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Abstract 

This paper presents a new fast compact modular-multiplication algorithm, 
which will multiply modulo N in log(N)/log(r) clock pulses when the algorithm 
is based on radix r (r 2 4). 

1 Introduction 

Modular multiplication is essential for public-key cryptosystems such as the Rivest- 

Shamir-Adleman scheme (RSA) [l]. T o g uarantee security, the multiplication-word 

lengths have to be significantly greater than conventional computer word lengths. 

Therefore, techniques for speeding-up the modular multiplication are important. 

Brickell [2] has shown how to design a compact operation based on radix 2 

without frequent data transmission between processors performing modular multi- 

plication and memories storing data in progress. 

This paper proposes a new modular multiplication algorithm based on a radix 

higher than two that is faster than conventional algorithms based on radix 2. This 

new algorithm overcomes the problem of overflowing a limited computation range 

by using a partial product to adjust a partial remainder before a multiply-addition 

of the partial product. Furthermore, an approximate method is developed to reduce 

the comparator which determines the partial remainder. Consequently, the modu- 

lar multiplier using this algorithm based on radix 4 can compute 512-bit modular 

exponentiation at a throughput of 80 Kbits/s at 30 MHz. 

2 New Fast Compact Algorithm 

If “n” is the bit length of the modulus N, then modular multiplication is represented 

as A x B module N where A, B, and N are n-bit binary integers related by A, B 
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E [0, N - 11. A conventional modular-multiplication algorithm shown in Figure 
l ( a )  multiplies first and then divides the 2n-bit product by the modulus N. This 
algorithm cannot accomplish high-speed computation and needs a massive amount 
of hardware because data transmission between processors and memories occurs 
frequent 1 y. 

Consequently, methods using specialized hardware have been developed [2,3,4]. 

These methods use compact n-bit-length operators in which each subtraction step 
in binary division is embedded in the repeated multiply-addition. Brickell 121 has 
particularly proposed a modular multiplier that can perform one step of addition 

and subtraction simultaneously in each clock pulse. The modular multiplier needs 
about n clock pulses. 

This section describes a new algorithm based on a radix higher than two, which 
can reduce the amount of processing. 
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2.1 Approaches 

A higher radix has been used to speed-up ordinary multiplication and division. 
For modular multiplication, Baker [5] has designed an algorithm which combines 
modular subtraction based on radix 4 and multiply-addition based on radix 2 to 
simplify operation as shown in Figure l ( b ) .  However, until now, no algorithm using 
a higher radix to speed-up modular multiplication has been developed because of 

the problem of overflowing a finite computation range. 
The new algorithm presented here was designed to speed-up modular multipli- 

cation by using the same Ggher radix throughout. In practice, the addition and 
subtraction steps can be reduced to half or less those of the other algorithms as 
shownin Figure 1 (c). 

The proposed algorithm is carried out by using the following equation repeatedly. 

where "k" is the s tep  number of repeated processing, "r" is the radix number, 
R(k)  and R(k-') are partial remainders, b(k)A is a partial product, and c ( k ) N  is a 
modulus subtracter. To overcome the problem of overflowing, this algorithm uses 
the following approaches: 

(1) TO prevent the absolute value of the next partial remainder R(k-') from over- 
flowing the upper limit d N  (the variable d is derived in Appendiz A ) ,  the 
modulus subtracter c ( k ) N  is determined by using the next partial product 
b( Ic - l ) A  in advance. 

(2) To reduce the absolute range of the partial product b(Ic)A, the multiplicand A 
is modified from the range [0, N - 11 into the range [-N/2, N / 2 ] .  

2.2 Procedure based on a Higher Radix 

The main procedure of the algorithm is explained by using the modified Robertson's 
diagram. Figure 2 shows the diagram for radix 4 in which the boundary variable 
d equals 7/12. The horizontal a x i s  shows the partial dividend (rRtk) + b ( k ) A ) / N  

plus the present partial product b(k)A.  The vertical 
axis shows the next remainder R(k- ' ) /N .  The graph c (where c E {-2, -1 ,0 ,1 ,2}  
for radix 4) in the diagram represents Eq. After the subtracter c ( k ) N  is 
determined by the graph to have the value of ( T R ( ~ )  + b ( k ) A ) / N  in the horizontal 
axis, the remainder R(k-') is calculated. 

' of the present remainder 

(1). 
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The graph c takes the form of several discrete lines, each with a fixed 45-degree 
slope. However, this modified Robertson’s diagram is different from the ordinary 
Robertson’s diagram [S). For example, in Figure 2, the window enclosing the range 
[-7/3,7/3] and [-7/12 - bA/(4N), +7/12 - bA/(4N)] moves up or down according 
to the value of the each coefficient b(k - 1). Then, the boundary indices, 42 , !1 , ! -1 ,  

and 1 - 2 ,  which show the boundaries between the discrete lines, move left or right. 
The algorithm procedure is as follows: 

Step 1 (initialme the numbers): 

where r‘ = Zog2(f). 

4R‘k)+ b( k)A 

.- 7 
3 

N, 

--- 7 b(k-l)A 
12 4N 

Figure 2 Modified Robertson’s diagram 
for the new algorithm 
(in a case of radix 4) 
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Step 2 (repeat Ln/r'J + 1 rounds): 

c ( k )  +- f c ( ( rR(k )  + b(lc)A),b(lc - 1)) 

R(k-l)  t rR(') + b(lc)A - c ( k ) N  

k t l c - 1  

(3) 

(4) 

Step 3 (last routine): 

if R(') 2 0 A t { R(o) 
R(O) + N otherwise 

In this procedure, we let variables R and A have sign bits, respectively. 

Notes: 

function fc( R, b):  

where 

l; 
4-i E -i + 1/2 - b A / ( r N ) ,  
and the positive integer i is in {1,2, 

i - 1/2 - b A / ( r N ) ,  

, r / 2 } .  

The boundary indices ( & , t ' - i )  are prepared beforehand for all 6 E { - ~ / 2 , . - * ,  
-I,O,I,. , r / 2 } .  

function b ( k )  for the multiplier B:  
71-1 

b ( k )  +- -rB[r'k] + C rB[r'k - m]/2"+' + B[r'k - r'] (6) 
m=O 

where by choosing bit-level representation, the variable B is represented by the 

vectors B(n], B[n - 11, - - - ,  and B[l], and B[O] = 0. Eq. (6) can satisfy Yk) E 
{ - r / 2 ,  - * -  , -1 ,O ,  1, - - -  , r / 2 } .  

We can let R represent the usual binary remainder in a carry-save redundant 
form. R has two components: the sum R, and the carry R,, where R R,  + 2R,. 
By using carry-save adders, we can reduce carry propagation until every addition 
and subtraction pair takes only one clock. 
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2.3 Approximate method 

To simplify the n-bit-length comparison in Eq. ( 5 )  for determining the modulus 
subtracter c N ,  the comparison is replaced with a short-precision comparison of e;N 
and R. Consequently, the previous function f ,(R,b) in section 2.2 is replaced the 
following function. 

function f,(R, b): 

where 
L .  = - i - 1/2 - bAt,/(rNt,), 

L-i = -i + 1/2 - bAtq/(rNt , ) ,  
Rt, (top (z + logz(r)) bits of R}, 
Nt, {top z bits of N}, 
At, {top z bits of A). 

The number of top bits x ( x  = 7 for radix 4) is derived in Appendiz B. Li and L-i 
which are approximate numbers corresponding to the boundary indices t; and t-; 
are prepared beforehand for b E { - r / 2 , . . .  ,-l,O,l,.--,r/2}. 

2.4 Remarks 

This algorithm is fast (as shown in Table I) because steps for addition and sub- 
traction are reduced, and it can use a compact operator with an n-bit word. Other 
features of the algorithm related to hardware are as follows: 

(1) Small amount of hardware: 
The partial product bA and the modular subtracter cN are produced by using 
only selectors and exclusive ORs. The coefficient c ( k )  is determined by the 
short-precision comparator. 

(2) Easy to speed-up: 
The algorithm can use carry-save adders which have no carry propagation. 
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worst 
case 

Table 1 Comparison of modular multiplication 
algorithms 

2n/r' 2n r' 
(multiply: n/r') (multip1y:n) (2 if r=4) 
(modulo: n/r') (modulo:n) (3 if r=8) 

#action I ratio 
alaorit m 

2n(r-1 )/(rr') 5n/4 1 average 
case (multiply: n(r-1 )/(rr')) (multiply: n/2) i~ . i if r =4) 

(modulo:n(r-l)/(rr')) (modulo:3n/4) (2.1 if r =8) 

(3) Easy to expand: 
The algorithm has a bit-slice structure. 

3 Applications for Radix 4 

A radix-4 modular multiplier is suitable for implementing the proposed algorithm 
in the latest C-MOS technology, so applications for radix 4 are described in this 
section. 

3.1 Procedure for Radix 4 

In the procedure in Jectiorr 2.2, the new algorithm has to perform Eqs. (3) and (4) 

simultaneously. However, it is hard to speed-up this procedure, because the t o t d  
delay time is the delay time of the function fc of Eq. (3) plus the addition operation 
in Eq. (4). 

Therefore, the procedure is modified to the following procedure: 
Step 1 (initialize the numbers): 

If N < 2A,  A t -4 - N .  
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Step 2 (repeat Ln/2J + 1 rounds): 

R(k-') t 4(R(k) - c(k + 1)N) + b(k)A 

c ( k )  + f,(R("-'),b(k - 1)) 

k + k - 1  

Step 3 (last routine): 

The modified procedure gives the function f, a delay time of one clock pulse to 
produce the coefficient c{lc).  

3.2 Generation of Partial Product Coefficient b related by 
Redundant Multiplier B 

To speed-up modular exponentiation using the modular multiplier, the modular 
multiplier has to be able to deal directly with the multiplier B in a carry-save 
redundant form because the final remainder R(') may be put in the place of the 
multiplier B. Brickell's algorithm can successfully deal with redundant numbers B, 
and B, of the multiplier B ( B  = B, + 2B,) by using the characteristic that 

where s + u @ v, u t u A v ,  and u and v are independently 0 or 1. However, 
our algorithm cannot use Brickell's technique which is based on radix 2. Therefore, 
we have extended Booth's multiplication [6] for the redundant multiplier B. Eq. 
( 6 )  is modified to  the following function b ( k ) .  This new method produces a radix-4 
partial product bA by using 4 neighborhood bits of B, and B, {shown in Appendix 

0 
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0 function b ( k )  for the redundant multiplier B: 

+ B , [ 2 k  - 21 V Bc[2k - 31 V (B,[2k - 31 A Bc[2k - 41) 

Eq. (13) is derived in Appendiz C. It satisfies b ( k )  E {-2, -1,O, 1 , 2 } .  
If the multiplier B is a single number, then B, = 0. 

3.3 Hardware Implementation 

The modular multiplier using this algorithm, which can perform one step of addition 
and subtraction simultaneously in each clock pulse, is constructed by arranging n 
cells into an array. Each cell, which has 5 registers, 3 full adders, and some logic 
gates as shown in Figure 3, contains about 100 gates. 

u w w  u w  w x  

1-bit register of y 
1 u  UOVOW 

Figure 3 Cell of "R (k-1) +4(R'k'-c(kt1)N) tb (k )A"  
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Using the latest C-MOS technology, the total delay time, most of which is the 
delay time of adders and the writing time for registers, is about 20 to 30 ns. There- 
fore, the 512-bit modular multiplier has about 50 Kgates and a delay time of about 
8 ~ s .  The delay time for 512-bit modular exponentiation using it is about 6 ms. 

4 Conclusion 

A new compact modular-multiplication algorithm has been developed based on a 

higher radix using an n-bit-length operator. The throughput of the algorithm is 
more than twice as fast as conventional ones. This algorithm allows a 512-bit mod- 
ular multiplier based on radix 4 to  be made with about 50 Kgates. The throughput 
of 512-bit modular exponentiation using it will be about 80 Kbits/s at 30 MHz. 
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Appendix A: 
Derivation of the boundary variable d 
(For mdiz 4) 
The vertical boundary variable 7/12 in Figure 2 is assumed to be the boundary 
variable d. 
First, the following equation is the necessary condition for the graph to continue. 

(14) 
1 

d >  -. 
2 

The condition that (4R + b A ) / N  exists in the horizontal range [ -4d,44  is 

lbAl 4d 5 2 + d - - 
4N * 

The conditions of lbl 5 2 and IAl 5 N / 2  allow Eqs. (14) and (15) to be transformed 
into 

1 7 
- < d < - - .  
2 12 

Consequently, 

7 d = -  
12 

is obtained. 

(General case for mdiz r) 
By using the same method as in the previous case and the conditions of Ibl 5 r / 2 ,  
I -  cI < r / 2 ,  and IAI 5 N / 2 ,  

1 1 d = - + -  
2 4(r  - 1 )  

is obtained. 

Appendix B: Derivation of a top-bit number 
(Definitions) 

R = r R + b A  
{ top 3: bits of N } 
{ top z bits of A } 

} 

Ntop 
A t ,  

&, = { top (z + l og , ( r ) )  bits of 
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where "2" is a positive integer, and b b ( k ) .  

Case of mdiz 4) 
Figure 2, the boundary index el between c = 0 and c = +1 is 

1 bA e l = - - -  
2 4N 

where b G b(k - 1). 
Let L1 be the approximate value of C1, 

(23) 

If the following equation is satisfied, then the n-bit-length comparison between ti 
and R can be replaced by the short-precision comparison between L1 and R,. 

€ 5 6 - 6 '  (25) 
where 

E = l R / N  - Rt,/Nt,l 
5 = d - 1/2  = 1/12 

6' 5 IL1 - ell 
By using Ei/N 5 rd = 7/3, Eq. (26) is transformed into 

By using Ibl 5 2, 

From Eqs. (25), (27), (29), and (30), 

N t ,  2 52. 

Because the top bit of N t ,  is always 1, 

N t ,  2 2"-'. ( 32) 

Consequently, selecting the minimum value of z under the conditions of Eqs. (31) 
and (32) gives 

x = 7. (33) 
In the other cases for the indices, t?,, L1, and L2, Eq. (33) is also satisfied. 

eneral case for radiz r )  LG Y using the same method as in the previous case, we obtain 

Ntop 2 4(r  - l ) ( r d  + 2). 

21 = CIOgz{ (T  - l ) ( r d  + 2)}1 t 3. 

(34) 

(35) 

Therefore, the minimum d u e  of x is 
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Bc : . a .  Bd2k-11 Bc[2k-2] Bc[2k-3] 

Appendix C :  Derivation of Eq. (13) 

Let us modify the digits in the upper region "k" to radix-4-multiply coefficient b ( k )  
(b(h)  E {-2,-110,112})  by using the digits in the lower region "k-1" where the 
condition of Eq. (12) is satisfied (these regions are shown in Figure C.1). 

First, assume the auxiliary variables ( c k + * , s k  in the upper region "k" are the 
carry c k + l  and the sum C?k shown in Table c.1. d h  ese satisfy the conditions c k + l  E 
{0,1} and 8k E {-2,-1,0,1} .  

Bc[2k-4]1 . a .  

If the next equation is performed: 

b ( k )  s k  -k c k ,  ( 36) 

then Eq. (36) satisfies b ( k )  E { -2 , -1 ,0 ,1 ,2} .  Consequently, Eq. (13) is derived 
from Eq. (36) and the auxiliary variables shown in Table C. l .  

Lthe upper region "k" - 1  r, 1 - the lower regiod'k-1J' 

Figure C. 1 Alignment of Bs and Bc 

Table C.1 Definition of ( c k + l r s k )  

Note: X means that (Ck+l,Sk)dOeSn'f have any value. 
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