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Abstract. In a society oriented cryptography it is better to have a public key for 
the company (organization) than having one for each individual employee [.es88]. 
Certainly in emergency situations, power is shared in many organizations. Solutions 
to this problem were presented [.e.s88], based on [GMW87], but are completely im- 
practical and intemctive. In this paper practical non-intemctiue public key systems are 
proposed which allow the reuse of the shared secret key since the key is not revealed 
either to insiders or to outsiders. 

1 Introduction 

When a society oriented cryptosystem is used, an individual should be able to send an 
encrypted message to an organization without knowing the public key for every person 
within the receiving company. The destination organization should also be able to set 
up its own security policy to determine who can read the messages it receives. The 
cryptosystem must be designed such that the sender cannot circumvent the security 
policy, and the individual can send the message without knowing the policy [D&S]. 

Societies are organized in a multi-level structure [SimB]. Organizations in a group 
oriented society must consider many issues when determining its security policy. Com- 
panies which are organized in a hierarchical structure (e.g., board of directors, super- 
visors, executives) may require fewer individuals to read the messages if they are 
at a higher level. The security policy might also require that a specific number of 
individuals work together in order to be able to read the message. 

Certainly when public key systems are used, it is not appropriate to use threshold 
schemes to determine the key. Otherwise all the individuals who work together can 
determine the key, or the one who receives all shares (shadows) may keep the key. 
This would be terrible in a public key system since modifying a public key is more 
difficult than modifying a secret key in a conventional system. 

We propose a method in which every organization has a single public key. However 
for anyone within the company to read the message, they must get “enoughn people 
with the appropriate number of shadows to calculate the message. Some of the earlier 
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solutions [Des88,GMW87] to this problem require an impractical ping-pong protocol. 
A solution using clerks is discussed in [Fra89]. This method modifies the decryption 
process of RSA by requiring each of the multiple clerks to do a partial calculation. The 
use of clerks, however, is not very robust. In our solution, which is practical and non- 
interactive (see Figure 1 and 2), the receiving company will allow all of its employees 
to view the ciphertext. Each shareholder will calculate their "partial result" separately 
and transmit the result to a designated individual. The designated individual will be 
able to decrypt the message using these partial results. 

2 Background 

To obtain the above we will adapt the ElGamal [ElG85] public key cryptosystem to 
meet our needs. This cryptosystem's security is based on the discrete log problem. 
(For an overview of the security of discrete logarithm, see [BvOV88,IBV85,0dl84]). 
It will be proven that even t - 1 shadows are not suf6cient for the calculation of the 
plaintext; and the system will also give no information on what the key is until t 
individuals act in collusion, both under the assumption that the ElGamal system is 
secure. 

2.1 THRESHOLD SCHEMES 

A (t ,n) threshold scheme [Bla79,Sha79] does not reveal a secret S unless any t out 
of n participants, or shadowholders, work together. Each participant i will have a 
unique shadow K; which he/she must keep secret. When any t - 1 shadowholders 
work together, they can not receive any information about the secret S. In this way, 
a secret can be shared by many people. If a share is burned in a fire or someone 
forgets his/her shadow, there should be enough shareholders to recover the secret. In 
our system, a modified shadow is a result after making certain computations on the 
shadow. These modified shadows must also be secret. Let us explain the concept of a 
modified shadow with an example. 

A ( t ,  n) threshold scheme (see also [Den82]) based on Lagrange interpolation was 
developed by Shamir [Sha79]. To implement it, a polynomial f of degree t - 1 is chosen 
in a field such that f (0)  will equal the secret S. Each of the shadowholders i will be 
given a secret K; = f ( i ) .  The reconstruction of the polynomial can be done with any 
subset B of t shadows, K,g(l), K,,(2), . . . , K,,(q (for a given subset B of t out of n, 
TB : B -+ {1,2, .  ' , n) and IBI = t ) .  Hereto the following is calculated where the field 
corresponds to GF(p):  

where the x; are public. The modified shadows axB(i) in our scheme are computed . .  

such that %(u)  = K * B ( S )  n;=l&s (zrB(s&J)) (o-zr J (mod p ) .  Giving away the modified 
shadows a,B(,) to others has the same effect as giving away the shadows KrD(#). It 



C 

SHADOW 2 
I PARTIAL RESULT 2 

I 
I 
I 1 I 9 HOD. SHADOW 

/ I I w 

SHADOW 1 t 
\ 

' PARTIAL RESULT 1 

FIGURE 1. Our non-interactive solution 
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is imperative that each of the participant's modified shadow has the same security 
protection as the actual shadow. 

2.2 ELGAMAL CRYPTOSYSTEM 

The ElGamal cryptosystem is a public key extension of [DH76]. Its security is based 
on the discrete log problem. To use this cryptosystem, an element g (which should 
be a generator) is chosen in a finite field Fp. A trusted source will generate a random 
integer a within the the range 0 < a < q - 1. Before destroying its copy of a, the 
trusted source will supply the company with the a as its private key and publish ga as 
the public key. To transmit the message M ,  the sender will create a random integer k 
and send the tuple C = ( g k ,  Mgak) .  To decrypt the message, the receiver needs ody  
raise g k  to the power a. The multiplicative inverse g-ak of this result will be multiplied 
with the second entry of the tuple, Mgak,  to get the message M .  

3 Solutions 

Both of the methods, which will be described to solve the problem, are implemented 
with the ElGamal cryptosystem. Each approach, however, will use a different threshold 
scheme to calculate a modified shadow for each participant. The modified shadow and 
the ciphertext wil l  be used to get a partial result which is transmitted to a designated 
individual. This person wil l  receive all the partial results and be able to calculate 
the message by using multiplication. In one of the approaches, any subset B of t 
individuals can perform the required operations. 

3.1 THE BASIC IDEA 

Lets first modify the set-up phase in the ElGamal scheme. The one who has chosen 
the secret decryption key will give each shadowholder a shadow of a, where a is the 
secret decryption key in the ElGamal scheme. Once each shadowholder has his shadow 
a;, the center can blow itself up. The encryption phase remains the same as described 
in 2.2. Let us now explain how decryption is performed. 

Unless stated otherwise all the calculations to be performed in this section will 
be done in Fp. When a message is received, any subset B of t participants T B ( S )  will 
calculate their modified shadow ugB(8) using threshold schemes explained in Section 3.2 
and 3.3. The sum of these modified shadows will be congruent to the secret a mod $(q) 
(a  as in Section 2.1). Each x g ( s )  will then raise g k  by -arB(,) to get g&!') as their 
partial result. These partial results will be transmitted to the designated individual. 
To get M ,  the designated individual needs to multiply each of the gkB(,) together. 
This result geak is multiplied with the second entry of the ciphertext ( M g U k )  to get 
the message M .  An example using a (3,n) threshold is given below. Let r~(1) = 1, 
ag(2) = 2, and n ~ ( 3 )  = 3 such that al+a2+u3 = a mod $(n). Each of the participants 
will transmit their s',,(,, to a designated individual. That individual will perform the 
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following calculation: 

z1 K * B ( l )  

* : -  - 

5: K x B ( t )  

TO make this algorithm truly non-interactive, have each individual send (gkKrB( ’ ) ,  

~ ( 2 ) )  to the designated individual. That individual can now exponentiate the first 

tuple by nf=lj+ to generate g L 4 r ~ ( i ) .  * =*B(.)-rrBO))  

3.2 USING LAGRANGE INTERPOLATION FOR MODIFIED SHADOW 
GENERATION 

If q is a prime, then the calculations of the exponents is performed modd(q), which 
isn’t a prime (except when q = 3 in which case we are not interested). This implies 
that Lagrange interpolation for calculating the modified shadows will not work. So 
choosing q = 2’ is a solution if q - 1 is a Mersenne prime that is large enough. We, 
therefore, will perform the ElGamal system in GF(2’ )  where “depending on the level 
of security that is desired, it s e e m  that the fields GF(2”) to be used ought to have n 
large, no smaller than 800 and preferably at least 1500”[0dl84, p. 226](i.e.,  I = 1,279 
or 2,203). The Lagrange interpolation will be done in where q - 1 is a prime. The 
modified shadows will be generated by each person as described in Section 2.1. 
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partial result. This is done by having the participant who supplied KrB(i) determine 
his mdified ~hadow arB(i) = C:=, ~ r B ~ i ) s ~ B ( 7 ~ , ~ B ( i ~  mod $(n) where are 
from the Ti1 matrix. For example, the person who supplied the K,,Q) will multiply 
that value with each element in second column of T i *  and then add them all up to get 
his/her modified threshold. It is easy to see the the sum of all the modified thresholds 
will be congruent to a. 

This method will only work if the matrix TB is in GLt(R),  thus has an inverse. 
The probability that a randomly chosen matrix is invertible is: IGLt(R)) / IMt(R)I. 
If R = 2, where p is prime, then the above ratio is (1 - $)(1 - 3) - - .  (1 
(See [Kob87]). When the prime is large, this probability is high enough to insure that 
the matrix will be invertible. This implies that if q is a prime and the n planes are 
chosen randomly (by the center during initialization), there is a large probability that 
t users are not able to  invert TB and are unable to perform their job. In some cases, 
when excluding some collisions is not detrimental, this method is advantageous. If 
special planes are used, the above can be avoided. These are easy to generate if t and 
n are small. If ElGamal is used in GF(2’) with 2’ - 1 a Mersenne prime, there is no 
problem. 

- ”) 
P” 

4 Enhancements 

There are two enhancements given which will increase the security and practicality of 
this scheme. 

4.1 AVOIDING GALOIS FIELDS 
Peralta has made the following suggestion to us to avoid the use of Galois fields for 
executing the ElGamal cryptosystem. Since #(n) is even, use g2 rather then g. 

In more general terms, if we drop in this text the requirement that g is a generator, 
then our solution presented in previous paragraphs (using Lagrange) always works 
when Elgamal is executed in any (finite) group as long as the order of g (ord(g)) is a 
prime. 

If ElGamal is done in a group and ord(g) = RS where S does not contain any 
factors less than n, it will always work when using gR instead of g and when Lagrange 
is done mod S. This is true because ord(gR) = S and the only inverses that must be 
calculated are those of (z; - sj), which are between --n and n since 0 < z;, zj 5 n. 

4.2 ANONYMITY 
If in an organization the shadowholders are known to each other, the temptation 
for t of them to collude could be irresistible. As a result, they would find the secret 
key of the company, which will be continued to be used. To increase security, only 
pseudonyms of the shadowholders are known to outsiders. The shadowholders are then 
going to send their partial results in an untraceable way [Cha8l1Cha88]. Anonymous 
threshold is evidently applicable in other situations. Other obvious measures can be 
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used to increase security such as using local organized encryption (using local public 
key system). 

5 Proof of security 

TO prove its security we will use the concept of zero-knowledge [GMR89]. We only 
need the simulatability concept and not the interactive proof part. In o w  system, we 
have the following participants: a sender, a receiver and t shadowholders. Let us take 
a subset, V ,  and call those participants not in this subset P. Given a legitimate pair 
(message, ciphertext), we will prove that the interaction between the participants in 
P and the participants in V can be simulated (to be more precise, the probability 
distribution of the views can be simulated). To illustrate let us take an example in 
which P corresponds with one of the shadowholders. Because k is known (sender of 
message is part of V ) ,  it is trivial to simulate the interaction between P and V .  

Informally, this implies that Unon extra information is leaked about aTB(=) than 
gka*B(*). If the discrete logarithm is hard, then the calculation of the modified shadow 
will also be hard. 

6 Failures with %A 

The implementation of the Lagrange threshold scheme was modified and another one 
presented, in order to allow each person to calculate, on his own, the modified shadows. 
Other attempts to  use the same approach with RSA failed mainly because +(n) has 
to remain secret. 

Lagrange interpolation cannot be used since $(n) is even and calculations mod 
d(n) does not form a field. Given persons i and j it can happen that (i - j )  is 
even and therefore not invertible. There is no way of selecting the number i in order 
for each person to get around this difficulty. The Chinese remainder interpolation 
method [AB80] is not possible since $(n) must be revealed. Other methods using 
projective geometry cannot be used since all t individuals must provide their shadows 
to a designated person who will do the required calculation. The secret, however, will 
be known to that person. 

7 Conclusion 

We have shown a practical non-interactive scheme which allows an organization to 
use a public key system, yet still require t out of n people work together to read the 
message. Our scheme uses the ElGamal cryptosystem and modified threshold schemes 
to solve many of the problems associated with a group oriented society. 

Recently we have been able to come up with a threshold signature scheme. This is 
a signature system where the signature can be verified by anyone knowing the public 
key of the signing company. To generate a signature requires t out of n individuals 
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and one interaction. The scheme is partially based on [GQ88]. 
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