value of X1 that 
results in equality between Yo and Yl. 

Step 1 

Choose XO and compute the corresponding value of Yo = RSA(Xo @ K) until 

Yo(n) = 1 

yo(;) = 0, i = n - l , n - 2  ,..., n - k + l  1 yo(1) = 0. 

This will require on the average 2k+' RSA encryptions. In case = 0 we are very 
lucky, because this implies K = X o .  In the following, we wi l l  thus u s u m e  that 

K # xo. 
S t e p  2 

Use Algorithm 2 to find a XI such that y0 = &. We have to consider two cases: 

1. Xo(n) @ K ( n )  = 0 (probability = 4). 
The construction of X1 implies that (X, @ K) < Yo - 1 and thus Algorithm 2 
will give a solution after on the average 2 RSA encryptions. 

2. Xo(n) @ K ( n )  = 1 (probability = f). 

(a) XI @ K = Yo - 1 (probability = e): in this cme we are very lucky again 
because Y1 will be 1 and K can be easily computed. 

(b) XI @ K < Yo - 1 (probability 2: h): Algorithm 2 will find a solution as in 
case 1. 

( c )  XI @ K > Yo - 1 (probability N 1 - +): because &(n) = 1, the modulo 
operation can be replaced with a subtraction: 

Equality of Yo and Yl can be obtained if 
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For the least significant bit, this results in following equation: 

The fact that E, ( l )  = 1 results in Yu(l)  = 1 which contradicts our previous 
assumption that Yo( 1) = 0. However, even when this would not be the case, 
it is very unlikely that Algorithm 2 would yield a solution. 

It is easily seen that the above procedure allows to determine the most significant bit of 
K: if Algorithm 2 succeeds, we decide that K ( n )  = &(TI), else we put K ( n )  = Xo(n). 
There are two cases in which the algorithm fails. The fact that only j steps are applied 
in Algorithm 2 implies that it is wrongly decided with a probabil;ty of 1/2j that there 
is no solution, but every additional RSA computation divides this error probability by 
2. A more serious problem is that if K ( n )  = Xo(n) ,  Algorithm 2 will succeed with a 

probability 1 / 2 k .  A halving of this error probability requires on the average a doubling 
of the amount of precomputation in step 1. This leads us to the conclusion that these 
errors will occur more frequently. The results are summarized in the following table. 

result 

2k+' + 2 

4.2 Deriving the B most significant bits of K 

The same attack can be extended to derive the first s bits of K. It is not feasible 
to compute all bits of K because the amount of computation doubles for each bit. 
However, an attacker does not need to know all bits of K to improve his odds signifi- 
cantly. When he knows the first s bits of K, he can force the first B bits of Xi @ K to 
zero, which implies that X, @ K is smaller than x-+' with a probability of 1 - (1 /2" ) ,  
when x-1 is uniformly distributed. On the other hand, in case x-1 is known, it is 
possible to find a X, such that X, @ K < for 2" - 2"-" values of x-1. 

The following variation on our attack will compute the sth bit of K under the 
assumption that the first 5 - 1 bits of K are already known. 
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Step 1 

Choose Xo and compute the corresponding value of y0 = RSA(Xo @ K) until 

Y o ( i ) $ K ( i ) $ & ( i )  = 0 i = n , n - 1 ,  ..., n - s + 2  

yo(, - 3 + 1) 

Yo(1) = 0. 

= 1  

yo(;) = 0, i = n - s , n - 8 - 1 ,  ..., n - s - k + 2  

This will require on the average 2k+s RSA encryptions. 

Step 2 

As for the first bit, use Algorithm 2 to find a XI such that Yo = x. 

To derive the first B bits of K, the total number of modular exponentiations can 
be shown to be approximately 

When j >> k, the probability that these s bits are correct equals 

4.3 Further extensions 

We assumed for reasons of simplicity that the length of the chosen plaintext was only 
two blocks. The attack can however be extended to longer plaintexts. It suffices to 
look for a plaintext that results in a very large checksum x-1. We can then add two 
blocks to the text and with a probability we can write 

ki = RSA ( 1  + [ (Xi  @ K) mod (Ei-I - l)]) 
= R S A ( l + ( & @ K ) )  

K+l  = RSA (1 + [(&+I @ K )  mod (Ei - I)]) 
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In this case we can repeat the previous attack. The only difference is that the addition 
of 1 appears also in the first equation and thus Algorithm 2 is no longer necessary. 
On the other hand, we need a plaintext with a large checksum. 

5. SUMMARY 

We have shown that the modified version of the cryptographic checksum algorithm 
proposed by Cohen and Huang is insecure. The result of the checksum is insensitive to 
changes in the initial part of the plaintext and thus several manipulations are possible. 
Moreover, an attacker can compute the first bits of the key using an adaptive chosen 
text attack. Knowledge of these bits reduces significantly the chances on detecting a 
fraud. 
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