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Abstract 

We show how to implement oblivious transfer without interaction, through 
the medium of a public file. As an application we can get non-interactive zero 
knowledge proofs via the same public file. 

1 Introduction 

1.1 Non-Interactive Oblivious Transfer 

The intriguing concept of an oblivious transfer was introduced by Rabin, and has 
since then proven to be a powerful tool in the design of cryptographic protocols. 
Interaction, however, has seemed so far to be crucial to any implementation of it. 
Could one design a non-interactive version of this important primitive? We propose 
here several ways in which to do this. 

The setting we consider is a public key one. Each user B is equipped with a public 
key PB and a secret key SB. A non-interactive oblivious transfer is a means whereby 
any A can obliviously transfer something to such a B, without the recipient’s having 
to take any action at all. A little more formally, 

Non-Interactive Oblivious Transfer : A haa two strings so and 31. As a function 
of these and B’s public key PB she computes a message m and sends it to B. Using 
his secret key, S B, B can extract from m exactly one of the strings so or ~1. A will 

not km~ which of the two B got. 
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A related concept is that of an oblivious transfer channel. This is a means of 
obliviously transferring a lot of information. 
Oblivious Transfer Channel  (OT channel): An oblivious transfer channel from 
A to B is a pair C = (C", Cl) of channels such that 
0 A can send any number of bits on either Co or C' 
0 One of the channels is clear to B (in the sense that he will see any bit that is sent 

on it) while the other is opaque 
0 A does not know which channel is clear to B. 

OT channels are usually easier to think about and we will see that a single non- 
interactive oblivious transfer of a pair of short strings can be used to establish these 
channels. 

It should be noted that although an OT channel allows lots of bits to be obliviously 
transmitted, the obliviousness in not independent. That is, suppose A sends lb on 
CO and h on C', and suppose B gets bo. Then, if A now sends ~0 on Co and c1 on 
C1, it is q, that B will get. Although A does not know which bit of each pair B got, 
he does know that it is either both & and c,, or both b, and cl. This can be both 
an advantage and a drawback. For many applications, though, it is good enough. 
One such application, which we will describe here, is a construction of multi-user 
non-interactive zero knowledge systems. 

In any case, in a science concerned with secret transmission, a primitive like non- 
interactive OT remains of fundamental importance and independent interest, over 
and above the applications visible at this stage. 

1.2 Non-Interactive Zero Knowledge 
We apply the non-interactive OT to obtain public key non-interactive zero knowledge 
systems. This is a setup in which there are many users, each with a public key, who 
can prove theorem to each other in zero knowledge and without interaction. A little 
more precisely, 

Public Key Non-Interactive Zero Knowledge Systems: Consider a community 
of users, where each user B has a public key Ps and a secret key SB. We call this a 
public key non-interactive zero knowledge system if for each pair of users A and B,  
and for each theorem T, it is possible for A to give B a non-interactive zero knowledge 
proof of T .  This is a message m which A computes as a function of her theorem and 
B's public key and which she then sends to B. B's secret key enables him to decode 
m to the extent that he is satisfied of the correctness of the theorem, but he learns 
nothing more than that the theorem is true. Note that the communication is in one 
direction only: in order to receive the proof B need send nothing to A. Moreover, not 
only can any other user C also send proofs to B, but the number of theorems that 
can be proved to B is not limited. 

Ours are the first implementations of non-interactive zero knowledge proofs which 
permit many provers and verifiers who do not have to interact individually with one 
another before proving theorems (non-interactively) in zero knowledge. 
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Non-interactive zero-knowledge was introduced by Blum, Feldman, and Micali 
[BFM]'. They showed how a prover could prove a theorem to a verifier when both 
parties share a common random string. The drawback of their system, however, was 
that it wits restricted to two parties: if many users wished to prove theorems to each 
other, each pair of them would have to share a separate random string. This becomes 
quickly prohibitive as the number of users grows. Their implementation was also 
somewhat impractical. 

Kian [Kl] showed how a theorem could be encoded and then transmitted using 
oblivious transfer in such a way as to achieve zero knowledge. Kiliac, Micali and 
Ostrovsky [KMO] have a scheme which moves the oblivious transfer to a short pre- 
processing stage. That is, the prover and verifier first exchange some information 
via oblivious transfer. This enables the prover, in a later stage, to send the verifier 
zero knowledge proofs without interaction. The initial interactive phase scheme again 
means, however, that this scheme is restricted to two parties. On the other hand the 
encoding of proofs used is quite efficient and the system does not restrict the sizes of 
theorem. 

Our public key zero knowledge systems evolve from the [KMO] work, We replace 
the initial interactive phase with public keys. To prove theorems we use the same 
encoding of theorems as [KMO] and accomplish the proofs via non-interactive OT. 
Since each user either creates his public key himself or gets it from some center 
(without interaction with the person proving theorems to him), anyone can prove 
theorems to him. 

Given that some of our implementations of non-interactive OT are quite efficient, 
and we use the [KMO] proof encodings, we get some quite efficient implementations 
of zero knowledge. 

Public Key non-interactive knowledge proofs themselves have cryptographic ap- 
plications; for example, Bellare and Goldwasser [BG] have shown how they can be 
used for message authentication. 

Remark: As pointed out by CrCpeau, proofs in [BFM] are transitive*(that is, if 
B received a proof of a theorem from A she could show it to C, and C too would 
be convinced of the proof). a u r  proofs are not transitive, as is desirable in a zero 
knowledge proof. 

1.3 Results and Organization of this Paper 
We begin ($2) with a simple, concrete, and easily implementable scheme for non- 
interactive oblivious transfer. 

The next set of schemes we present ($3) are more theoretical, and involve having 
a key distribution center. These centers are not trusted! and we show appropriate 
protocols whereby a user can get a key from them and the center gains no information 
which could compromise the key. These schemes have the advantage of being based 
on the general assumption of trapdoor permutations. 

correct scheme has been announced by S. blicali [MI. 
The implementation described in the original [BFM] paper is not known to have a proof; a 



We have relegated to an appendix the description of our principal application: how 
non-interactive OT can be used to get non-interactive zero knowledge proof systems. 

2 Implementing Non-Interactive OT 
We describe a simple, concrete implementation of non-interactive oblivious transfer 
based on the Diffie-Hellman assumption, and then suggest generalizations of this 
approach to get alternative implementations. 

2.1 A Simple Scheme 
Fix some prime p and generator g of 2;. Suppose that these, as well as some element 
C of Z,, are known to all the users in the system, but suppose that nobody knows 
the discrete log of C (ways of arriving at such situations are discussed later). 

The arithmetic in this section will be understood to be mod p ;  we will write simply 
gz rather than 9” mod p ,  etc. 

How to Get Keys : B picks i E {0, 1) at random, 2; E (0,. . . , p  - 2) a t  random, 
and sets 
0 pi = 92’ 

0 p1-i = c * (6‘)-1. 
His public key is ( P o ,  PI) and his secret key is ( i ,  ti). 

Anyone can check that B’s public key (Po,Pl) is correctly formed by checking 
that PO& = C, and before sending him any proofs they will do so. Granted that the 
discrete log of C is unknown, B cannot know the discrete logs of both &, and &. 
Moreover, the public key does not reveal which of the two discrete logs B knows: the 
pair (A, /31) is randomly distributed over the set of all pairs of elements of Zp’ whose 
product is C. This will be crucial to the non-interactive OT we describe below. 

The mechanism we use for non-interactive OT is similar to the DiffieHellman 
secret key exchange protocol, and is based on the same complexity assumption: 

Diffie-Hellman Assumption : 
compute g q .  

The Diffie-Hellman assumption is one of the oldest and most tried in cryptography. 

(SO, sI) is accomplished: 

Non-Interactive OT(so, sl): 

In the above notation, let B’s public key be ( P o , & )  and his secret key ( 2 ,  zi). 

0 A picks at  random yo, yl E (0,. . . , p - 2) and sends 

Given gz and gy,  but neither 5 nor y, it is hard to 

We can now describe how the non-interactive oblivious transfer of a pair of strings 

= gm, a1 = gyl to B. A 
then computes 70 = pc and 71 = pit, and sends r o  = SO @ 70 and rl = s 1 @  71 to 
B. 
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0 On receiving QO and ~ 1 ,  B uses his secret key to compute a? = 7i. He then 
computes ri @ ri = 8; .  

B thus receives 8; .  The Diffie-Hellman assumption implies that he cannot compute 
71-i (say &-i = gfl-*; then 71-; = g"1-iul-6 and B knows 41-1 and gY1-i but neither 
21-i nor yl-i), Thus he cannot compute s1-i. A has thus succeeded in obliviously 
transferring the pair of strings so and 31. Note that the transfer is indeed non- 
interactive: B sends nothing to A. 

2.2 A More Secure Scheme 
The above scheme is simplified as much as possible. In particular, it is not clear 
exactly how secure sl-i is: the Diffie-Hellman assumption does not say anything 
about the bit security. This can be fixed by the standard method of using a hard-core 
bit. The theorem of Goldreich and Levin [GL] implies that predicting the bit (g-, r) 
given gf,gY and random r is as hard as computing s"y given gf,gY (where ( p , r )  
denotes the inner product mod 2 of the strings s"y and r). For a pair of bits (h, h )  
we then have 

Non-Interactive OT&, b,): 

In the above notation, let B's public key be ( P o ,  p1) and his secret key (it q). 

0 Apicks at random yo,yl E { O ,  . . . , p -  2} and computes r0 = Pr and 71 = #". 
She then picks random ro, rl E (0, l}k (where E = \pi )  subject to the restriction 
that (70,ro) = & and ( n , ~ ~ )  = bl. She sends QO = gm,al = ga and ro,r1 to B.  

0 On receiving ao, o1 and ro, rlr  B uses his secret key to compute a? = 7i. He then 
computes bi = (~i,q). 

The Goldreich-Levin theorem together with the DiffieHellman assumption imply 
that b-i is unpredictable to  B. 

As an aside, let us also point out that it is easy to modify our implementation of 
non-interactive OT to obtain a protocol for an interactive 1 out of 2 oblivious transfer 
based on the Diffie-Hellman assumption. Although it was known [GHY],p<2] that 
oblivious transfer in the interactive framework was possible under this assumption, 
the implementation arising out of the modification of our non-interactive scheme is 
simpler and more efficient. 

2.3 
Suppose that A wishes in fact to oblivious transfer many pairs of strings to B, as 
would be required, for example, in the applications to non-interactive zero knowledge 
proofs that we present in Appendix A. She could, of course, just repeat the above as 
often as is necessary. More efficient, however, might be the following. 

Non-Interactive OT of More Bits: OT Channels 
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A begins by non-interactive oblivious transferring to B a pair of random k bit 
strings (SO, 31). This is done by non-interactively oblivious transferring  S SO)^, (8l)j) 

for each j = 1 , .  . . , k (where (s;), denotes the j-th bit of s;) via the scheme of 52.2. 
Using a pseudo-random bit generator G (the hardness of discrete log, which is im- 
plied by the Diffie-Hellman assumption, implies the existence of pseudo-random bit 
generators [BIMi]) she then expands these seeds into the pair of long pseudo-random 
sequences G(s0) and G(sl). To oblivious transfer a pair of strings (ro, r l ) ,  A sends to 
B the bitwise X-OR of ro with the next unused bits of G(so) and the bitwise X-OR of 
r1 with the next unused bits of G(sl). B gets r; since he knows the seed s i ,  but gets 
no information about rl-i since without the knowledge of sl-i the sequence G(s1-i) 
looks random to him. 

More formally, the above establishes an OT channel. The method used is a general 
one. 

Once OT channels are available, we can implement non-interactive zero knowledge 
proof systems via the methods outlined in Appendix A. 

2.4 

A particularly interesting variant of OT is the 2 out of 3 OT. Here A has three bits 
(b, h,  h). B selects two of them and A does not know which pair of bits B got. The 
above scheme for 1 out of 2 non-interactive OT can easily be modified to directly 
implement a non-interactive 2 out of 3 OT. B will make his public keys M follows: 

B picks at  random a pair of distinct values i , j  E {0,1,2}, and then picks a t  random 
zi, Zj E (0,. . . , p  - 2). He sets 

2 Out of 3 Non-Interactive OT 

0 pi = g", #&j = s"l 
/31 = C - (p)- ' (gZ~)- ' ,  where 1 E {0,1,2} is the value not equal to i or j. 

His public key is ( P o ,  01, pZ) and his secret key is ( i ,  j , z ; ,  zj). 

It is then easy to see how to generalize the scheme of '$2.2 to define a Non- 
Interactive 2 Out of 3 OT(&, &, b), and we omit the details. 

The interest of this variant of OT lies in its application to zero knowledge proofs via 
the results of [KMO]. They show a simple, efficient, general, and non-cryptographic* 
method of "zero knowledge proofs for NP in three envelopes" which can be used to 
directly implement non-interactive zero knowledge proofs via our non-interactive 2 
out of 3 OT. 

We note that the scheme described here is easily generalized to achieve a t - 1 out 
o f t  non-interactive OT for any t. 

2.5 The Central Public Key 
The above schemes requires the presence of some short string, common to all parties 
and satisfying some constraints, which can be used by any user to create his public 

The two envelope scheme described in Appendix A is cryptographic in the sense that creating 
the envelopes requires using encryption functions. 
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and secret keys. We might call this a central public key. Specifically, the central 
public key in the above consists of a random string C whose discrete log nobody 
know, together with a prime p and a generator g of 2; for which the discrete log 
problem is hard. 

How can a central public key with the desired properties be obtained? The sim- 
plest and most direct way would be to have a center create it. Its job done, the center 
could disappear. This would probably work well enough in practice. 

If one does not want a center then multi-party protocols as in [GMW],[BGW], or 
[CCD] could be used by the users themselves to agree on a central public key. These 
protocols have the necessary feature of not allowing any user (or any small subset of 
users) to influence the choice of the key to their advantage. 

2.6 A Proof of Security 
In order to formally prove that the oblivious transfer has the right properties, we will 
have to add one more step. When B makes his public key, we have him publish a 
zero knowledge proof that he really did it correctly (formally, that he knows i, xi such 
that Pi = gZi). In the simulation the simulator will use this proof to extract the value 
of i. 

Such a proof could be implemented via [BFM]. Unfortunately the scheme of 
[BFM] is based on quadratic residuosity. In the final paper we will show how to get 
some kind of proof based on discrete log, at the expense of a small interaction with 
the center. 

2.7 Other Implementations 
In the final paper we will consider a general framework which encompasses schemes 
of the above sort. The idea is that a user should be able to create his public key on 
his own, using some central public key. Moreover, there is a pair of secrets associated 
with his public key of which he only knows one. This is guaranteed by the fact of 
some relation between his public key and the central key being true, and this relation 
can be checked by anyone. Given this, there is a way to establish two encryption 
algorithms only one of which the key holder can decrypt. These are used for the 
non-interactive OT. 

3 Schemes with Centers 
The simplest and most direct way in which to establish public and secret keys which 
permit non-interactive OT would be through the use of a key distribution center. For 
example, consider a center who gives B two numbers No and N,,  only one of which is 
given in factored form. B makes (No, N , )  his public key. To non-interactively oblivi- 
ous transfer things to B, A can use these numbers to establish encryption algorithms 
which are used to send the bits in encrypted form. B can only decrypt those bits sent 
using the number whose factorization he knows. 
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A closer examination of this idea shows that some care must be exercised. There 
are a variety of drawbacks to the naive use of centers: 
0 The center knows which channel is clear to B (he knows which number B has the 

factorization of). If he reveals this to A the latter can cheat. 
0 B might disregard what the center gives him and simply create, on his own, a key 

in which he places a pair of numbers both of whose factorizations he knows. He 
now extracts knowledge from the proofs he receives. 
We propose here a way in which a key distribution center can be used to get 

appropriate keys while avoiding drawbacks of the above form. We will guarantee that 
after B gets a key from the center, 
(1) The center does not know which channel is clear to B 
(2) B cannot change his key, or use another key which he builds to suit himself. 
We will do this using oblivious circuit evaluation, trapdoor permutations, and digital 
signatures. 

Oblivious Circuit Evaluation : I( has some input z and B has some input y. 
Both.know a function F.  At the end of the protocol the following holds: 
0 B learns the value of F(2,  y) 

0 B learns no more information about z than that conveyed by the knowledge of 

0 K learns nothing about y or F(z,y). 
F(X, Y) 

Oblivious circuit evaluation is a well known protocol of which numerous imple- 
mentations exist. In particular it can certainly be done given the existence of trapdoor 
permutations. 

Let G be a trapdoor permutation generator (that is, G is a probabilistic polynomid 
time algorithm which can be used to produce a random trapdoor permutation together 
with its inverse). Suppose that the center I( has a public key PK with respect to 
which it can provide signatures; secure digital signatures with trapdoor permutations 
are possible via [BeMi]. In order to compute the signature K also has a secret key 
SK . 

The circuit F we consider takes as input a secret key S and a public key P for 
signatures, a bit i, and two strings r and 3. The output is 

where fo and fi are trapdoor permutations, fF1 is the inverse to f;, and CT is a 
signature, with respect to the public key P ,  of the pair (f0,fl). To create these 
trapdoor permutations, F runs G twice, using as coin tosses the string r @ 3. From 
the two pairs (fo, f;'), (fi l  f;') so obtained, F outputs (fo, fl) and a signature 6, 
with respect to P, of the string (fo, ji). The latter is created using P and S. F then 

When user B wishes to get keys, he engages in an oblivious circuit evaluation 
protocol for F with the center I<. B provides the inputs s and i which he chooses 
at random. I< provides r, which he chooses at random, and his own keys P = PK 

F(S,P,r,s,i) = ((jo,fl),u9fi-1) 1 

also outputs f;'. 
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and S = SK for signatures. The output goes to B. He makes ((fo, fi), v )  his public 
key and frl his secret key. The two properties listed above do hold: (1) I< does not 
learn i and hence does not know which channel will be clear to B (2) B cannot make 
a key to suit himself because he would not be able to produce a signature of it with 
respect to I P S  public key (the strong properties of the digital signatures of [BeMi] 
insure that this latter remains true even after B has seen many signatures from the 
center). 

We note that we cannot, of course, protect against a totally corrupted center: for 
example, one who is willing to conspire with B and sign for him a bogus public key 
not obtained through the oblivious circuit evaluation. 

To implement non-interactive OT with keys of the form B obtains here is easy: 
the trapdoor permutations can be used by A to send B encrypted bits. B can decode 
only one of these streams of bits since he knows only one of the trapdoors. The 
distribution according to which B's public key is chosen is such that A cannot tell 
which trapdoor permutation it is that B knows the inverse of. 

4 The Non-Interactive OT Primitive 
One of the features of the usual interactive OT which makes it a tool of such universal 
application in the design of interactive protocols is that many stronger versions of OT 
can be reduced to the simplest kind. Such reductions appear in the work of Brassard, 
Crkpeau, and Robert [BCR]. The same holds true for non-interactive OT. In several 
cases the reductions of [BCR] apply since they do not involve interaction over and 
above that of the original protocol. It is interesting to note, however, the case of the 
most interesting reduction: how a 1 out of n bit transfer yields a 1 out of n string 
transfer. For the non-interactive case, the reduction is actually much simpler than 
the one for the interactive case. 
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A Appendix: Non-Interactive Zero Knowledge 
Proofs 

This appendix describes how non-interactive zero knowledge proofs are accomplished 
via OT channels. For a definition of OT channels see 31.1. 

Kilian, Micali and Ostrovsky [KMO] presented a method via which theorems could 
be proved, non-interactively and in zero-knowledge, based on obliviously transferred 
pseudo-random sequences; two seeds would be known to the prover, and only one of 
them (with the prover unaware of which one) to the verifier. Their scheme will work 
in the more general framework of oblivious transfer channels, and we describe it in 
that form here. 

Suppose A wishes to prove some NP statement T of which she knows a witness. 
She transforms this to a graph G = (V, E )  of which she knows a Hamiltonian cycle, 
where V = (1,. . . , n}. Let & be the adjacency matrix of G and let the edges of 
the Hamiltonian cycle be (q, vl), . . . , (ti,,, v,) E E.  Let k be a security parameter. 
We assume that k OT channels Cl = (C:, C:), . . . , Cr, = (G, C:) from A to B are 
available (k being some security parameter). 

A picks a random permutation A of the vertices of G and computes G’ = x(G) = 
( V , x ( E ) ) ,  the isomorphic image of G under A. Let Act = [a’]ij be the adjacency 
matrix of G‘. She then picks some encryption function €(., .)3, and does the following: 

0 Choosing r at random she encrypts x as y = &(n,r). 

0 She encrypts the adjacency matrix of the permuted graph by choosing r ; j  at ran- 
dom and computing yij = &(a:j,  rfj) for each i , j  = 1,. . . ,n. 

She now sends y and y;, (1 5 i , j  5 n) to B in the clear. 
Finally, we arrive at  the point where A uses an OT channel. She flips a coin. If 

it is heads, she sends r,r,j (1 5 i ,  j 5 n) along C: and rr(ul)r(ur), . . . , rn(u,)r(v,) along 
C:. If the coin is tails she reverses the roles of C,O and C,l in the above. 

Actually, A repeats this entire procedure k times. That is, she obtains k encodings 
as described, and she uses Ci to transfer the i-th encoding to B. 

To prove a further theorem, A does the same thing. She uses the same set of k 
channels (recall that they can take an unlimited number of bits). 

At the receiving end, B sees either the permutation and the permuted graph, or 
a Hamiltonian cycle in a permuted version of the graph. This is a well known zero- 
knowledge proof of Hamiltonian cycle. A full proof of correctness, however, would 
require showing a simulator and a reduction via which the ability to distinguish the 
simulator’s output from the prover’s would compromise either the encryption function 
or the channels. Details of this sort are left to the final paper. 

This is [GM] style probabilistic encryption: to encrypt a string t, choose a random r and 
compute E(z,r); to decrypt, reveal r. 
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