Skip to main content

Modeling Planar Shape Variation via Hamiltonian Flows of Curves

  • Chapter

Abstract

The application of the theory of deformable templates to the study of the action of a group of diffeomorphisms on deformable objects provides a powerful framework to compute dense one-to-one matchings on d-dimensional domains. In this paper, we derive the geodesic equations that govern the time evolution of an optimal matching in the case of the action on 2D curves with various driving matching terms, and provide a Hamiltonian formulation in which the initial momentum is represented by an L 2 vector field on the boundary of the template.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Beg, M.I. Miller, A. Trouvé, and L. Younes, Computing large de-formation metric mappings via geodesic flows of diffeomorphisms, Int J. Comp. Vis., 61 (2005), pp. 139–157.

    Article  Google Scholar 

  2. H. Brezis, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1983. English translation: Springer-Verlag.

    MATH  Google Scholar 

  3. S. Cohen, G. Elber, and B. Bar-Yehuda, Matching of freeform curves, Computer-Aided Design, 29 (1997), pp. 369–378.

    Article  Google Scholar 

  4. M.C. Delfour and J.-P. Zolésio, Shapes and Geometries. Analysis, differ-ential calculus and optimization, SIAM, Philadelphia, 2001.

    Google Scholar 

  5. M. Droske and M. Rumpfy, A variational approach to non-rigid morpholog-ical image registration, Tech. Report, University of Duisburg, 2004.

    Google Scholar 

  6. P. Dupuis, U. Grenander, and M.I. Miller, Variational problems on flows of diffeomorphisms for image matching, Quarterly of Applied Math., 56 (1998), pp. 587–600.

    MATH  MathSciNet  Google Scholar 

  7. D. Geiger, A. Gupta, L.A. Costa, and J. Vlontzos, Dynamic program-ming for detecting, tracking and matching deformable contours, IEEE PAMI, 17 (1995), pp. 295–302.

    Google Scholar 

  8. J. Glaunès, A. Trouvé, and L. Younes, Diffeomorphic matching of distri-butions: A new approach for unlabelled point-sets and sub-manifolds matching, in Proceedings of CVPR’04, 2004.

    Google Scholar 

  9. U. Grenander and M.I. Miller, Computational anatomy: An emerging dis-cipline, Quarterly of Applied Mathematics, LVI (1998), pp. 617–694.

    Google Scholar 

  10. D.R. Holm, J.T. Ratnanather, A. Trouvé, and L. Younes, Soliton dynamics in computational anatomy, Neuroimage, 23 (2004), pp. S170–S178.

    Article  Google Scholar 

  11. E. Klassen, A. Srivastava, W. Mio, and S. Joshi, Analysis of planar shapes using geodesic paths on shape spaces, IEEE Trans. PAMI, 26 (2004), pp. 372–383.

    Google Scholar 

  12. M.I. Miller, A. Trouvé, and L. Younes, Geodesic shooting for computa-tional anatomy, Tech. Report, Johns Hopkins University, 2002. To appear in J. Math. Imag. Vision.

    Google Scholar 

  13. M.I. Miller, A. Trouvé, and L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy, Annual Review of Biomedical Engineering, 4 (2002), pp. 375–405.

    Article  Google Scholar 

  14. H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Trans. Acoustic, Speech and Signal Proc., 26 (1978), pp. 43–49.

    Article  MATH  Google Scholar 

  15. E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping, in Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2004.

    Google Scholar 

  16. A. Trouvé, Diffeomorphism groups and pattern matching in image analysis, Int. J. of Comp. Vis., 28 (1998), pp. 213–221.

    Article  Google Scholar 

  17. A. Trouvé and L. Younes, On a class of optimal diffeomorphic matching problems in 1 dimension, SIAM J. Control Opt., 39 (2000), pp. 1112–1135.

    Article  MATH  Google Scholar 

  18. A. Trouvé and L. Younes, Local geometry of deformable templates, SIAM J. Math. Anal., 37 (2005), pp. 17–59.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Vaillant, M.I. Miller, A. Trouvé, and L. Younes, Statistics on diffeo-morphisms via tangent space representations, Neuroimage, 23 (2004), pp. S161–S169.

    Article  Google Scholar 

  20. T.L. Vincent and W.J. Grantham, Nonlinear and optimal control systems, Wiley, 1997.

    Google Scholar 

  21. L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math, 58 (1998), pp. 565–586.

    Article  MATH  MathSciNet  Google Scholar 

  22. -, Optimal matching between shapes via elastic deformations, Image and Vision Computing, 17 (1999), pp. 381–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Glaunès, J., Trouvé, A., Younes, L. (2006). Modeling Planar Shape Variation via Hamiltonian Flows of Curves. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_14

Download citation

Publish with us

Policies and ethics