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Abstract One of the ultimafe goals of cryptography researchers is to construct 

a (secrete-key) block cipher which has the following ideal properties: (I) The cipher 

is provably secure, (2) Security of the cipher does not depend on any unproved 

hypotheses, (3) The ciph er can be easily implemented wifh current technology, and 

(4) All design ctiferia for the cipher are made public. It is currently unclear whether 

UT not there really ezista such an ideal block cipher. So fo meet the requirements 
of pracfical applicafiona, the beat fhing we can do is fo construct a block cipher 
such that it approzimafes the ideal one as closely as possible. In this paper, we 

make a significant step in this direction. In particular, toe construct several block 

ciphers each of which has the above mentioned properties (,9), (3) and (4) as well as 

fhe following one: (1’) Security of the cipher is avpporied by convincing evidence. 

OUT construction builds upon profound mafhematical bases for information security 

recently established in a series of ezcellent papers. 

1. Motivations and Summary of Results 

Data Encryption Standard (DES) designed by IBhI about fifleen years ago 

is the first modern (secrete-key) block cipher whose algorithm is publicly available 

[NBS]. It is a kind of product ciphers with Lucifer as its direct predecessor [FNS] [K]. 

A little more specifically, both DES and Lucifer consist of 16 rounds of Feiatel-type 

transformations (FTT’J) which are invented by and named (by us) after Feistel. 
From the beginning of DES, however, there had a lot of controversy about its 

security, and especially, about its design criteria [K] which have been classified by 

NSA and its designer IBM. Many computer scientists and cryptography experts 

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 461-480, 1990. 
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were concerned about the possibilities that DES may possess weaknesses only NSA 
and IBM are aware of, and that trapdoors may have been inserted into the S-boxs 
of DES which would give a cryptoanalytic advantage to a knowledgeable party. For 
these reasons, a great amount of effort has been invested in attempting to  break 
the cipher, or to  find its weaknesses. And many researchers have tried revealing the 
myths around the design criteria. 

In their nice paper [LR], Luby and Rackoff showed that DES would be provably 
secure if its f-functions were Secure pseudorandom ones. Unfortunately, the f -  
functions of DES cannot be secure in any reasonable sense. In the same paper, 
Luby and Rackoff proved also a result about FT’I”s: A function consisting of three 
rounds of randomly and independently chosen FTT’s, which is in fact a permutation, 
cannot be efficiently distinguished from a truly random one. This result is very 
appealing, since it relies on no unproved hypotheses, and more important1y, it 
suggests that there is an extremely simple constructive method for designing a 
theoretically secure block cipher which does not rely on any unproved hypotheses. 
However, it is practically impossible to construct such a cipher, simply because it  
takes a huge amount of memory to implement the cipher. 

Therefore both practical needs and theoretical interest encourage us t o  seek for 
an ideal block cipher having the following properties: 

(1) The cipher is provably secure, 
(2) Security of the cipher does not depend on any unproved hypotheses, 
(3) The cipher can be easily implemented with current technology, and 
(4) All design criteria for the cipher are made public. 

It is still an open problem whether or not there really exists such a block cipher. 
The best thing we can do currently is to construct a block cipher such that it 
approximates the ideal one as closely as possible. 

In this paper, we make a significant step in this direction. In particular, we 
propose a kind of transformations - Generalized Type-,!? fransfonnafions, and show 
that it is an excellent building block for cryptosystems. Utilizing this type of 
transformations, we construct several concrete block ciphers which have the above 
mentioned properties (2),  (3) and (4) as well as the following one: 

Our results build upon profound mathematical bases for information security 
recently established in a series of excellent papers such as [BM],v],[L],[GGM],[S] 
and especially [LR]. 

The remaining part of the paper is organized as follows: Section 2 defines 
terminology used later, reviews one of the main design rules for DES - FTT’s, 
and introduces the result of Luby and Rackoff on the rule. Section 3 proposes 
various types of transformations and shows that all these transformations can be 
used to construct permutations not efficiently distinguishable from a truly random 

The main result of [S] had been found to be false [O] [R] [ZMI]. But here the 

(1’) Security of the cipher is supported by convincing evidence. 

correct version of the result is used. 
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one. Among the transformations, Generalized Type2 ones are proved to be most 
preferable. Section 4 constructs a theoretically provably secure block cipher (PSBC) 
by the use of Generalized T y p e 2  transformations. Section 5 presents a variant of 
PSBC. Section 6 proposes four concrete block ciphers based on theoretical results 
of Sections 2 - 5 .  Finally in Appendices A, B and C, three issues - minimum 
rounds for security, optimal transformations and super-security are discussed. For 
the sake of space, most results are presented without proofs. We will enclose proofs 
necessary in the full paper. 

2. Preliminaries 
This section defines the notions of pseudorandom number /function generators, 

and introduces the result of Luby and Rackoff on FTT's. Readers who are not 
interested in the definitions can jump over Section 2.1. 

2.1 Pseudorandom Number/Function Generators 
For purposes which will become clear later, our notions introduced below 

are slight generalizations of those given in PI, [GGM] and [LR], mainly in the 
following aspect: In contrast to those in M, [GGMJ and [LR], we will not 
impose polynomial bound upon the running time of an algorithm realizing a 
pseudorandom number/function generator or on the size of a (local) statistical test 
for strings/functions. 

2.1.1 Pseudorandom Number Generators 
The set of positive integers is denoted by N. By a string we mean a binary 

string over the alphabet {0,1}. For each n E N, denote by I,, the set of all 2" 
strings of length n. For q , s 2  E I,, let 31 @ s2 denote the bit-wise XOR of the two 
strings. Denote by H, the set of all 2n2" functions and by Sym, the set of all 2"! 
permutations on In. The composition of two functions f and g in H,, denoted by 
f o g, is defined by f o g(z) = f(g(z)) for all z E I,,. By ZERX we mean that z 
is drawn randomly and uniformly from a finite set X, and by a function in n (or t 
etc.) we mean, unless otherwise specified, a function from N to N. 

Let P be a function in n with P(n)  > n. A p~endorandom number generator 
(PNG) is a collection of functions S = {S,, I n E N } ,  where each function S,, maps 
an n-bit string seed into a P(n)-bit string S,,(seed) and it can be computed by 
some deterministic algorithm. Security (or strength) of PNG's is defined in terms 
of local statistical tests for strings. 

[Definition 11 Let 8 and L be sets of functions in n, and T a set of functions 
from Aft0 [0,1]. Let P be a function in n with P(n)  > n ,  and let B E 8 and L E C 
with 0 < L(n) 5 P(n) .  A family of circuits T' = {Ti I n E is called a local 
( e ,  L )  statisticul test for strings if each T," is of size B(n), and on input an L(n)-bit 
fixed portion of a P(n)-bit string z, outputs a single bit T,"z]. Call B the size of 

* The size of a circuit is the total number of connections in the circuit. 
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T'. Now let S = (S ,  I n E N }  be a PNG where S, maps an n-bit string into a 
P(n)-bit one. We say that 
(1) S locally &-passes the f e s f  if for all sufficiently large n, IPr{Tl[r] = 

(2) S is locally (6, L ,  €)-secure if it locally &-passes all (6, L) tests; 
( 3 )  S is locally (@, ,C,T)-secure  if it is locally (B,L,e)-secure for any e E T' and 

any (6, L) E 0 x L with 0 < L(n) 5 P(n) .  
Especially, a locally (Q, L, Y)-secure PNG S is said 
(4) locally (w, C ,  Y ) - s e c u r e  if 0 is the set of all functions in n,  and 
( 5 )  strong if, furthermore, C is the infinite set of all polynomials in n and T that 

of all inverse polynomials in n. (An inverse polynomial in n is a function like 
1/Q(n) where Q is a polynomial.) 

Finally, assume that S = {S ,  I n E N }  is a PNG where S, can be computed in 
deterministic polynomial time in n. Then 
(6) S is called locally polynomially secure if it is locally (0, L, T)-secure where both 

0 and L are the infinite set of all polynomials in n, and T that of all inverse 
polynomials in 71. 

Note that Yao's definition for polynomial size siatistical tests f o r  sirings M 
[GGM] is obtained from ours by letting P ,  0 and L be polynomials in n with 
P = L. Now assume, as at the end of Definition 1, that S = {S, I n E N} 
is a PNG where S, can be computed in deterministic polynomial time in n. For 
such a PNG S, Yao defined that it passes a po lpomia l  size staiistical test  for 
sfrings T8 = {Ti 1 n E N) if for any polynomial PI and for all sufficiently large 
n, IPr{Ti[r] = 1) - Pr{Tz[S,(t)] = 1}1 < l /Pi(n),  where rERIp( , , )  and tERrn, 
and that S is polynomially secure if it passes all  polynomial size statistical tests for 
strings. 

The following fact is an immediate consequence of Yao's famous theorem on 
statistical tests M [GGM]: Assume thai S = {S, I n E N }  i s  a PNG where S, can 
be computed in deterministic polynomial iime in n. Then S is polynomially secure 
i f l  i f  is locally polynomially secure. 

T" 
1) - Pr{Ti[S,(t)] = 1}1 < €(n), where rERIP(n) ,  t € R I n  and E E r; 

2.1.2 Pseudorandom Function Generators 
A pseudorandom function generator 

(PFG) is a collection of functions F = (F ,  I n E N } ,  where F, specifies for each 
P(n)-bit string key, (the description of) a function F,(key) E H, that can be 
computed by some deterministic algorithm. 

Security of a PFG is defined in terms of statistical tests for functions, and 
the latter uses the concept of oracle circuits which are counterparts of often used 
oracle Turing machines .  An oracle circuit C, is an acyclic circuit which contains, 
in addition to ordinary AND, OR, NOT and constant gates, also a particular kind 
of gates - oracle gates .  Each oracle gate has an n-bit input and an n-bit output, 
and it is evaluated using some function from H,,. The output of C,, a single bit, is 
denoted by Cn[f] when a function f E H ,  is used to evaluate the oracle gates. 

Let P be an increasing function in n. 
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[Definition 21 Let 8 and Q be sets of functions in n, and T a set of functions 
fiom N to [0,1]. Let P E 0 and Q E Q be two functions with 0 5 Q(n) < 8(n). A 
family of circuits Tf = {Ti I n E hr) is called a (8,Q) sfafisi ical iesi for functions 
where TL is an oracle circuit which is of size 8(n) and has Q(n) oracle gates. Let 
P be an increasing function in n, and F = {Fn I n E JV) a PFG where Fn specifies 
for each P(n)-bit string key a function Fn(key) E H,. We say that 
(1) F e-passes ihe f e d  Tf if for all sufficiently large n, IPr{Ti[r] = 1) - 
(2) F is (B,Q,e)-secure if it e-passes all ( S , Q )  tests. 
(3) F is (0, Q, T)-secure  ifit is (8, Q, &)-secure for any t E Y and any (8, Q) E @ x Q  

Especially, 
(4) a (0, &, T)-secure PFG F is said (00, Q, Y)-secure when 0 is the set of all 

Finally assume that for each n and for each key E I P ( ~ ) ,  the function Fn(key) 
can be computed in deterministic polynomial time in n. (This implies that P is a 
polynomial in n.) Then 
(5) F is called polynomially secure when it is (0, Q, T)-secure for 8 and Q being 

the infinite set of all polynomials in n and T being the infinite set of all inverse 
polynomials in n. 

We are mainly interested in a special kind of PFG’s - pseudorandom 
permutation generators which are invertible. Let P be an increasing function in 
n. A pseudorandom pennufafaon generator is a pseudorandom function generator 
F = {Fn I n E N}, where Fn specifies for each P(n)-bit string key a p e m u t a i i o n  
Fn(key) E Sym, that can be computed by some deterministic algorithm. A 
pseudorandom permutation generator F = {,F. ] n - E N} is called inuerfible if there 
is a pseudorandom permutation generator F = {Fn I n E N }  such that for each 
P(n)-bit string key, Fn specifies the inverse of Fn(key). Security of (invertible) 
pseudorandom permutation generators is defined in exactly the same way as for 
pseudorandom function generators. 

Pr{Ti[Fn(g)] = 1}1 < E(.) where TERH,, gERIp(,) and E E T. 

with 0 5 Q(n) < 8(n). 

functions in n. 

2.2 Feistel-Type Transformation (FTT) 
For a function fi E H,, we associate with it a function g, E HZn defined by 

gi(Bl,J%) =(B2 @ f i ( & ) , B ~ )  

where B1, Bz E In. Note that gi is obtained from fi by applying one of the main 
design rules for DES, and it corresponds roughly to a layer of DES (Figure 1). Since 
the design rule was due to  Feistel, we call gi a Feisfel-fype fransformaiion (FTT). 

F o r f i , f i , . . . , f ,  E Hn, let ~(fa,...,fi,fi)=gao...og20gl. Wesay that 
$ ( f a ,  . . . , f 2 ,  fi) consists of s rounds of FTT’s. Obviously, g, is an invertible 
permutation, and hence so is $ ( f a , .  . . , f2, fi). 

Luby and Rackoff proved the following result which was called Main Lemma 
in [LR] but is called F T T  Lemma in this paper: For independent random functions 
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f l r f z , f 3  E H,,, it is infeasible to distinguish 4 ( f3 , f2 , f l )  from a function drawn 
randomly and uniformly from Hz,,. (See Figure 2.) 

[FTT Lemma] (Version 1, [LR]) Lei Q be a polynomial in n and Czn be 
a n  orucle ctrcuif wifh &(n) < 2" oracle gaies .  Then I P T { C Z ~ [ ~ ]  = 1) - 
~ r { ~ z , , [ + ( f s ,  fz, f1)1 = 111 5 w, where TER Hzn and f l ,  fz, f3ER H,,. 

FTT Lemma is surprising in the sense that it does not depend on any unproved 
hypotheses. It implies that we can construct as follows a block cipher which does not 
relying on any assumption and is provably secure against chosen-plaintext attack: 
Let the length of a plaintext be 2n. Choose randomly and uniformly from Hn three 
functions f1, $2 and f3,  and let the enciphering algorithm be $(f3, f z ,  f1) and the 
deciphering algorithm be the inverse of 4(f3, fz, f1). 

However one soon finds that such an approach is impractical: To make the 
cipher secure against some trivial attacks such as exhaustive search, 2n must be 
sufficiently large, say 2 64, i.e., n 2 32. When n = 32, specifying + ( f 3 , f 2 , f l )  

takes at least 3 . 32 . 232 z 4 . lo1' bits, which is infeasible currently and even in 
the foreseeable future. In other words, there is still a big gap between practically 
constructing a provably secure block cipher and the nice theory initiated by 
Luby and Rackoff. In the following sections we will examine various types of 
transformations, and fill the gap greatly. 

3. Cryptographically Useful Transformations 
This section introduces various types of transformations, and generalizes FTT 

Lemma in many directions. First we introduce two operations on strings in Ikn - 
the p - p o s i f i o n  lefr r o i a t i o n  and the p - p o s i f i o n  n'ght r o t o f i o n .  These two operations 
are denoted by L!po)t and and defined a s  

respectively, where 1 5 p < E and Bj E I,. Note that both Lk! and d:)t are 
permutations on lbn, and that L!t)t is the inverse of F&o)t and vice versa. 

3.1 Various Transformations 

3.1.1 Type-1 Transformations 

g1,i E Hk,, defined by 
Following [FNS, pp.1547-15491 and [S], we associate with an f, E H,, a function 

where B, E I,. Functions obtained in such a way are called Type-1  transformafions. 
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Note that g1,i can be decomposed into 91,; = L!:: o TI,; where ~ 1 , i  is defined 
by Tl,i(Bl, B2,. . . , B k )  = (B1, B2 @ f i (Bl) ,  B3,. . . , Bk). (See Figure 3.) It is easy 
to check that ~ 1 , i  o x1,i is the identity transformation on Ik,,, i.e., x1,i is the inverse 
of itself. Such a function is usually called an involufion [K]. Now we see that 91,; 

is an invertible permutation on I k n ,  and its inverse, denoted by cl,;, is given by 
(1) 

?1,i = T1,i 0 R , o t -  

For f i , f i ,* - . , f '  E Hn, define 4 l ( f a 1 - . . 9 f 2 l f i )  = gl,u 0 * * .  0 91,2 0 SlJ. 
$l(f,, . . . , f2 ,  f1) is also an invertible permutation on I k n ,  and by definition, its 

(1) (1) (1) inverse is $i(fs,. . . f 2 ,  fi) = ~ i , i  0 Rrot 0 ... 0 ~ 1 , r - i  0 q o t  0 xi,, 0 R,,t.  
- 

92,i is called a T y p e - 2  transformation, and can be decomposed into 

3.1.3 Type-3 Transformations 

function g3,i E Hk,, defined by 
Associate with a function-tuple hi = (fi,1, f , , 2 , .  . . , f i , + l ) ,  where f i j  E H,, a 

g3,i(B1, B2 , .  * Bk) = (BZ @ fi , l(B1),  &i @ f i , 2 ( & ) , . .  . , Bh @ fi,k-l(Bk-l), B1)- 

Call g3,i a Type-3 t ransformat ion.  We decompose g3,i into g3,i = L!:; o ~ 3 , i  where 
~ 3 , i  is defined by T3,i(Bl, B2,. . . , Bh) = (B1, Bz @ fi,l(B1), B3 @ fi,2(&), - .  - , BL CB 
f i , k - ~ ( B k - l ) ) .  See Figure 5. 7r3,i is a permutation and its inverse is given by 
%3, i (C1,C2, -** ,Ck)= (Bi ,B2, . . . ,Bk) ,whereBl  =Cl andBj =Cj@fi , j - l (Bj - i )  

for each 2 5 j 5 k. One can soon find that x3,i is not an involution (Figure 6). 
For s function-tuples h l ,  h2,. . ., h,, define 43(hr , .  . . , h2, hl) = g3,. o 1 . .  o 

~ 3 , 2  o g3,1. Since both ~ 3 . i  and Lrot are permutations, hence so are g3,i and 
43(h,, .  . . , h2,h l ) .  The inverse of 43(hs, .  . . ,h2,  h,) is &(h,, .  . . , h2, h ~ )  = F3.1 o 

(1) 

g:{ o - .  . o Z3,#-1 o Rrot (1) o Z3,, o R,ot.  (1) 

3.1.4 Generalized Transformations 

functions fi,j in hi = ( f ; , I , f i , 2 , .  .. , f , , k - l )  for all 2 5 j 5 k - 1. 
From its definition, we see that TI,, can be obtained from ~ 3 , i  by dropping 

Similarly, 
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when k is even, 7r2,; can also be obtained from ~ 3 , i  by dropping functions f i , j  

in h; = ( f , , ~ , f i , 2 ,  . . . , f iJ-1)  for all even 1 < j < k - 1. 
Denote by r,,i a permutation obtained from 7r3,i, by dropping certain functions 

fi,j in hi = ( f i , l ,  f , , 2 , .  . . , f i , k - l ) .  (Note: 7r7,i = 7r3,i when dropping no function.) 
Define g$) = L!','t o xT,i ,  where 1 5 p 5 L - 1. Call transformations so obtained 
Generalized Type-r f r a n s f o n a i i o n s .  Likewise, for s functions/function-tuples 
hl ,hz l  . . . ,  h,, define &')(ha ,..., hz ,h l )=g! . f !o . . . og , , , og , ,  (PI (P) ,. 
3.2 Theorems on the Transformations 

Let E be a permutation consisting of 2k - 1 rounds of Type-1, or k + 1 rounds 
of Type-2, or k + 1 rounds of Type3 transformations, each of which is chosen 
randomly and independently. The following Theorems 1-3 say that no oracle circuit 
with polynomially many oracle gates can distinguish between E and a truly random 
function. 

[Theorem 11 Lei Q be a polynomial in n and Ckn be an oracle circuit w i f b  
Q(.) < 2" oracle gates.  Then I P T { C ~ , [ ~ ]  = 1) - Pr{(?kn[$l(fZk-lI - .  - ,  f 2 ,  fill = 

k - 1  Q n ' 
1)1 5 ' 1"' 1 where f E R  Hkn and f l y  f 2 1 .  * - j fZk-1ER E n .  
[Theorem 21 Let Q be a polynomial an n and Ckn be an oracle c!rcu!f 
wi fh  Q(n) < 2" oracle gates where k = 21. Then IPP{Ckn[P] = 1) - 
PT{Ckn[$Z(hk+l,. . . , h 2 , h i ) ]  = I}] 5 2n , where r ~ ~ H k n  and hi = 
( f i , l ,  f i , 3 ,  . . . > f i , k - l )  with f i , j  ER fin. 
[Theorem 31 Let Q be a polynomial in n and Ckn be an oracle circuit with 
Q(n) < 2" oracle gates.  Then IP'{Ckn[r] = 1) - Pr{Ckn[$3(hk+1,. . . , hz, hi)] = 

l'Q(n)' 

k k  1 1)1 5 w,, where Hkn and hi = ( f i , l ,  f i , ~ ,  . . . , f i , k - l )  with f i , j  ER E n .  

Theorem 2 can be proved by essentially the same technique developed in 
[LR] for proving FTT Lemma. Details will appear in the full paper. Proofs for 
Theorems 1 and 3 can be derived from the proof for Theorem 2. 

For Generalized T y p e 2  transformations, we have the following theorem, which 
is crucial to our construction of block ciphers described in Sections 4-6, and 
can be proved by modifying the proof for Theorem 2. For the other types of 
generalized transformations we have no results similar to Theorem 2-G. For reasons 
see Appendix A where many other results are presented. 

[Theorem 2-G] (Version 1) Lei k = 21, where e E N, and lei p be an odd integer in  
[I, k]. Lei Q be a polynomial in n and Ckn be an oracle circuit wiih Q(n) < 2" oracle 

gates. Then I P ~ { c ~ , , [ ~ I  = 1) - P T { c k n [ & ) ( h k + l , .  . . , h 2 ,  hl)l = 5 2n , 
where TER Hkn and h; = ( f , , ~ ,  f i . 3 ,  .. . , f i , k - I )  wiih f , , j € ~ H , .  

CIQ(n)' 

3.3 Optimal Transformations 

Type-r transformations. 
Let E be a permutation consisting of s rounds of randomly chosen Generalized 

From Theorem A5 in Appendix A we see that s 2 
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k + 1 is a necessary condition for E being indistinguishable from a truly random 
function by all oracle circuits with polynomially many oracle gates. Call a type of 
transformations optimaI if 

(1) a permutation E consisting of k + 1 rounds of randomly chosen 
transformations is indistinguishable from a truly random function by all 
oracle circuits with polynomially many oracle gates, and 

(2) the inverse of E can be computed in the same parallel time as E. 
For a rigorous definition of optimality, see Appendix B. The following theorem 

is proved in the same appendix. 

[Theorem Bl] A m o n g  all fypes  of fransfonnafion3 discussed in this paper, 
Generalized Type-2 t m n s f o n a f i o n s  &,? = Lgi o n?? wifh even k and odd p,  are 
fhe only opfirnal  ones.  

4. PSBC - A Provably Secure Block Cipher 

a provably secure block cipher (PSBC) in this section. 
Applying the only optimal Generalized Type2 Transformations we construct 

4.1 A Few Observations 
As pointed out in [S], FTT Lemma remains true even if the number of oracle 

gates is replaced by Q(n) 5 2"(") [S]. Here &(n) 5 2"(") means that Q(n) 5 2j (")  
for some f(n), which satisfies lim ftll = 0 for every positive constant c, i.e., 

n-m 
fb) = 44. 
[FTT Lemma] (Version 2, [ S ] )  Let C2n be an oracle circuif with Q(n)  5 2"(^) 
oracle gafes.  Then IPr{CZn[r] = 1) - Pr{Czn[$(f3,fz,f1)] = 1}1 5 q, where 

Schnorr's observation also applies to our Theorem 2-G (Version 1) stated in 

f'&ff2n a n d f l , f Z l f 3 E R H n -  

Section 3. 

[Theorem 2-G] (Version 2) Let k = 21, where L E N, and let p be an odd 
infeger in [ l , k ] .  Jet c k n  be an oracle circuif wifh &(n) 5 2"(") oracle gafes.  Then  
lPr(Ckn[~]  = 1) - f'r{Ckn[& ( k+i,. . . , h2, h i ) ]  = 1}1 5 v, where TEFL Hkn (P) h 

and  hi = ( f i , ~ ,  fi,3, + - * f i , k - ~ )  with fi,j ER Hn. 

Next  we make a few more observations. Let t E Nand n = [(logt)'+'1 for some 
E f (0,1], where the logarithm is taken to the base 2. Then for any constants c and 
E' with c > 0 and 0 5 E' < E ,  we have clogt 5 ~ ( l o g t ) ' + ~ '  = o( [(logt)l+'l) = ~ ( n ) ,  
and t c  = 2'logt - < 2c(10gt)1+" = 2"("). Thus we obtain from Theorem 2-G (Version 2) 
the following one. 

[Theorem 2-GI (Version 3) Let k = 21, where 1 E N1 and let p be a n  
o d d  infeger in [1 ,k] .  Assume f h a f  t E Nl E E (0,1], n = [(logt)'+'l and 
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~ ( i )  5 20(") is a polynomial in t .  (Not ice that 2" = 2r('ogt)l+'l :3 q u a ~ i -  
polynomial  i n  d . )  T h e n  

IPr{Ck,,[rl= 1) - Pr{Ck,[&)(hk+l,. . . , h2, h l ) l =  111 5 w, where r f R  ~ k ,  

Lef C2,, be an oracle circait wi fh  &(t) oracle gales. 

and hi = ( f i , l ,  f i ,3,  . . . , f i , k - l )  with f i , j E R  ffn. 

4.2 Enciphering/Deciphering Algorithms for PSBC 
Theorem 2-G (Version 3) says that theoretically, if one is quasi-polynomially 

powerful, then one can construct a block cipher secure against any polynomially 
powerful adversary. 

Let n = [(log t)'+'], where t E N a n d  E E (0, I]. Let 1 E JV, k = 2 and p be 
an odd integer in 11, b] .  Assume that the plaintext and ciphertext spaces are Ik,,. 
Denote by B = (B l ,  B2,. . . , B k )  a plaintext in l k n  and by C = (C1, C2,. . . , Ck) the 
ciphertext of B,  where B;, Ci E I,. 

PSBC consists principally of s rounds of Generalized Type2 transformations 
where 3 2 k + 2 .  The reason for choosing 3 2 k + 2  is as follows: When s = k f l ,  our 
block cipher PSBC is secure against chosen plaintext attack, but not secure agahst 
chosen plaintext/ciphertext attack. When 3 2 k + 2 ,  PSBC is secure against chosen 
plaintext/ciphertext attack. See Appendix C and [LR]. 

The enciphering algorithm E for PSBC can be concisely expressed as 
( P I  ( P I  ( P I  E = x2,S Lrot . . ' Lrot r 2 . 2  Lrot r2,1- 

See Figure 7. The inverse of E is ~ 2 , ~  o dzi 0. . . o 
deciphering algorithm D for PSBC is obtained from E by 

O T ~ , , - L  o Rk)t o XZ,. .  So the 

(1) interchanging h; with h,+l-i for each 1 5 i 5 
(2) changing the mapping (or wiring) representing L!poj to the mapping (or 

Notice that when ! is odd and p = 1, there is no need for changing the mapping 

and 

wiring) representing ~i;p~)t. ( 

(or wiring), since LE)t = R!P,i in this case. 

5. A Variant of PSBC 
The block cipher PSBC described in Section 4 requires quasi-polynomially 

many memory cells for both enciphering and deciphering procedures. Thus it is 
practically impossible to realize the cipher. This section presents a variant of PSBC, 
in order to pave the way to practically realizable ciphers. The variant is obtained 
by adding to PSBC a key-ezpanding p a d .  The key-expanding part stretches a 
short string into a long one, ie., is a PNG. The PNG we use is a sfrong one (see 
Definition l), and it is essentially due to Ohnishi and Schnorr [O] [S]. 

5.1 A Strong Pseudorandom Number Generator 

random functions are available [O]. 
Ohnishi observed that FTT Lemma remains valid even when two independent 

We call a function f quasi-polynomial in t if for any polynomial P ,  for any 
constant c > 0 and for all sufficiently large t ,  we have P ( t )  < f ( t )  < 2". 
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[FTT Lemma] (Version 3, [O]) Lei Q be a polynomial  i n  n, a n d  let  Cz, 
be a n  oracle c i rcu i t  with Q(n)  5 2"(") oracle gates .  T h e n  IPr{C2,,[r] = 

2 Q n + l '  1) - PT{CZn[$(fZ, fi, fill = 111 5 ' ' 2 1  , and I P ~ { C ~ ~ [ T ]  = 1) - 
P T { C 2 n [ $ ( f Z , f Z , f l ) ]  = 1}1 5 ( ( 2 1  

2 Q n + 1 2  
) 7 where TERH2nr f I , f 2 E R H n .  

Schnorr [S] showed that FTT Lemma implies that we can explicitly construct 
a PNG without any hypotheses. Putting together observations made in [O] and [S], 
we have the following PNG. 

First we note that there is a natural one-one correspondence between functions 
in H,, and strings in I n 2 n ,  i.e., a bijection a,, from H,, to I n 2 n .  The bijection maps 
a function f E H,., into the concatenation of U f (z ) ,  where z ranges over all 

strings z E I,, in a predetermined (such as lexicographical) order, and is the 
concatenation operation on more than two strings. By this bijection, $(fz, fz ,  f i )  

constructed from f l ,  f2 E H,  via FTT's yields a function SZ,,~" : 1 2 n p  -+ 12, ,2a~.  

SZn2n maps a string 2 = z1z2 where x1,z2 E In2",  into a string y E 12,,22n in the 
following way: S z n 2 n ( 5 )  = i P 2 n ( $ ( i P i 1 ( z 2 ) ,  ai1(z2),Qi1(z1))). 

NOW we describe concretely an algorithm G, computing the function SZnzn. 
The algorithm follows a similar one in [S]. (See Figure 8.) We write a string 
z E Iznzn as the concatenation of two strings z 1 , z Z  E Inp, each of which is written 

X E I ,  

- 

as the concatenation of 2" strings in I,, i.e., z = 2122 = U Z1,i IJ Z 2 , i ,  where 
i € I n  i € I n  

z l , i , z 2 , i  E I n .  Likewise, we write a string y E 12"22n as the concatenation of 22" 
strings in 12n,  i.e., 9 = 

Bz ( y) be the left and right half strings in I,, . 

Y i ,  where yi E 12"- For a string y E I z n ,  let &(y) and 
i € Ian 

Algorithm Gn(z) 
/* This algorithm outputs a 2n22"-bit string y 

Let S = {S,c,,le(n) = 2n2",n E N } .  From [S] we know that the PNG S 
passes all statistical tests for strings which receive at most 2 4 " )  bits as input. In 
our terms, this can be formally stated as follows. 
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[Theorem 41 (Version 1) The PNG S = {Scc,)le(n) = 2n2",n E N} is locally 
(oo,C,Y)-secure where L: is the infinite se t  of functions L in n with L ( n )  5 2"(") 
and Y that of all inuerse polynomials in n. 

Proof: A local statistical test for strings T' = {T; I n E N), where T,' 
has a &(a)(< 2"("))-bit input, can be viewed BS a statistical test €or functions 
Tf = {Ti I n E nr), where TL has at most &(n) 5 2"(") oracle gates that are 
evaluated using a function from Hzn. Thus the theorem is true by F" Lemma 

I 
Applying our observation made in Section 4, this theorem can be translated 

into the following theorem. 

[Theorem 41 (Version 2) Lei n = [(logt)'+'l, where f E N and E E (0,1]. Then 
the PNG S = (Sqt,[E(t) = e ( n )  = 2n2",n = [(logt)'+'l,t E hf} where Sqt) 
maps an Z ( t )  = e ( n )  = 2n2"-btf string into a 2n22"-bit one, is locally (m,C,T)- 
secure where L is the infinite sef of all polynomials in f ,  and Y that of all inverse 
polynomials in t .  That is t o  s a y ,  S is a strong PNG. 

(Version 2) in Section 4.1. 

5.2 PSBC with Key-Expanding 
Let n = [(logt)'+'l, where t E N and E E (0,1]. Let Ikn be the 

plaintext/ciphertext spaces where k = 21, ! E n/, and let p be an odd integer 
in [l, k], s an integer with s 1 k + 2. 

The enciphering algorithm consists of two parts: ihe enciphering p a l l  and 
ihe Ley-ezpanding purl  (Figure 9). The enciphering part, &s PSBC, consists 
essentially of s rounds of Generalized Type2 transformations. The key-expanding 
part is an algorithm G, that computes a function Sa(t) from a strong PNG 
S = {S;(,)la(t) = 2rn2m, rn = nPogn1,n = [(logt)'+'],t E JV}, and it can expand 
a 2m2m-bit input string into a 2m22m-bit output string. 

The deciphering algorithm is obtained by 
(1) reversing the portion, which is used by the enciphering part, of the output 

(2) changing the mapping (or wiring) representing L g i  to the mapping (or 

The following theorem implies that the block cipher PSBC with key-expanding 
is secure against any polynomial size adversary, It can be proved by making some 
obvious modifications on the proof for Theorem 1 of [LR]. 
[Theorem 51 Let k = 21 where 1 E N, and p be an odd integer in  [ l ,k ] .  
Also let i E N, E f ( O , l ] ,  n = [(logt)'+'1 and S = {Sm(,)12(t) = 2m2",m = 
npognl ,  n = [(Iogt)l+C],t E N} be Ihe above condmcied strong PNG. Assume 
that P and Q are polynomials in t and that CZ,, is an oracle circuit with 
Q(f) oracle g a f e s .  Then f o r  any rERHkn, for any z c ~ I z ( ~ ) ,  and f o r  an9 
hl ,  h ~ ,  . . . , h h + l  where hi = ( f ; , ~ , f ; , s ,  .. . , f ; , k - l )  and  each fi,j cowesponds t o  a 
distinct n2"(= 2"("))-bii porfion of the oufpput o f  Sqt)(z) ,  we have IPr{Cl;,,[r] = 

of the key-expanding part and 

wiring) representing R, ( P I  ot . 

1) - P r { C k , [ + y ( h k + l , .  . * , h2, hl ) ]  = 1}1 < 1 / P ( t ) .  
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6. Practical Block Ciphers 
PSBC with key-expanding requires still quasi-polynomial amount of mem- 

ory to specify an encipheringldeciphering algorithm. In addition, the encipher- 
ing/deciphering part uses only an extremely small portion of the output of the 
key-expanding part. 

Experience tells us that concatenating a number of transformations, each of 
which may not be so cryptographically strong, can produce a very strong one [MI. 
This folklore has recently been proved to be correct by Luby and Rackoff. See 
Theorem 2 in the preliminary version of [LR]. 

Along this guideline, we consider how to modify PSBC with key-expanding so 
that it is practically secure and can be implemented with current technology. We 
focus on the following three aspects: the size of a key, the sizes of n and 6, and the 
rounds of transformations. 

1. A key should be relatively short to make the cipher easy to be implemented. 
However to beat back the exhaustive search attack, the key should not be too 
short. 

2. n should not be too large since it takes n2* bits to specify a random function 
from H,. However, kn and hence k should be sufficiently large, otherwise the 
cipher is insecure even against the trivial exhaustive search attack. 

3. When a relatively short key and a small n are chosen, the strength of the cipher 
will be significantly reduced. An effective method of resolving the problem is 
increasing the number of rounds of transformations. 
The remaining part of this section proposes four example ciphers which we 

hope are secure enough for practical applications. Main parameters of the ciphers 
are collected in Table 1. For completeness, the definitions of the parameters are 
summarized below the table. 

These parameters are chosen according to the preceding three aspects. In 
addition, n = 4 and n = 8 are chosen for easier implementation by software 
and/or hardware. The  key-expanding part of each example cipher is realized by 
the algorithm G, expanding a key of length 2m2" bits into a long string of length 
2m22m bits. All output bits of G, are used by the enciphering part. 

Notice that in Examples 2 and 3, the output of G, is only half of the bits 
required by the enciphering part. We take two 2m2"-bit strings, and use Gm to 
stretch them into 2m22m-bit ones. Then we combine the 2m22m-bit strings into 
a 4~n2~,-bit one. A recommended method for combining strings is concatenating 
them in bit/bits unit. 

7. Conclusion 
We have investigated various types of transformations, and showed that among 

them Generalized T y p e 2  transformations are the mast preferable. Two provably 
secure block ciphers, PSBC and PSBC with key-expanding, have been constructed 
by the use of Generalized T y p e 2  transformations. And finally, based on PSBC 
with key-expanding, practically implementable block ciphers have been presented. 
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Table 1 Four Example Ciphers 

* (G, is used twice) 
Definitions of Parameters 

0 Length of Plaintext/Ciphertext = n . It (bits). 
0 Length of Key = t . 2 1 m . 2” (bits), where t is the number of times Gm is 

0 Size of Enciphering Part = .!!. s . n 1 2” (bits) = 1 - s . n . 2”/213 (kilo-bytes). 
0 s - the number of rounds of Generalized Type2 transformations applied in 

0 n - the length of a substring Bi (or Ci). 
0 k - (= 2 4  the number of substrings Bi’s (or Ci’s). 
0 m - specifying the length, 2m2”, of an input to G,. 

applied. 

the enciphering/deciphering part. 
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Appendix A -Minimum Rounds for Security 
This appendix discusses minimum rounds for achieving security when a 

permutation is constructed from some kind of transformations. 
First we consider transformations related to Type3 ones. For these 

transformations we have the following useful lemma. 

[Lemma A l l  Let P be a subsef o f  Hk,,. If for any function p E P and f o r  
any input s = (S i , S ! , s j )  E I k n ,  the outpui of p f a k e s  fhe form of (..-,s! @ 

and ( - .  . .2 . . .) means fhat the string does  not depend on s t ,  fhen fhere i s  a simple 
oracle circuif disfinguishing between a function p E P and a function randomly and 
uniformly selected from Hkn. 

(. . . $ . . .), . . .), where 0 5 i ,  1, j 5 kn, 1 2 1, i + 1 + j = h1 si E I i ,  31 E I t?  sj E Ij 

Recall that for a function-tuple h, = ( f , , ~ ,  f i , ~ ,  . . . , f , , k - I ) ,  where f i , j  E Hnl a 
Type-3 transformation is defined as g3,i = L$:{ o 7r3,i, where ?r3,i(B1, Bz, . . . , BL) = 
(B1, Bz @ f i , l (BI ) ,  B3 @ f i , Z ( & ) ,  . . . , Bk 63 f i , k - l (Bk- l ) ) ,  and that for 8 function- 
tuples hl ,  hz, . . . , h,, a permutation consisting of s rounds of Type3 transformations 
is defined as $ g ( h , , . .  . , hz ,  h l )  = g3,* o 

Let 7rr,i be a permutation obtained from 7r3,i by dropping certain functions 
f i , j  in hi = ( f i , l l  f i . 2 , .  . . , f ; , k - i ) .  ( X r , i  = ~ 3 , ‘  when dropping no function.) Define 
gs,i = L!’,! 0 7rr, i ,  and call it a Type-r transformation. Also let &(ha, .  . . , h ~ ,  h l )  
be a permutation in Hkn consisting of s rounds of Type7 transformations. 

Let A, denote the minimum number s at which & ( h s , .  . . , h2, h l )  is secure. 
Now we are in a position to prove that A, 2 k + 1, i.e., a necessary condition for 

.0 93,2 0 g3,1. 



476 

& ( h a , .  . . , hl ,  h l )  to  be secure is that s 

[Theorem A21 
A type of transformations is called s ingu lar  if a transformation g of that type is 

definedasg(B1, ..., Bi ,..., Bk)=(Cl, ..., Cj-1,Cj;Cj+I ,..., Ck),whereCj =Bi 
and neither ((71, .. . , C,-1) nor (Cj+l,. . . C,) depends on Bi. For example, Type-1 
transformations are singular, but Type-2 and Type3 ones are non-singular. 

[Theorem A3] L e t  Q be a p o l y n o m i a l  in n and  Ckn be a n  oracle circuif w i t h  
Q(n) < 2n orac le  ga te s .  J e f  -&(ha,. . . , h2, h,) be a p e m u f a i i o n  c o n s i s f i n g  o f  s 
rounds  o f  singular Type-.r t r a n s f o r m a t i o n s ,  where h a , .  . . , h2, hl are i n d e p e n d e n t  
r a n d o m  f u n c f i o n  f u p l e s .  T h e n  (1) w h e n  s 5 b + 1, &(ha, .  . . , h2, h l )  is i n s e c n r e ,  
a n d  (2) w h e n  s = 2b - 1, IPT{Ckn[T]  = 1) - Pr{Ck,[&(h,, . . . , hf ,  h i ) ]  = 1}1 5 
Sk-1)3Q(n’3, 2” w h e r e  T E R  Hkn. 

[Theorem A41 Lei  Q be a p o l y n o m i d  in n and  Ckn be a n  oracle c i r c u i f  with 
Q(n)  < 2n orac le  g a t e s ,  a n d  l e f  $,(ha, . . . ,  h2,hl) be a p e r m u t a t i o n  c o n s i s f i n g  
of s r o u n d s  o f  non-singular T y p e - r  f r o n s f o n n a t i o n s ,  w h e r e  ha , .  . . , h2, h1 are 
i n d e p e n d e n f  r a n d o m  f u n c t i o n  fup le s .  T h e n  w h e n  s = k + 1, I P T { C k n [ T ]  = 

L + 1. Formally, we have 

(1) AT 2 k + 1. (2) XI 2 2L - 1. 

I} - Pr{Ckn[$Jr(ha, . . . , h2, hi)]  = I}] 5 v, where T E R H k n .  

Now we consider Generalized Typwr transformations g$/ = L(’) 0 r r , i -  Let 

$$+‘)(ha,. . . , h2, h1) be a permutation in Hk, ,  consisting of s rounds of Generalized 
T e-T transformations. Denote by A?) the minimum number s at  which 

In particular, A!p’ is defined to  be +w if flr!P)(h,, . . . , h2, h l )  is insecure no matter 
how large s is. We have the following theorem which is easy to prove. 

[Theorem A51 (1) A?’ 2 A, 2 k + 1. (‘2) Ag) = Xz w h e n  p is a n  odd i n f e g e r  in 
[l, k], a n d  

$.,” PI ( h a , .  . . , h2, h1) is secure, where hi are independent random function tuples. 

= +a w h e n  p is a n  even i n t eger  in [I lk] .  

Appendix B - Optimal Transformations 
The computing procedures for Generalized Type-T transformations g?!, and 

hence for +?)(h8,. . . , h2, h l ) ,  can be represented by acyclic c o m p u f a t i o n  g r a p h s .  
There are three kinds of nodes in a computation graph: input nodes, output nodes 
and internal nodes. Each internal node in a computation graph represents a generic 
operation: computing a function fi,j or XORing two strings. 

The length of a path between two nodes is defined as the number of arcs in 
the path. Now assume that the length of the longest path(s) from input nodes to 
output nodes in a computation graph is L.  Then the depth of the graph is defined to 
be L-1. The n o r m a l - d e l a y  D+(p,  7, s) of a permutation +?)(h,,.. . , h2, h1) E Hkn 
is defined as the depth of the computation graph for the permutation, the i n v e r s e -  
delay D-(p, T, s )  is defined as that for the inverse of the permutation, and the 
sum-de lay  O(p, 7, s) is defined as D(p, T, s )  = D+(p, 7,s) + D-(p, T ,  s). 
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Clearly, D+(p, 7,s) = 29, and D-(p, T, s) 2 D+(p, T, s) 2 2s. Thus D(p, T, s) = 

Recall that A?) denotes the minimum number of rounds s at which 
q!.J!P'(h8,. . . , h z ,  h l )  is secure. From Theorem A5, we have A$'" 2 k + 1. Hence, 
D(p, T,  A!"') 1 4(k + 1). 

D+(p, T, 3) + D-(p, 7,s) 2 2D+(p, 7,s) 2 49. 

Call a Generalized  type-^ transformation opfimal if D(p, T, A?)) = 4(k + 1). 
Now we discuss the optimality of transformations. First we have two facts: (1) 

When gt,! = Lgi or?) with rrg) being not an involution, we have D-(p, 7,s) > 2s. 
So, transformations like T y p e 3  cannot be optimal. (2) When ~2) is an involution 
but g::,! is singular, we have A?' > k + 1, and hence D(p, T, A?)) > 4(k + 1). So 
transformations like Type-1 cannot be optimal. 

Consider the following two cases: odd k and even k. In the former case, either 
g!:,! = L!po)t 0 rt) is singular or ~ i f l  is not an involution. Thus by the above two 
facts, no optimal transformation can be obtained. In the latter case, it is not hard to 
verify that the only non-singular transformations g::) = Lz)t o ~2) with T:? being 
.involutions are Generalized T y p e 2  ones with p odd. For such transformations we 
have D(p, 2, A(,"') = 4(k + 1). Thus we have proved: 

[Theorem Bl] A m o n g  all fypes of fransformaiions discussed in  fhis  puper, 
Generalized Type-2 trunsformafions g;:) = Lk)t o T?? wifh even k and odd p, are 
fhe  only optimal ones .  

Appendix C - Super-security 
Luby and Rackoff introduced also the notion of saper-secure pseudorandom 

permufafion generators in [LR]. Intuitively, a pseudorandom permutation generator 
is super-secure if no super-oracle circuit can tell a permutation randomly specified 
by the generator from a randomly and uniformly chosen one. A super-oracle circuif 
is an oracle circuit with two kinds of oracle gates. The first is called the normal 
oracle gates which are evaluated using some permutation, and the second the inverse 
oracle gates which are evaluated using the inverse of the permutation. 

When a secure pseudorandom permutation generator is used to construct a 
block cipher, the cipher is secure against the chosen plaintext attack, but not 
necessarily secure against the chosen plaintext/ciphertext attack. When a super- 
secure pseudorandom permutation generator is used to construct a block cipher, 
the cipher is secure against the chosen plaintext/ciphertext attack [LR]. 

Luby and Rackoff showed that functions consisting of 4 rounds of FTT's are 
super-secure. We can generalize their result to the following one. 

[Theorem Cl] Let k = 21, where f2 E N, and let p be an odd integer 
in [I, k ] .  Assume f h a f  & ) ( h a , .  . . , hz, h l )  consists of s rounds of Generalized 
Type-2 transformations,  where hi = ( f i , l ,  f i , ~ ,  . . . , f ; ,k- l )  with f i , j f ~  H,,. Then 
$?'(h.,.. . , hz ,  h,) i s  super-secure ig s 2 k + 2. 
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Figure 1: Feistel-Type Transformation (FTT) 

C1 Cl 

Figure 2: Feistel-Type Transformation (FIT) Lemma 

Figure 3: Type-1 Transformation 
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Figure 4: Type-2 Transformation 

Figure 5: Type-3 Translormation 

Figure 6: Inverse of T y p e 3  TransIorrnation 
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Figure 7: Enciphering Algorithm for PSBC 
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Figure 9: Enciphering Algorithm for PSBC with Key-Expanding 
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