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Abstract 

It has been proved earlier that the existence of bit commitment schema (blobs) implies the existence 
of sereknowledge proofs of information possession, which are MA-protocols (i.e. the verifier sends 
only independent random bits) [BrChCr], [GoMiWi]. 

In this paper we prove the converse result in a slightly modified form: We define a concept called 
veoHy zero-knowledge, which is like ordinary zero-knowledge, except that we only require that an 
honed verifier learns nothing from the protocol. We then show that if, using an MA-protocol, P 
can prove to V in weakly zer&nowledge that he p mea a solution to some hard problem, then 
this implies the existence of a bit commitment scheme. If the original protocol is (almost) perfect 
zer*knowledge, then the resulting commitments are secure against an infinitely powerful receiver. 

Finally, we also show a similar result for a restricted class of non-MA protocols. 

1 Introduction and Related Work. 

A bit commitment scheme (blob) is a method that allows protocol participant A to 
choose a bit B, some random input r and compute from this a commitment to L, 
BC(b,r). To be useful, the bit commitment scheme must satisfy: 

I It is hard to predict b from BC(b, ) r essentially better than at random. 

l A can later open the commitment, to convince anybody else about her original 
choice of b. This is usually done just by revealing r. 

l A cannot change her mind about her choice, i.e. she cannot find r, r’ such that 
BC(l,r) = BC(0, r’). 

This very loose and informal description should be enough to understand the basic 
ideas in this paper. More formal treatments can be found in [Da] or [BrChCr]. 
Note also that establishing a commitment may sometimes involve interaction between 
sender and receiver. 

One easy example of a commitment scheme is the case where A is given a large 
integer n which is the product of 2 prime factors congruent to 3 modulo 4. A can 

‘The author is with Mathematical Institute, Aarhus University, Ny Munkegade, DK 8000 Aarhus 
C, Denmark. 

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 17-27, 1990. 

0 Springer-Verlag Berlin Heidelberg 1990 



18 

now compute a commitment as BC(b,r) = r2 mod n, where r is a randomly chosen 
residue with Jacobi symbol -Ib.  In this case, commitments to 1 have exactly the same 
distribution as commitments to 0, but knowledge of two square roots of a number 
modulo n with different Jacobi symbols clearly suffices to factor n. Hence, even with 
infinite computing power, b cannot be found from BC(b,r),  but A could cheat if he 
had computing power enough to factor n before it was "too late", i.e. before the 
whole protocol is completed. 

Commitment schemes are extremely useful in the construction of cryptographic 
protocols. The general zero-knowledge proof of [GoMiWi] and [BrChCr] as well as 
the multiparty computation protocols of [ChDaGr] and [GoMiWi2] are based entirely 
on commitment schemes. 

The existence of bit Commitments is implied by the existence of one-way func- 
tions, as shown by Naor "a]. The converse, however, is not necessarily true, even 
if we exclude from the discussion commmitments that are not binary encodable, like 
quantum blobs [Br] for example: In the present paper, we base commitments on 
problems for which one can select hard instances at random. This, however, does 
not necessarily imply that the problem is in any sense "hard on the average". This 
adds to the interest of studying bit commitments in general and their connection to 
zero-knowledge protocols. 

Another difference to the work of Naor is that our construction has the potential of 
producing commitments secure against an infinitely powerful receiver (which implies 
that the sender MD. cheat if he has enough computing power). The commitments 
from "a] has the dual property: the sender cannot cheat at all, while the receiver 
must be restricted. 

The protocols we will be concerned with here are protocols for proving possession 
of information (rather than proving language membership as in the original zero- 
knowledge paper [GoMiRa]). In this setup, a prover P (Peggy) possesses a solution 
to some problem, and tries to convince a verifier V (Vic) that indeed she knows this 
solution, while giving Vic absolutely no clue as to what the solution is. A little more 
formally: suppose a relation R on sets U and V ,  and an element y E V are given. 
Then Peggy is trying to convince Vic that she knows how to compute z E U such 
that (z,y) E R holds. 

Following [FiFiSh] and [ToWo], we will let both the prover and the verifier be 
probabilistic polynomial time Turing machines. 

In this model, it was proved in [BrChCr] that the existence of a bit commitment 
scheme implies the existence of a zero-knowledge proof of information possession (as 
defined in [ToWo]) for any problem in MA, i.e. for any problem, Peggy can prove 
to Vic in zero-knowledge that she knows a solution, as long as this solution can be 
verified by a BPP-algorithm. Furthermore, Vic only has to send independently chosen 
random bits, i.e. the protocol is an MA-protocol. 

Our result can be seen a sort of converse to the above: if a (weakly) zero- knowledge 
proof of knowledge exists for some hard problem, and the protocol has a structure 
similar to that of [BrChCr], then a bit commitment scheme exists. 

In independent work, Fiege and Shamir [Fish] found a result similar to ours for the 
special case where the verifier sends only 1 bit per round. This was used to design two- 
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round zero-knowledge proofs of knowledge for any NP-problem. The key observation 
there was that commitments constructed by our method are always “chameleonn, 
i.e. the bit contained in a commitment can always be changed if extra information 
is known. One can then simulate parallelized protocols by making this information 
available to the simulator. 

We would like to point out two interesting facts about our result: 

0 It adds a theoretical basis to the intuitive belief shared by many reaearchers, 
that bit commitment schemes are very fundamental objects ideed, and if they 
do not exist, zerGknowledge proofs of knowledge - at least interesting ones - 
are probably, to use an expression of Brassard, a fancy way of talking about the 
empty set 2. 

Put another way: it shows that zero-knowledge proofs of knowledge based on bit 
commitments are “as invulnerable as possible” against collapse of cryptographic 
assumptions: if the assumption falls, no interesting objects exist of the kind we 
are trying to construct. 

0 It shows that existence of an MA zero-knowledge proof of knowledge for one hard 
problem is a sufficient condition for the existence of such proofs for anything in 
MA (by [BrChCr]), even if the problem we start with is not NP-complete. 

The restriction to MA-protocols does not seem to be a severe limitation of the 
result: the most powerful zero-knowledge proof known ([BrChCr], [GoMiWi]) are 
MA. Furthermore the result is not limited to MA-protocols, as shown by Section 3. 

2 Main Result 
In this extended abstract, we will only give informal definitions and proofs. For a 
rigorous definition of zero-knowledge proofs of information possession, and a detailed 
description of communicating Turing machines, the reader is referred to [ToWo]. 

We now describe a proof system of information possession for a relation R on sets 
X and Y: It consists of a pair of communicating probabilistic polynomial time Turing 
machines (P,V). Common input to P and V is y E Y. P also gets as input 2 E X .  
At the end of the conversation, V outputs “accept” or “reject”, and the proof system 
(P, V )  is said to accept or reject accordingly. Let m denote the length in bits of y. 

We will restrict our attention in this section to the case of MA-protocols, i.e. the 
prover speaks f is t ,  and the verifier sends only uniformly and independently chosen 
bits. 

Thus, we assume that the conversation between P and V has the following form: 

0 P sends a message ml. 

*Zer*knowledge prooh of knowledge do exist for some problems independently of computational 
assumptions, examplea are discrete log, graph isomorphism, and factoring. However if bit com- 
mitments did not exist, all these problems would be easy, and their interactive proofa therefore 
uninteresting. 
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0 V sends bits &, ..., bk to P.  

e P sends a message m2. 

0 V decides, based on ml, m2, &, ..., bk whether to accept or not. 

We assume for simplicity that k-is constant as a function of m. For generalizations 
of this, see the remarks after Theorem 1. 

We require about (P, V )  that: 

0 For the verifier's protocol V ,  there exists a simulator (a probabilistic poly- 
nomial time Turing machine), Mv,  which (with the help of V )  simulates the 
conversation between P and V ,  such that the output of MV is plynomially 
(in m) indistinguishable from the real conversation between P and V.  Loosely 
speaking, this means that a polynomial time algorithm cannot guess essentially 
better than at random whether a given conversation was produced by Mv 
by (P,  V ) .  Thus we only require that an honest verifier learns nothing from the 
protocol. 

If (z, y)  E R, then (P,  V) always accepts. 

0 For any prover's protocol P', there exists an interrogator (a probabilistic poly- 
nomial time Turing machine), M p - ,  which (with the help of p') tries to  compute 
x E X such that (z,y) E R. We require that there is a constant e < 1 such 
that 

Prob((P*, V )  accepts A N D  M p  fa i l s )  5 c, 

for all s d c i e n t l y  large rn. This is the definition proposed in [ToWo]. A very 
similar - but technically slightly different - definition appeared in [FiFiSh]. 

If these 3 conditions are satisfied, (P ,V)  is called a weakly zero-know2edge proof 

6 is called the error  probability of (P, V ) .  
We can now state the main result: 

system of information possession. 

Theorem 1 

Suppose there exists a binary relation R with the following properties: 

It is easy to select y such that an z with (z,y) E R exists, but such that 
computing one is a hard problem. Further, given z and y, it is easy to check, 
whether (z ,y )  is in R. 

0 R admits a weakly zero-knowledge proof system of knowledge with error prob- 
ability E, where the conversation is of the form described above. 

Then there exists a bit commitment scheme with the properties described in Section 
1. If the proof system is perfect zero-knowledge, then the commitment scheme con- 
structed is secure against an infinitely powerful receiver, i.e. commitments to 0 have 
the same distribution as commitments to 1. 
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Remarks 

Note that the proof system would be uninteresting, if the first condition above was 
not satisfied: it does not make much sense for P to try to keep her solution to the 
problem secret, if V could just compute a solution himself! Also in this case, the 
existence of an interrogator becomes trivial: Mp can just compute the solution by 
itself, without ever talking to P'. 

The assumption about selectability of y is closely related to the notion of inarlner- 
able generators. [AABFH] contains the first study of the theory behind this notion, 
and the results are improved in [FLM]. 

As mentioned, we assume that k, the number of challenge bits pr. round, is 
constant as a function of m. The Theorem could be proved in much the same way 
if k = O ( l o g ( m ) )  and we assume that e = O(7n-l). With this extension, the result 
covers all known MA zero-knowledge proofs of information possession. 

Proof 

We first describe loosely the basic idea of the proof We will have two players, A who 
will create commitments, and B who receives them. The idea is that A will create 
and send to B the start of a conversation between P and V. To open a commitment, 
A sends the rest of the conversation. B accepts this, if V would have accepted, based 
on the conversation given. 

If A does not know a solution to the problem instance in question, this impliea 
to some extend a commitment: by the properties of (P, V), A is unable to complete 
the conversation with respect to all possible values of the challenge bits b, ..., bh. He 
is therefore "committed" to the set of values for b, ..., bk for which he can complete 
the conversation. The rest of the proof consists of technical lemmas and tricks that 
amplify this into a regular commitment scheme. 

Let t be the smallest integer, such that c* < 1/2. By Lemmas 2 and 3 in [ToWo], 
the proof system that consists of t iterations of (P ,  V) is weakly zero-knowledge and 
has error probability 2. Let (I", V') denote this proof system. We let 

denote the conversation produced by the i'th iteration of (P,V). 
(b$);=l ... k,i=l...t, and let B be the set of all possible values of b. 

commitment QBC: 

Let b = 

We can now describe how A can create and open what we will call a quasi bit 

1. The receiver of the commitments, B ,  chooses some y E Y according to the first 
condition in Theorem 1, and gives it to A.  

2. A commits to a bit b by running the simulator M v ~  to produce a conversation 
of the form descibed above. He sends (mi, ..., mi) to B. 

3. B partitions B randomly in two subsets Co, C1 such that lCol = ICll, and sends 
them to A. 
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Let u be chosen such that the value for b produced by Mv,  above is in C,,. A 
then sends to B c = b u. This concludes the creation of the commitment, we 
set QBC(b, r) = (mi, ..., mi, c) ,  where r is the random string consumed by the 
simulator during the process. 

To open the commitment, A releases the entire Anversation produced in step 2, 
and B checks that V would have accepted, had it been given this conversation. 
He then determines u as in step 4, and determines the bit A was committed to 
a s b = u @ c .  

We can now prove the following about quasi bit commitments: 

0 If A follows the protocol, B cannot predict b from QBC(b, r )  essentially better 
than at random. 

0 With nonne&gible probability, A is committed after completion of steps 2-4, 

First, suppose by contradiction that B could predict b essentially better than at 
random based on QBC(b,r).  Let p be the success probability of B. Then B could 
be used to distinguish simulated conversations from real ones as follows: given a 
conversation (mi, $, ..., bi ,  mi), i = l . . .t,  feed n:, ..., mi to B, and accept from B a 
partitioning Co, Cl. Now choose a bit b and feed c = b@u to B,  where u is determined 
from the conversation as in step 4 above. Now output 1 if B's guess mathces b, and 
0 otherwise. 

On input a real conversation, this produces output 1 with probability 1/2, since 
in this case there is no correlation between the mi-values and b. On the other hand, 
the output is 1 with probability p if the input is simulated. By assumption p - 1/2 is 
non-negligible, contradicting the assumption that Mv is a good simulator. 

Clearly, if (P,  V )  is perfect zero-knowledge, p = 1/2, and QBC(b,r) contains no 
information about b. 

Secondly, suppose by contradiction that given y, with non-negligible probability 
q, A can produce a set of conversations such that all mi-values are constant for a 
fixed i ,  and the set of b-values constitute a fraction 6 > 1/2 of B.  This is what A 
needs to avoid any chance of committing himself, for if the set of b-values constituted 
at most half of B, then this set might be contained in Co or C1, which would mean 
that A would be committed. 

We adopt the standard complexity theoretic definition of "non-negligible" and 
assume that q 2 l/Q(rn) for some polynomial Q and all sufficiently large m. 

Consider now the prover P' with the following strategy: before sending its fitst 
message, it runs mQ(m) times whatever method A has for producing sets of conver- 
sations as above. If at least one try was successful, it uses the mf produced by this 
try in the i'th iteration of (P, V ) .  Otherwise, it sends randomly chosen messages. 
Clearly, 

Prob((P*, v') uccepts) > (1 - (1 - q)"*(")) . S  
Since the first factor is exponentially close to 1 for large rn, the acceptance probability 
larger than 1/2 for all sufficiently large rn. Further, since we assume that finding a 

i.e. A can convince B about at most 1 value for 6.  
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solution z to (2, y)  E R is a hard problem, and P" only gets y as input, we may assume 
that any interrogator Mp= fails to find z with probability essentially 1. Hence, 

Prob(Mp f a i l s  AND (P',V') accepts) N Prob((P',V') accepts) > 1/2, 

for all sufficiently large rn, contradicting the assumption that 8 < 1/2. 

mitted with probability at least 
Thus we may assume that for each quasi commitment A creates, he will be com- 

which is a constant, since k and t are constants. 

commitments to build ordinary ones: 
The rest of the proof is concerned with a protocol construction that uses quasi bit 

1. The receiver of the commitment B chooses some y E Y according to the first 
condition in Theorem 1, and sends it to A. 

2. To commit to a bit b, A creates rn quasi commitments to b, 
QBC(b,ri), .--> QBC(b, rm). 

3. To open the commitment, A reveals b and opens all the quasi commitments. B 
accepts this if and only if A opens all the quasi commitments correctly. 

To prove that this constitutes a bit commitment scheme, we must first argue that B 
cannot predict b from QBC(b, r l ) ,  ..., QBC(b, rm) essentially better than at random. 
This follows from the fact that b cannot be guessed from 1 quasi commitment to b. The 
argument is completely similar to a corresponding one for probabilistic encryptions 
(see [GoMi]), and we will not repeat it here (of course, the argument becomes trivial 
if (P, V) is perfect zero-knowledge). 

Secondly, we must prove that A is committed with large probability. Since 1 
quasi commitment commits A with probability at least p ,  rn quasi commitments will 
commit A with probability at least 1 - (1 - p)", which converges exponentially to 1 
as a function of m 0 

Corollary 

Suppose the binary relation R satisfies the assumptions of Theorem 1. Then there 
exists a zero-knowledge proof of information possession for any binary relation S for 
which (z,y) E S can be verified efficiently. 

Proof 

Use R and Theorem 1 to construct a bit-commitment scheme. Represent the verifi- 
cation procedure for S a s a  (polynomial size) Boolean circuit, and use the protocol 
from [BrChCr] with the bit-commitment scheme just constructed0 
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As an example of a protocol satisfying our conditions; consider the following p r e  

We are given a prime p ,  a generator g of Z;, and y E 2;. The prover c la im to 
tocol for proving possession of a discrete log, first found by [ChGr]: 

know 5 ,  such that 8 = y mod p .  She convinces V as follows: 

1. P chooses t at random, and sends c = gz to V .  

2. V chooses a bit b, and sends it to P. 

3. If b = 1, P sends z to V ,  otherwise he sends z + z mod (p - 1) 

4. IF b = 1, V checks that c = g', otherwise he checks that cy = f+". 

It is well-known that this constitutes a zero-knowledge proof system of information 
possession with c = any constant larger than 1/2. 

The resulting bit commitment scheme is the following: A is given y, but not its 
discrete log. Commitments are computed as follows: 

BC(1,r) = gr rnodp,  BC(0,r) = yg'modp 

This commitment scheme is well known, and was introduced in [ChDaGr], and inde- 
pendently in [BoKrKu]. [ToWo] give similar protocols for any random self-reducible 
relation, which shows that any random self-reducible relation representing a hard 
problem can be used as basis for a bit-commitment scheme. 

3 Non MA-protocols 
It is an open question whether our result can be proved for any zero-knowledge proof 
of information possession. But as shown by the following, there is a subclass of 
non-MA protocols for which our result does hold. 

Consider proof systems where the conversation has the following form: 

0 V does some computation and sends a message rnl to P. 

0 P sends a message m2. 

0 V decides whether to accept or not 

Theorem 2 

Suppose the binary relation R satisfies 

0 It is easy to  select y such that an z with ( 5 , ~ )  E R exists, but such that 
computing one is a hard problem. 

R admits a weakly zero-knowledge proof system of knowledge. 

0 The conversation has the form given above, and there is a one-one correspon- 
dence between initial messages ml and messages m2 that will make V accept. 
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0 As a function of rn, the error probability vanishes faster than any polynomial 
fraction. 

Then there exists a bit commitment scheme as defined in Section 1. 

proof 

Suppose rnl and m2 are in sets MI and M2, respectively. Then the verifier’s decision 
procedure defines a function f : M2 + Ml, such that f ( r n 2 )  = rnl precisely 
if V accepts. Since the error probability is negligible, f is hard to invert almost 
everywhere, but since the protocol is sirnulatable, it is feasible to produce rnl,rn2 
such that f ( rn2 )  = ml (note that this is not necessarily the same as saying that 
f(m1) is easy to compute given ml). 

Using Yao’s Xor-Theorem (see for example [Kr]), one can then from f construct 
a function f’ with similar properties, but such that f’ has ua hard bit”, i.e. given 
f ’ ( x ) ,  there is a particular bit of x which cannot be guessed essentially better than at 
random by a polynomial time algorithm. From this, it is straightforward to  construct 
a bit commitment schemen 

Remark: We have assumed the 1-1 correspondence between nl’s and m2’s mainly 
for simplicity. For our purposes, it would actually s d c e  if f mapped a constant 
number of elements to  1. Also, we could of course tolerate a non vanishing error 
probability by iterating the proof system many times. Note also that the recent work 
by [ G o b ]  may make it possible to generalize the result even further. 

An example of a protocol of this kind: suppose n = pq,  where p and q are primes 
congruent to 3 modulo 4. P knows the factorization of n, and so he can compute 
square roots modulo n. We then do the following: 

1. V chooses x at  random and sends x4 mod n to P 

2. P computes and sends to V c = x2 mod n - note that although x4 has 4 square 
roots modulo n, exactly one of them is itself a square, by the properties of p 
and q. 

3. V accepts, iff 2 = x4 mod n. 

We leave it to the reader to show that this protocol satisfies all the conditions 
given in this section, assuming that factoring is hard. 

Note that the protocol is weakly zero-knowledge, but not ordinary zero-know- 
ledge: a cheating verifier can factor n after 1 interaction with P by sending a square 
for which he knows a square root of Jacobi symbol -1. 

The function constructed from the protocol is of course f(x) = x 2  nod n, which 
is a permutation of the quadratic residues modulo n, and is hard to invert, if fac- 
toring n is hard. In this case, Yao’s Xor Theorem is not necessary to obtain a bit 
commitment scheme - it is known that guessing the least significant bit of x from 
f(z) is polynomially equivalent to factoring ra [ACGS]. 
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