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Abstract This paper presents a signature scheme for a single user or a group of 

users. The shared verification of such a signature uses the principle of threshold 

schemes. The constructions are based on a special class of finite incidence struc- 

tures, so called generalised quadrangles. 

1 Introduction 

The schemes generate a signature for a single user X, denoted by sign,, or for a 

group of users G, denoted by signc. The verification system, knowing the identity 

of X or G, can check the validity of the signature using the principle of threshold 

schemes (see Simmons [5]). Thi s means that there exists a group of verifiers and the 

scheme only needs a certain number of them for the verification of the signature. 

We will call this a shared verification scheme, for which a more formal definition 

reads as follows: 

A t-shared verification scheme consists of s >_ t classes called verifiers such that 

a any t of the s verifiers can execute the verification 

a the verification cannot be done by any t - 1 or fewer of the s classes. 

The construction of the schemes is based on a special class of geometric inci- 

dence structures, so called generalised quadrangles. Generalised quadrangles have 

been used before to construct threshold schemes (see [3]) which are closely related 

to the topic of this paper. 

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 253-262, 1990. 

0 Springer-Verlag Berlin Heidelberg 1990 



254 

A typical environment where these schemes could be employed is described by 
Simmons in [4]. Here they could serve the purpose of checking the signature on 
data transmitted by a seismic station. The verification could be done by a central 
body which also selects, possibly randomly, the required number of verifiers from 
the group of all verifiers. 

Another field of application might be any system where a central institution 
supervises its member bodies. The signing of a document by one of the member 
bodies has to be verified by the central institution. This can use therefore a shared 
verification scheme where the classes of verifiers consist of delegates of the various 
member bodies. 

2 Geometric background 

An incidence structure is a triple (P, 23, I) which consists of two non-empty and 
disjoint sets P and B and a subset I s P x B.  The elements of P and B are called 
points and blocks (or in our context lines), respectively. I is called the incidence 
relation. We say that a point z and a line 1; are incident with each other and write 
2 I L if and only if the pair (2, L) is an element of I. 

A (finite) generalised quadrangle (GQ) of order u, u 2 1, is an incidence struc- 
ture S=(P,  B, I) which satisfies the following axioms: 

(i) Each point is incident with exactly u + 1 lines and two distinct points are 
incident with at most one line, 

(ii) Each line is incident with exactly B + 1 points and two distinct lines are 
incident with at most one point, 

(iii) For every point z and every line L which are not incident with each other, 
there exists a unique line which is incident with both z and a (unique) point 
on L. 

The definition allows us to identify each line with the set of points it is incident 
with. This and the obvious geometric structure of a GQ are the reasons for expres- 
sions such as ‘‘z lies on Ln, ‘‘z is contained in t” for z I L and “L and M intersect 
each other in the point z” for L 13: I M .  
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Axiom (iii) is crucial for understanding most of the arguments in this paper. It 
means that, with the exception of one line, all the remaining u lines through z do 
not intersect the line L. So a generalised quadrangle does not contain a "triangle". 

We call two not necessarily distinct points z and y collinear and write z - y, if 
there exists a line which contains both of them. If there is no such line we say that 
they are not collinear and write z + y. The set of points collinear with a point z is 
denoted by z' (note that 1: E z'). 

The proof of the following lemma is left as an easy exercise to the reader. 

Lemma Let ( P ,  B , I )  be a generahed quadrangle of order Q ,  then 

(ii) lz'1 = u' + c + 1, for aU points z E P. 

The trace of a pair (2, y) of distinct points is defined to be the set z' n yl and 
is denoted as trace(=, y). Notice that Itrace(z,y)l = u + 1. The span of two distinct 
points z and y, is defined as span(z,y)=(u E P I u E z', Vz E trace(z,y)}. Hence 
it consists of a l l  points which are collinear with every point in the trace o f t  and y. 

More generally, one can define for A c P, the set A' = noEAd. In this notation 
trace(z,y)= {z,y}" and span(t, y )= (~ ,y}~ ' .  
If z and y are collinear, then trace(z,y)=span(z,y) is the unique line through z 

and y having u + 1 points. If z and y are not collinear, then no two distinct points 
of trace(z,y) are collinear. We note that z, y are in span(z,y), no two distinct 
points of spas(=, y) are collinear and Ispan(z, y)l 5 u+ 1. The upper bound follows 
from the fact that the points of span(z, y) are contained in the u + 1 lines through 
any of the points of z' n y'. Furthermore, two spans intersecting in at least two 
points define the same trace and hence coincide. 
A pair (2, y) is called regukar if Ispan(z,y)l = u + 1. The point z is regular if and 
only if (z,y) is regular, for all y # z. 

An ovoid of a generalised quadrangle S is a set 6 of points of S such that each 
line is incident with a unique point of 6 .  One verifies easily that 181 = u2 + 1. 
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The following property of quadrangles of order Q (see [8] p, 21) is fundamental 
for the construction of the schemes, 

Theorem Let (x,y) be a regular pair of non-collinear points in a GQ of order Q. 

Then any ovoid contains exactly two points of trace(z, y) and none of span(z, y) or 

ezactly two poinh of span(z , y )  and none of trace(z,y). 

As an example of a generalised quadrangle satisfying these properties we con- 
sider a non-degenerate quadric Q in a finite projective space PG(4,q) .  The points 
of Q together with the lines (which are the subspaces of maximal dimension on Q) 
define a generalised quadrangle Q(4, q) of order u. 
If g is even this quadrangle contains ovoids and all its points are regular. The sheme 
may be implemented on a computer using the coordinatisation of these quadrangles 
given by Payne [7]. Note that this coordinatisation is based on a finite field GF(q).  
For further information on generalised quadrangles we refer to the book by Payne 
and Thas [S]. 

3 Signature for a single user 

3.1 The scheme 

We consider a generalised quadrangle S of order u containing an ovoid 8 and a 
regular point y E 8. 
The individual users correspond to the points of 9 \ {y} while the verifiers corre- 
spond to the lines through y. Hence we have at most u2 users and up to Q + 1 
verifiers. 

The general signature of user X is defined to be the set 

sign, = span(z, y)  \ 8. 

In view of the preceding theorem and the regularity of y, we have sign, =span(z,y)\ 
{z,y} and therefore [sign,[ = CT - 1. Since different spans can have at most one 
point in common (here the point y), it follows that different users have different 
signatures. 

Due to the fact that y is regular, the span (z,y) and thus sign, are uniquely 
determined by any two of its points. So we may represent a specific signature of 
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the user X by two distinct points in sign,, say a1 and a2, where one of these points 
could be a depending on the specific implementation. 

To check a signature we need at least two verifiers, say Vl and Vz. Let L1 and 
L2 be their corresponding lines. Verifier constructs the respective unique lines 

through a, 21 and 2 2  which intersect Li, i = 1,2. The points a1 and a2 are elements 
of sign, if and only if the lines constructed by V1 are concurrent in the same point 
u1 on L1 and those constructed by V2 are concurrent in the same point uz on Lz. 
Indeed, a1 and t 2  are in sign,=span(a,y) \ 6 if and only if they are collinear with 
the two points Z L ~  and u2 of trace(a,y) on the lines L1 and Lz,  respectively. 

3.2 Implementation and security 

The security of the scheme will clearly depend on the particular implementation. 

First of all we have to make the assumption that the computer producing the sig- 
nature (host) has a high security module for this purpose which also contains y. 

Anybody knowing y can produce "authentic" verifiers and stands a good chance of 
totally compromising the system by guessing the correct ovoid through y. There- 
fore care has to be taken that nobody can compute y from information such as a 
line Li or a span(a1,a2). Each user has a personal IC card with his distinguished 
name and his secret identification number ( S I N )  which could be the coordinates of 
2. Having a S I N  distinct from a can be of an advantage in certain environments. 
When a user wants to produce his signature, he enters his IC card and the host 
reads its information. Clearly, for the welfare of X, its S I N  should be kept secret. 
Hence the S I N  should go neither in clear nor encrypted with a constant key over 
the interface since this could lead to replay attacks. S I N  has to be transmitted as 
a dynamic (time-variant) variable. One way would be that the host supplies the IC 
card with a true random number which is used to derive the key for the algorithm 
which encrypts the SIN. 

The host checks that the S I N  belongs to the distinguished name and derives, if 
necessary, the point a from SIN by means of a cryptographic algorithm, a coordi- 
nate transformation, or just by looking it up in a secret table. This last possibility 
has the disadvantage that the table need to be updated when a new user joins the 
system. 
The host then produces signz acd the two points a1 and a2. 
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The verifying system can be laid out in such a way that it checks a signature with 
respect to a specific signatory or that it just proves that someone has presented a 
valid signature. The requirements for the individual verifiers itre very similar except 
that in the first case it has to derive z from SIN. .In either case a verifier need 
not know anything about the underlying geometry. It just has to be capable of 
constructing and intersecting lines. This also means that verifiers can be added to 
the system without any problem by a trusted third party which has to know y, a 
list of existing verifiers together with their lines and the means which protect the 
communication between the entities. 
Hence the verifying system can consist of secure boxes. Each verifier V; receives a 
box which can make the necessary calculations and contains information about the 
lines Li so that when a point is entered, the box can check the collinearity with 
points on Li. Depending on the outcome of this process the box gives the message 
"YES" or "NO" and, if required, the distinguished name of X. So we consider the 
following two scenarios. 

0 User X presents his SIN and the two points z1 and 2 2  to the verifying system. 
Two verifiers enter this information into their secure box. Each box derives 
z from SIN and checks for collinearity. A box gives the message YES if x ,  

z1 and 2 2  are collinear with the same point on its line. If the two verifiers 
have received a YES from their respective boxes for the same distinguished 
name, the signature is accepted. We should point out that it is sufficient for 
the verification of the signature sign, to use SIN and one further point 51, 

say. This would however give an attacker a better chance to cheat in certain 
caes  as we will see in the next section. 

0 User X presents two points of his signature z1 and 2 2  to the verifying system. 
Two verifiers enter this information into their secure box and each box checks 
that the two points are collinear with the same point on its line. If two 
verifiers obtain a positive answer, they know that a user X presented a valid 
signature. Indeed, the collinearity of the two points with the same point on 
the respective lines means that y E span(zl,t2). It follows from the theorem 
that span(zl, 52) contains a second point of the ovoid 8,  i.e. a user. However, 
the verifiers do not know if this point is z. In other words they cannot check 
that the valid signature is indeed the one corresponding to X. 

To conclude this section we summarize the different steps necessary for producing 
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and verifping a signature. It is assumed that all communication between entities is 
done in a secure way. For an eavesdropper can derive y from two pairs q , 2 2  and 21, 
z2 belonging to different spans, if he knows the coordinatisation of the underlying 
geometry. 

I. Signature process 

Step  I. User X feeds his SIN to the host in a secure way. 

Step  2. The host constructs sign,. 

Step  3. The host picks two distinct points zl, x2 of sign,. 

Step  4. The host feeds the two points z1 and x2 to the user X. 

II. Verification of the signature 

Step f. User X presents his SIN and the two points to the verifying system. 

Step 2. At least two verifiers feed the information to their boxes. 

Step  3. Each box checks the necessary collinearity with a point on its line. 

Step  4 .  The boxes give the message YES or NO and, possibly, the distinguished 
name of X. 

Step  5 .  The signature (of X) is accepted if and only if all verifiers obtained a 
YES (and the distinguished names are the same). 

3.3 Attacks 

For running a successful attack it is not sufficient to find the correct values for 
the points. They also have to be accepted by the sytem as such. This means 
that a potential attacker has also to overcome the secure communication system 
between the entities. As this is up to a specific implementation we will make our 
considerations on the assumption that this can be done. 
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The first case we consider is that the verifying box requires S I N  and the attacker 
knows S I N  but not z. Then he has to guess two correct points in sign,. This 

probability is approximately l/u4. For the probability to h d  a first correct point 
is given by 

u - 1  1 
u2 

M- 
( 6 2  + 1)(u + 1) 

since sign, contains u - 1 points and the quadrangle has u3 + u2 + u + 1 points in 
total. The probability to choose a matching second point is given by 

u - 2  1 
63 uz 

x- 

for the opponent can rule out all the points collinear with his first one. This gives 
him a probability of M I/u4 to find two points of a specific signature. 

If he also knows z, then he can rule out for his choice of z1 all u2 + u + 1 
points collinear with z. He has therefore a probability to guess a point in sign, of 
(u - l)/(u3) M l/u2. The second point he can construct by considering span(z, z ~ ) .  

In our second scenario the verifying system just checks that the points entered 
are in span(y, z) \ {y, z} for some point z on the ovoid. In this case the attacker 
picks an arbitrary point for 21 not on the ovoid and for 22 one which is not collinear 
with 21. The probability that zl, 2 2  get accepted as a signature is 

6 - 2  1 
.-%-. 

u3 + u 
( a ~ + l ) - ( a + 1 )  & cr2 

The situation is completely different if the attacker knows y. In the second scenario 
he can produce "valid" signatures with a probability of 1. He picks two lines L1 
and L2 through y and a 4-gon z ~ ~ z ~ u ~ z ~  where u1 is on L1, u2 on Lz and zl, z2 are 
not on L;, i = 1,2. The points z1, 22 will get accepted as a valid signature. 

Next one can ask for the probability to break the whole system by determining 
the ovoid 6 .  Suppose an opponent knows two points z1 and z2 of a valid signature. 
Then he has to consider all ovoids intersecting span(zl,z2) in two points. This 
depends now on the particular generalised quadrangle used and we cannot say any- 
thing in the general case. For Q(4,q), q even, it follows from papers due to Bagchi 
and Sastry (see [l], [Z] ) who studied the intersection of ovoids in PG(3,q)  in detail 
that there are sufficiently many ovoids through two points to guarantee the security 
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of the system. 

Similarly, the probability of two verifiers to construct “genuine” signatures de- 
pends on the number of ovoids through the point y their corresponding lines have 
in common. As a verifier need not know his line, only the verifying box should be 
in possession of the coordinates of the line to make it more difficult for two verifiers 
to cooperate. 

4 Signature for a group of users 

We consider again the same geometric structure as before with an ovoid 8 and a reg- 
ular point y on 8 .  The groups of u5er5 are defined to be the sets G =span(z,y) \ 8, 
z E P, z 71. y. By the theorem we have Ispan(+, y) n0( = 2 (since y E span(z, y) n 0) 
and hence /GI = u - I. These spans partition the set of points not collinear with y 
of the GQ. It follows that we have at most u2 groups each consisting of r - 1 users. 
Again we let the ve7ifie.s correspond to the lines through y, so we have up to u + 1 
of them. 

The signature of a group G is defined to be the unique point of G which lies in 
the set 8 \ {y}, i.e. 

signc = G n (e \ {y}). 

The uniqueness of this point is guaranteed by the theorem. Different groups have 
necessarily different signatures since the spans we consider only have the regular 
point y in common. 

To verify the signature of a member X G  of a certain group G, two verifiers are 
sufficient. If the two points XG and signG are presented to the verifying system, 
at least two verifiers V, and V, check if the two given points are collinear with the 
same point on each of their corresponding lines L1 and L 2 .  If and only if this is the 
case for both, s ignc  is accepted. 

The implementation can be done by installing a similar system as the one de- 
scribed for a single user. The detailed description of it as well as an overview of the 
possible attacks in this case are left to the reader. 
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