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ABSTRACT 

We introduce and exemplify the-new concept _ of ON-LINE/OFF-LINE digital 
signature schemes. In these schemes the signing of a message is broken into two 
phases. The tirst phase is off-line. Though it requires a m&rate amount of compu- 
tation, it presents the advantage that it can be performed leisurely, before the message 
to be signed is even known. T?te second phase is on 4~. It starts after the message 
becomes known, it utilizes the precomputation of the tlrst phase and is much faster. 

A general construction which transforms uny (ordinary) digital signature scheme 
to an on-line/off-line signature scheme is presented, entailing a small overhead. For 
each message to be signed, the time required for the off-line 

Pa= 
is essentially the 

same as in the underlytng signature scheme; the time required or the on-line phase is 
essentially negligible. The time required for the verification is essentially the same as 
in the underlying signature scheme. 

In a practical lrnple.mentation of our general construction, we use a variant of 
Rabin’s signature scheme (based on factoring) and DES. In the on-line phase, all we 
use is a moderate amount of DES computatton. This implementation is Ideally suited 
for electronic wallets or smart cards. 

On-line/Off-line digital schemes may also become useful in case substantial pro- 
gress is made on, say, lAming. In this case, the length of the composite numbers 
used in signature schemes may need to be increased and signing may become imprac- 
tical even for the legitimate user. In our scheme, all costly computations are per- 
formed in the off-line stage while the time for the on-line stage remains esentially 
unchanged. 

An additional advantage of our method is that in some cases the transformed 
signature scheme is invulnerable to chosen message aaack even if the underlying 
(ordinary) digital signature scheme is not. In particular. it allows us to prove that the 
existence of signature schemes which are unforgeable by known message attzzk is a 
(necessq and) sufficient condition for the existence of signature schemes which are 
unforgeable by chosen message attack. 
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1. INTRODUCTION 
Informally, in a digital signature scheme, each user U publishes a public key 

while keeping secret a secret key. U ’ s  s i g n a m  of a message m is a value 0, 
depending on m and his secret key, such that U can (quickly) generate Q and anyone 
can (quickly) verify the validity of 0, using U ’ s  public key. However, it is hard to 
forge U ’s signatures without knowledge of his secret key. 

A signature scheme has the following components: 
A security parameter (chosen by the user when he creates his public and secret 
keys). This parameter determines the length of the keys (and hence the security), 
the running time of the signing and verification algorithms, and the number of 
(hashed) messages to be signed. 
A message space which is the set of (unhashed) messages to which the signature 
algorithm may be applied To simplify our exposition, we assume that all finite 
binary strings are legitimate messages. 
A probabilistic polynomial time key generation algorithm G which can be used 
by any user U to produce a pair ( P K , S K )  of matching public and secret keys. 
A probabilistic polynomial time signing algorithm S which given a message m 
and a secret key SK produces a signature of m with respect to the corresponding 
public key PK. In the sequel we denote by SSK(m) the probability distribution of 
signatures of message m with secret key SK. 
A polynomial time verification algorithm V which given 6, m and PK tests 
whether 6 is a valid signature for the message m with respect to the public key 
PK. 
Many signature schemes are known by now and several have been proved secure 

even against chosen message attack [GMR84, BM88, “891. In all of them signing by 
the legitimate user, though feasible, is not sufficiently fast for some practical purposes. 
Let us exemplify why this is so, in detail, for the case of Rabin’s scheme [R79]. We 
choose this scheme as a test case both because of its simplicity and because we will 
use a variation of it in a concrete illustration of the general construction. 

In Rabin’s scheme, a user U publishes a composite numbers nu, product of 2 
primes, as his public key, and keeps nu’s prime factorization as his secret key. The 
signature of a message m (regarded as an element of the multiplicative group mod nu) 
is computed by taking a square root modulo nu of either m or a small perturbation of 
m . (The perturbation is used to make the element a quadratic residue mod nu .) 

A square rmt of x modulo nu is computed by raising x to a large exponent, 
modulo the factors of nu (the exponent being a number roughly as large as the factor). 
In Rabin’s scheme, as in all currently known schemes, signing is feasible, though not 
super-fast. Furthermore, the computation of the signature of a message m can start 
only after m has been chosen; no significant speed-up can be obtained by relying on a 
reasonable amount of preprocessing performed before m has been chosen. 

Another point worthwhile noting is that the above described scheme is totally 
insecure against an adaptive chosen message attack. 
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In contrast to the above signature scheme we are interested in signature schemes 
which are very fast. We observe that in many applications (e.g. electronic wallet [E, 
EGY831) signatures have to be produced very fast once the message is presented. 
However, one can tolerate slower precomputations, provided that they do not have to 
be performed on-line. This suggests the notion of an on-lineloff-line signature 
scheme, in which the signing process can be broken into two phases. The first phase, 
is performed off -line, independent of the particular message to be signed, while the 
second phase is performed on-line, once the message is presented. We will be 
interested in on-line/off-line signature schemes in which the off-line stage is feasible 
(though relatively slow) and both on-line signing and verification are fast. 

We present a general construction transfodng an ordinary, digital signature 
scheme to an on-line/off-line one. This is done by properly combining three main 
ingredients: 
(1) An (ordinary) signature scheme; 
(2)  A fast one-time signature scheme (i.e., a signature scheme known to be unforge- 

able, provided it is used to sign a single message); 
(3) A fast one-way hashing scheme (i.e., a hashing scheme for which it is infeasible 

to find two strings which hash to the same value). 
The essence of the construction is to use the ordinary signature scheme to sign (off- 
line) a randomly constructed instance of the information which enables one-time signa- 
ture, and later to sign (on-line) the message using the one-time signature scheme. The 
above informal description does not mention the hashing scheme, and in fact there is a 
version of our scheme which does not use hashing at all. A more practical version uses 
the one-way hashing scheme to map messages into shorter strings which are then 
signed, using the one-time signature scheme. In the version which uses the hashing, 
the message is assumed to be a binary string (of any finite length) and the (one-time) 
signature is always applied to the hashed message. In the version which does not use 
hashing, messages are first broken into "linked" binary words of fixed length. 

A sufficient condition for the resulting signature scheme to withstand chosen mes- 
sage attack is that both signature schemes used (i.e., (1) and (2)) do withstand such 
attacks. However, in particular implementations it suffices to require that these under- 
lying schemes withstand known message attack. 

In the practical illustration we use a modification of Rabin's signature scheme 
[R79] in the role of the ordinary signature scheme, and DES to build the one-time sig- 
nature scheme. The security of this implementation is based on the intractability of 
factoring large integers and the assumption that DES behaves like a random cipher. 
The only computations (possibly) required, in the on-line phase of the signature p m  
cess, are applications of DES. The costly modular computation, of extracting square 
roots modulo a large (e.g. 512-bit) composite integer with known factorization, is per- 
formed off-line. A reasonable choice of parameters allows to sign 100-bit values using 
only 200 on-line DES computations (which can be performed as fast as one modular 
multiplication of 512-bit integers). Verification requires the same amount of DES com- 
putation and one modular multiplication. 

For the theoretical result we use a signature scheme, secure against known mes- 
sage attack, both in the role of the ordinary signature scheme and in order to 
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implement a one-time signature scheme. One-way hashing is not used at all. The 
resulting scheme is secure against chosen message attack. Hence we get 

Theorem: 
Digital signature schemes that are secure against an adaptive chosen message at- 
tack exist if and only if s i g n a m  schemes secure against known plaintext attack 
exist. 

An adaptive chosen message attack is an attempt of an adversary to forge a sig- 
nature of a user after getting from him signatures to messages of the adversary's 
choice. The adversary's choice may depend on the user's public key and the previous 
signatures the adversary has received. A known message anack is an attempt of an 
adversary to forge a signature of a user after getting from him signatures to messages 
which are randomly selected in the message space. (These messages are selected 
independently of the adversary's actions.) In both (chosen and known) cases, security 
means the infeasibility of forging a signature to any message for which a signature has 
not been obtained before (i.e., existential forgery in the terminology of [GMR84]). 

Notice that, so far, only sufficient conditions for the existence of schemes secure 
against adaptive chosen message attack have been known. We exhibit a minimal such 
condition; that is, a necessary and sufficient one. Moreover, in all known schemes, pro- 
ven secure against adaptive chosen message attack, the length of the signatures 
increases (explicitly or implicitly) with the number of signatures produced. An advan- 
tage of our scheme is that the length of each signature is fixed. 

2. THE GENERAL CONSTRUCTION 
Notice that implicit in the definition of a signature scheme is that one can sign 

securely as many messages as one wants. One may also define schemes with less 
stringent security properties. Namely, 

Definition: 
A one-time signature scheme is a digital signature scheme which can be used to legti- 
mately sign a single message. A one-time signature scheme is secure against h o w  
(resp. chosen) message attack if it is secure against attacks which are restricted to a 
single query. 

Notice the analogy with a one-time pad, which allow one to send private mes- 
sages securely as long as he does not use the Secret pad twice. An early version of 
one-time signature was suggested by Rabin [R78]. It required an exchange of messages 
between the signer and signee. Schemes which avoid such an exchange were suggested 
by various authors; see Merkle [MI. 

We believe that the importance of one-time signature schemes stems from their 
simplicity. They can be implemented very efficiently. Our construction demonstrates 
that one-time signatures can play an important role in the design of very powerful and 
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useful s ignam schemes. As our construction uses both one-time and ordinary signa- 
ture schemes, we wil l  attach the term "one-time'' to terms such as "secret key" and 
"public key" associated with the one-time signature scheme, to avoid confusion. 

Notation: 
Let H denote an (agreed upon) one-way hashing function, mapping arbitrarily long 
messages to n-bit long strings. Let (G ,S ,V)  denote an (agreed upon) ordinary Signa- 
ture scheme (G is the key-generation algorithm, S is the signing algorithm, and V is 
the verification algorithm). Let (g J ,v ) denote an (agreed upon) one-time s ignam 
scheme. 

Key Generation: 
The signer runs G to generate (PK, SK). The public key, PK, is announced The 
"signing key", SK, is kept secret. 

Off-Line Computation: 
Before any message has been chosen, the signer runs algorithm g to randomly select a 
one-time public key pk and its associated one-time secret key sk. (This pair of one- 
time keys is unlikely to be used again.) He then computes the signature of pk using 
the ordinary signature scheme 

= s.s,(pk) I 

and stores the "precomputed signam", X, as well as the pair of one-time keys, 
(pk, sk) .  

On-Line Signature: 
To sign the message m, the signer retrieves from memory the precomputed signature 
I;, and the pair (pk, sk). Using H, he hashes m into a string of length n, denoted by 
H(m).  He then computes a one-time signature 

cs = s,, (H (m 1) 
The signature of rn consists of the concatenation of the strings pk,  Z, and 6. 

Verification: 
To verify that the mple (pk3.o) is indeed a Signature of m with respect to the public 
key PK, the verifier acts as follows. First, he uses algorithm V and the public key PK 
to check that C is indeed a signature of p k .  Next, he computes h = H ( m )  and checks, 
by running v ,  that o is indeed a signature of h with respect to the one-time public key 
pk . Namely, verification amounts to evaluating the following predicate 

v P K @ k *  vpk (H (m 1, 0) . 
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Security: 
The scheme can be proven secure against adaptive chosen message attacks if 

some Conditions are true about the main ingredients. For example, it suffices to assume 
that both the ordinary and one-time signature schemes are secure against chosen mes- 
sage attack and that the hashing is the identity map. Milder conditions are discusses in 
Sections 3 and 4. Here we confine ourselves to just give some plausibility arguments 
concerning the security. 

First, notice that a chosen message attack by a forger, attempting to find a new 
p k  (for which he knows a corresponding sk) and a matching C, amounts to a known 
message attack on the ordinary signature scheme, since the previous pk’s for which 
the forger has seen matching Z’s have not been chosen by him. This is the reason why 
the ordinary signature scheme need not withstand a chosen message attack (as indeed 
is the case for Rabin’s scheme [R79]). 

Second, an attempt to use an old pk  (for which a matching 2: is known) and forge 
(J for a new m’ , amounts to either an attack on the one-time signature scheme (produc- 
ing a signature for H(rn’) which is different from a l l  previously hashed values) or 
finding a new rn’ such that H(m) = H(m’) .  However, we assume either task to be 
infeasible. 

Efficiency 
Notice that the off-line computation essentially coincides with computing the sig- 

nature of a single string in the ordinary scheme. Since there are extremely fast one- 
way hashing functions and one-time signature schemes, the effort required in the on- 
line phase is negligible with respect to that of computing an ordinary signature. 

Most ordinary signing algorithms are based on the computational difficulty Of 
integer factorization. Should some moderately faster factoring algorithm come about, 
then longer ordinary public and Secret keys will be necessary. This will cause a slow- 
down in the off-line stage, but not in the on-line one. Thus, our construction may 
become even more useful if ordinary signature schemes will become slower due to 
increasing security requirements. 

3. PROOF OF THE THEORETICAL RESULT 
Let ( G S , V )  be a signature scheme secure against known message attack. We 

consmct the signature scheme (G* ,S* ,V*) as follows: 
G is used twice to produce two pairs of matching public and secret keys, 

(PK,, SKI) and (PK2, S K d .  To sign a message m of length n the signer randomly 
selects 2n smngs of length n each, denoted r l ,  ..., r b ,  and signs the smng R , obtained 
by concatenating them. Namely, X = SsK,(R). Let m = b, . . . 6,. Then, the signer 
computes oi = SSK,(rZ+) and sets CT = o1 . . + 0,. The signature of message m con- 
sists of R , Z and o. 
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Proposition: 
If (G* S* , V * )  is existentially forgeable via a chosen message attack then (G ,S ,V)  is 
existentially forgeable via a known message attack. 

Proof's sketch: 
Let F' be a probabilistic polynomial time al orithm which forges signatures of 

(G*,S*,V*) ,  with success probability ~ ( n )  2 l/n'('), via a chosen message attack. 
Such a forged signature either uses a sequence of ri 's which has appeared in a previ- 
ous signature or uses a sequence of Ti's which has not appeared previously. One of 
these two cases occurs with probability 2 ~ ( n ) / 2 .  
Case I: 

With probability 2 &(n)/2, algorithm F' forms a new signature using a sequence 
of ri 's used in a previous signature. 

We construct an algorithm, F,, forging signatures of (G,S,V) as follows. On 
input PK (and access to known message attack on SsK), algorithm F 1  uses G to 
obtain a new pair of corresponding keys (SK' , PK'). Algorithm F initiates algorithm 
F*, on input (PK', PK), and supplies it with signatures to messages of F * ' s  choice. 
To get a signature for the message rn = b l  - - b,, requested by F*, algorithm F asks 
for new signatures of n random messages. Suppose that F is given the message- 
signature pairs 

(PI, S s ~ ( ~ l ) ) , * - i  (Pa 9 SSK (Pn 1). 
Algorithm F l  sets f2i&,tP; and selects the other n strings ri at random. It uses its 
secret key SK' to compute C = Ssr ( r l  . . . r%) ,  and gives F' the triple 

(r1 * * * rhr  z S S K ( T 2 4 , )  - * SSK('2n-b.)) 

as a signature of rn . Eventually, with probability 2 ~ ( n ) / 2 ,  algorithm F* yields a sig- 
nature to a new message in which the ri-sequence is identical to a ri-sequence used in 
a previous message. This signature contains, with very high probability, a Signature 
SSK(r,)  to a smng r, for which a signature has not been S X R  so far. (It is unlikely 
that the oracle signing random messages will sign the same message twice since the 
message space is huge). Outputting this (r, ,  SSK(rj))  pair, algorithm F l  achieves 
existential forgery, via a known message attack. 
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Case 2: 
With probability 2 E ( R ) / ~ ,  algorithm F* forms a new signature using a sequence 

of ri 's not used in previous signatures. 
The for&g algorithm we construct here, denoted FZ, uses (SK', PA?) for the 

second phase. NameAy, F2 answers the signature requests of F* by obtaining a SSK- 
signature to a random message r l  - * . rzn)  and computing Ssr (rZ4J.  If the new sig- 
nature obtained from F* contains a SSK-signature of a new sequence of q's, F2 out- 
puts it. This happens with probability 2 ~ ( n ) / 2 ,  and hence F2 commits existential for- 
gery, via a known message attack. 

0 

4. CONCRETE IMPLEMENTATIONS 
We now suggest concrete implementations of our general scheme leading to fast 

on-line computations (both for signer and verifier). 
In the role of the ordinary signature scheme we use a modification of Rabin's 

scheme [R79]. In this modification, we use integers which ;ilt the product of two large 
primes one congruent to 3 modulo 8 and the other congruent to 7 modulo 8. For such 
an integer N and for every integer v E Z i  (the multiplicative group modulo N) 
exactly one of the elements in the set S,, = (v , -v , 2v ,  -2v ) is a square modulo N 
(see W80, GMR841). Momver,  each square modulo N has exactly 4 distinct square 
roots mod N. Let us define the extended square root of v modulo N, denoted 
"6 mod N, to be a distinguished square root modulo N (say, the smallest one) of 

the appropriate member of S,,. Its computation is feasible if the factorization of N is 
known, and considered intractable otherwise. 

The message space is associated with the elements of the above multiplicative 
group. Larger messages are fist hashed into such an element. It is assumed that the 
message space satisfies the following condition: If v # u then S,, n S, = 0. This can 
be enforced by using only values of the 2nd eighth of Z; (i.e., 
(v E 2;: N / 8  c v < N/4)). 

Anyone can verify that a is a legitimate signature of m by computing a2 mod nA 
and checking that it indeed belongs to the set S,. 

For the one-time signature scheme, we propose to use the DES algorithm as a 
one-way function f (x) = DES,(M); that is, the value obtained by encrypting a stan- 
dard message, M ,  using DES with key x .  Also, the notation D E S i ( M )  means f ' ( x ) ;  
that is, iterating the one-way function i times on input x (using each time, for exam- 
ple, the first 56 bits of the previous value as the next key). 

In role of the one-way hashing function we use any standard way of using DES 
in a hashing mode. (See, for example, [R78].) We recommend that H maps arbitrarily 
long smngs to R = 128-bit long smngs. For some applications, one may be content 
with n = 64. 
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For the sake of presentation, let us describe now three versions of the concrete 
implementation, adding each time a new concept. These concepts have been suggested 
previously. (See, for example, [w.) 

4.1 The Basic Implementation 

Off-Line Computation 
A chooses randomly 256 keys for DES. Thus, the one-time secret key is 

sk = KIK2 * * KZ6.  

Next, A computes the corresponding public key as follows: 

pk = DES ( M  ,Kl)DES (M ,Kd . * * DES (M ,Kp&, 

where M is a standard message, known to all. Next, A one-way hashes and signs pk. 
A can perform this task with reasonable efficiency, since she knows the two prime fac- 

v = H @ k ) ,  

C =  &G(mod  nA) .  

tors Of n A .  Thus, she has 

She now stores pk , its precomputed signature C, and sk. 
On-Line Signature 

Assume now, that A wants to sign message rn. She retrieves from memory the 
precomputed pk, C and the one-rime secret key sk and then computes the 128-bit 
string 

x = H ( m ) = b 1  " ' b 1 2 8 .  

She then prepares the 7168-bit smng 

a = K2-blK4-b2 ' ' . K 2 5 6 b l m  9 

This completes the signing process. The signature consists of pk, X, and 6. Its total 
length is 24,064 bits (16,384 + 512 + 7168). 
Verification 

modulo nA ; that is, that x2 mod nA is one of the four m e m h  of S, . 

every (1 S i S 128). D E S ( M ,  K Z + )  is equal to the (2i-b;)'th block of pk. 

First one computes Y = H ( p k ) ,  and verifies that C is an extended square root of Y 

Second, one computes x = H ( r n )  and, using the blocks of 0, one verifies that for 

Security 
Assuming that factoring is hard, a forger cannot produce a C for a new string pk. 

Notice again, that a chosen message attack on this part of the new scheme amounts to 
a known message attack on Rabin's signature. 

Assuming that DES (M, a) is a secure one-way function, a forger cannot find any 
of the 128 keys not revealed to him in a, and therefore cannot forge a one-time signa- 
ture to any message which does not hash to the same x .  Clearly, the probability that 
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the same key will be generated again (to be part of a new sk) is negligible. 

4.2 Shortening the signature 

In this version the length of the transmitted signature is shortened while the 
number of DES computations remains unchanged. The only damage is that the scheme 
is less suitable for parallel implementations. 
Off-Line Computation 

A chooses randomly 129 keys for DES. Thus, the one-time secret key is 
sk = K i K 2 .  * * K 1 2 9 .  

Next, A computes the corresponding public key as follows: 
pk = D E S ( M , K i ) D E S ( M X d  * * * DES(MP1,)DES‘28(M,K129). 

v = H ( p k ) ,  

Next, A one-way hashes and signs p k .  Thus, she has 

):= “&-(mod n A ) .  

She now stores pk, its precomputed signature Z, and sk. 
On-Line Signature 

precomputed pk ,  C and the one-time secret key sk and computes the 128-bit sfring 
Assume now, that A wants to sign message m. She retrieves from memory the 

x = H ( m )  = b ,  . * * b 128 . 
Let 

i=1% 
B =  X b i .  

i=l 

and let pi, 0 S j 5 B ,  be the index of the j’th 0 in the vector x .  A prepares the 
(56.(128-B) + @)-bit string 

This completes the signing process. The signature consists of p k ,  C, and a. Its total 
length is bounded by 16,000 bits (8,256 + 512 + 7,168 + 64). 
Verification 

First one computes v = H (pk), and verifies that Z is an extended square root of v 
modulo “ A .  

Second, one computes x = N ( m ) .  B and pi are defined as above. Using the first 
(12843) (56-bit) blocks of a, one verifies that for every 1 5 j S (128-B), 
D E S ( M ,  K g j )  is equal to the p j ’ t h  block of p k .  Also, using the last (@-bit) block of 
6, and extracting from it the (fist) 56-bit key K’ , one verifies that DESB (M, K’) is 
equal to the 12941 block of pk.  Altogether, there are 128 applications of DES. 
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Security 
The argument concerning the security of Z remain essentially unchanged. For the 

security of the one-time signature, assume that DES (M, .) is a secure one-way func- 
tion, and consider the possibility of forging a one-time signature for rn' f m. We 
assume that H(m') ;c H(m). Let 

H(m')  = b', * . b',, . 
If there exists an i such that bi = 1 but b'i = 0 then the forger is stuck: He can- 

not provide the corresponding DES key. If no such i exists, then 
i=128 

B' E C b'i > B , 
i=l 

and the forger is supposed to produce DES'28-r (M, K I B ) ,  which he cannot, since 
128 - B' < 128 - B and D E S ( M ,  .) is a one-way function. 

4.3 Further shortening of the signature 

The method described here shortens the signature by a factor of 3.38, but 
increases the number of DES applications by a factor of 3.75. Yet, running DES 1,OOo 
times takes less than .2 seconds. Thus, this method seems to be suitable for the elec- 
tronic wallet. Off-Line Computation 

A uses her spare time to produce the concatenation of 33 DES keys. Each key 
(56 bit-long) is chosen randomly. Thus, 

sk = K1K2 * * K33 
is the one-time Secret key. A computes now the corresponding public key pk as fol- 
lows: 

pk = DES1'(M,K1) * - * DES'5(MX32)DES480(M,K33). 

Next, A one-way hashes and signs pk. 

v = H ( p k ) ,  

C =  c " G ( m d  nA). 

She now stores the precomputed signature pk , C, and sk. 
On-Line Signature 

precomputed pk, Z and the one-time signing key sk and computes the 128-bit string 
Assume now, that A wants to sign message m. She remeves from memory the 

x =H(m)=B1.**B32, 
the concatenation of 32 blocks, each 4-bit long (representing an integer between 0 and 
15). Thus, the sum of the Bi's is at most 32.15 = 480. She then computes the 2112-bit 
smng (2112 = 33.64) 

==q'*' =32=33 7 
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where 

bi = DESE'(M, Ki) 
for i = 1, ..., 32 and 

'"'(M, K33)  . 480- ( B , + .  . . 033 = DES 

This completes the signing process. The signature consists of pk, Z, and 6. Its total 
length is 4,736 bits (21 12 + 512 + 21 12). 
Verification 

To verify the signature, one computes v = H ( p k ) ,  and checks that Z is an 
extended square mot of v module nA; that is, that x2 mod nA is one of the four 
members of S,,. Next, one computes x = H ( m )  and divides x into 32 blocks of &bits 
each, x = B I . . B ~ ~ .  One then verifies that pk equals 

DES'5-E1(M, 01) * DES's-Efs(M, O ~ & I E S ~ ~ + . . . ~ ~ ( M ,  033). 

security 
The security of C is as above. Let us consider the security of the one-time signa- 

We need to show that, even after seeing the signature of a legitimately one-time 
signed string x ,  an adversary (who does not know the one-time secrete key) cannot 
find any other string. x' , whose one-time signature he is able to forge. Divide x' and x 
into k = 32 blocks of 4 bits each, B'l - * - B'k and B ,  - - - Bk, respectively. Consider 
again each block as a number between 0 and 15. If for sonx i ,  Hi c Bi then the 
adversary is stuck, since f (3) = DES (M, s) is a one-way function and to obtain di, a 
valid s ignam of H i ,  he must invert (i.e. h d  a counter-image of) f at least once, on 
input bi . Otherwise, we have B'i 2 Bi for al l  i . But as we assume that x' # x ,  

ture. 

480-(B'1+ + B ' b ) < 4 8 0 - ( B , +  + B k )  

holds. Thus, the adversary is again stuck since he cannot invert f even once, as he 
needs to do to derive db+l on input o ~ + ~ .  
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