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Abstract. This paper proposes a framework for dealing with several problems re-
lated to the analysis of shapes. Two related such problems are the definition of the
relevant set of shapes and that of defining a metric on it. Following a recent research
monograph by Delfour and Zolésio [11], we consider the characteristic functions
of the subsets of R2 and their distance functions. The L2 norm of the difference of
characteristic functions, the L∞ and the W 1,2 norms of the difference of distance
functions define interesting topologies, in particular the well-known Hausdorff dis-
tance. Because of practical considerations arising from the fact that we deal with
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image shapes defined on finite grids of pixels, we restrict our attention to subsets of
R

2 of positive reach in the sense of Federer [16], with smooth boundaries of bounded
curvature. For this particular set of shapes we show that the three previous topologies
are equivalent. The next problem we consider is that of warping a shape onto another
by infinitesimal gradient descent, minimizing the corresponding distance. Because
the distance function involves an inf, it is not differentiable with respect to the shape.
We propose a family of smooth approximations of the distance function which are
continuous with respect to the Hausdorff topology, and hence with respect to the
other two topologies. We compute the corresponding Gâteaux derivatives. They de-
fine deformation flows that can be used to warp a shape onto another by solving an
initial value problem. We show several examples of this warping and prove properties
of our approximations that relate to the existence of local minima. We then use this
tool to produce computational definitions of the empirical mean and covariance of
a set of shape examples. They yield an analog of the notion of principal modes of
variation. We illustrate them on a variety of examples.

1. Introduction

Learning shape models from examples, using them to recognize new instances of
the same class of shapes, are fascinating problems that have attracted the attention
of many scientists for many years. Central to this problem is the notion of a random
shape which in itself has occupied researchers for decades. Fréchet [19] is probably
one of the first mathematicians to develop some interest in the analysis of random
shapes, i.e., curves. He was followed by Matheron [33] who founded, with Serra,
the French School of Mathematical Morphology and by D. Kendall [24], [26], [27]
and his colleagues, e.g., Small [42]. In addition, and independently, a rich body
of theory and practice for the statistical analysis of shapes has been developed by
Bookstein [4], Dryden and Mardia [13], Carne [5], and Cootes et al. [8]. Except
for the mostly theoretical work of Fréchet and Matheron, the tools developed by
these authors are very much tied to the point-wise representation of the shapes they
study: objects are represented by a finite number of salient points or landmarks.
This is an important difference with our work which deals explicitly with curves
as such, independently of their sampling or even parametrization.

In effect, our work bears more resemblance to that of several other authors.
As in Grenander’s theory of patterns [21], [22], we consider shapes as points
of an infinite-dimensional manifold, but we do not model the variations of the
shapes by the action of Lie groups on this manifold, except in the case of such
finite-dimensional Lie groups as rigid displacements (translation and rotation) or
affine transformations (including scaling). For infinite-dimensional groups, such
as diffeomorphisms [14], [49] which smoothly change the objects’ shapes, previ-
ous authors have been dependent upon the choice of parametrizations and origins
of coordinates [50], [51], [48], [47], [34], [23]. For them, warping a shape onto
another requires the construction of families of diffeomorphisms that use these
parametrizations. Our approach, based upon the use of the distance functions, does
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not require the arbitrary choice of parametrizations and origins. From our viewpoint
this is already very suitable in two dimensions but becomes even more suitable in
three dimensions and higher, where finding parametrizations and tracking origins
of coordinates can be a real problem: this is not required in our case. Another piece
of related work is that of Soatto and Yezzi [43] who tackle the problem of jointly
extracting and characterizing the motion of a shape and its deformation. In order
to do this they find inspiration in the above work on the use of diffeomorphisms
and propose the use of a distance between shapes (based on the set-symmetric dif-
ference described in Section 2.2). This distance poses a number of problems that
we address in the same section, where we propose two other distances which we
believe to be more suitable. They also use a signed distance score but it is nonsym-
metric with respect to the two regions and is not an approximation to a distance.

Some of these authors have also tried to build a Riemannian structure on the
set of shapes, i.e., to go from an infinitesimal metric structure to a global one.
The infinitesimal structure is defined by an inner product in the tangent space
(the set of normal deformation fields) and has to vary continuously from point to
point, i.e., from shape to shape. The Riemannian metric is then used to compute
geodesic curves between two shapes: these geodesics define a way of warping
either shape onto the other. This is dealt with in the work of Trouvé and Younes
[50], [51], [49], [48], [47], [52] and, more recently, in the work of Klassen et al.
[29], again at the cost of working with parametrizations. The problem with these
approaches, beside that of having to deal with parametrizations of the shapes,
is that there exist global metric structures on the set of shapes (see Section 2.2)
which are useful and relevant to the problem of the comparison of shapes but
that do not derive from an infinitesimal structure. Our approach can be seen as
taking the problem from exactly the opposite viewpoint from the previous one:
we start with a global metric on the set of shapes and build smooth functions (in
effect smooth approximations of these metrics) that are dissimilarity measures,
or energy functions; we then minimize these functions using techniques of the
calculus of variation by computing their gradient and performing infinitesimal
gradient descent: this minimization defines another way of warping either shape
onto the other. In this endeavor we build on the seminal work of Delfour and
Zolésio who have introduced new families of sets, complete metric topologies,
and compactness theorems. This work is now available in book form [11]. The
book provides a fairly broad coverage and a synthetic treatment of the field along
with many new important results, examples, and constructions which have not
been published elsewhere. Its full impact on image processing and robotics has
yet to be fully assessed.

In this paper we also revisit the problem of computing empirical statistics on
sets of two-dimensional shapes and propose a new approach by combining several
notions such as topologies on sets of shapes, calculus of variations, and some
measure theory. Section 2 sets the stage and introduces some notations and tools.
In particular, in Section 2.2 we discuss three of the main topologies that can be
defined on sets of shapes and motivate the choice of two of them. In Section 3
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we introduce the particular set of shapes we work with in this paper, show that
it has nice compactness properties and that the three topologies defined in the
previous section are in fact equivalent on this set of shapes. In Section 4 we
introduce one of the basic tools we use for computing shape statistics, i.e., given
a measure of the dissimilarity between two shapes, the curve gradient flow that
is used to deform a shape into another. Having motivated the introduction of the
measures of dissimilarity, we proceed in Section 5 with the construction of classes
of such measures which are based on the idea of approximating some of the shape
distances that have been presented in Section 2.2; we also prove the continuity of
our approximations with respect to these distances and compute the corresponding
curve gradient flows. This being settled, we are in a position to warp any given
shape onto another by solving the partial differential equation (PDE) attached to
the particular curve gradient flow. This problem is studied in Section 6 where
examples are also presented. In Section 7.1 we use all these tools to define a mean-
shape and to provide algorithms for computing it from sample shape examples. In
Section 7.2 we extend the notion of the covariance matrix of a set of samples to that
of a covariance operator of a set of sample shape examples from which the notion
of principal modes of variation follows naturally. We discuss some details of our
implementation of these algorithms in Section 8 and conclude in Section 9. This
paper is a bit expository in nature in order to make it self-contained. The reader who
is familiar with shape topologies can skip Section 2 and go straight to Section 3.1
to read about the definition of our set of shapes from where he/she can jump to
Section 4 and the following sections that contain the core of our contributions.

2. Shapes and Shape Topologies

To define fully the notion of a shape is beyond the scope of this paper in which
we use a limited, i.e., purely geometric, definition. It could be argued that the
perceptual shape of an object also depends upon the distribution of illumination,
the reflectance and texture of its surface; these aspects are not discussed in this
paper. In our context we define a shape to be a measurable subset of R2. Since we
are driven by image applications we also assume that all our shapes are contained
in a hold-all open bounded subset of R2 which we denote by D. The reader can
think of D as the “image.”

In the next section we will restrict our interest to a more limited set of shapes but,
presently, this is sufficient to allow us to introduce some methods for representing
shapes.

2.1. Definitions

Since, as mentioned in the Introduction, we want to be independent of any particular
parametrization of the shape, we use two main ingredients, the characteristic
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function of a shape �,

χ�(x) = 1 if x ∈ � and 0 if x /∈ �,
and the distance function to a shape �,

d�(x) = inf
y∈�

|y − x | = inf
y∈�

d(x, y) if � �= ∅ and + ∞ if � = ∅.

Note the important property [11, Chap. 4, Theorem 2.1]:

d�1 = d�2 ⇔ �1 = �2. (1)

Also of interest is the distance function to the complement of the shape, dC�, and
the distance function to its boundary, d∂�. In the case where � = ∂� and � is
closed, we have

d� = d∂�, dC� = 0.

We note by Cd(D) the set of distance functions of nonempty sets of D. Similarly,
we note by Cc

d(D) the set of distance functions to the complements of open subsets
of D (for technical reasons, which are irrelevant here, it is sufficient to consider
open sets).

Another function of great interest is the oriented distance function b� defined
as

b� = d� − dC�.

Note that for closed sets, such that � = ∂�, one has b� = d�.
We briefly recall some well-known results about these two functions. The inte-

gral of the characteristic function is equal to the measure (area) m(�) of �:∫
�

χ�(x) dx = m(�).

Note that this integral does not change if we add to or subtract from� a measurable
set of Lebesgue measure 0 (also called a negligible set).

Concerning the distance functions, they are continuous, in effect, Lipschitz
continuous with a Lipschitz constant equal to 1 [9], [11]:

|d�(x)− d�(y)| ≤ |x − y|, for all x, y ∈ D.

Thanks to the Rademacher theorem [15], this implies that d� is differentiable al-
most everywhere (a.e.) in D, i.e., outside of a negligible set, and that the magnitude
of its gradient, when it exists, is less than or equal to 1,

|∇d�(x)| ≤ 1 a.e.

The same is true of dC� and b� (if ∂� �= ∅ for the second) [11, Chap. 5, Theo-
rem 2.1].

Closely related to the various distance functions (more precisely to their gradi-
ents) are the projections associated with � and C�. These are also related to the
notion of skeleton. We recall some definitions. The first one is adapted from [11,
Chap. 4, Def. 3.1].
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Definition 1 (Projections and Skeletons).

• Given� ⊂ D,� �= ∅ (resp., C� �= ∅), the set of projections of x ∈ D on�
(resp., on C�) is given by

	�(x)
def= {p ∈ � : |p − x | = d�(x)},

(resp.,	C�(x)
def= {p ∈ C� : |p − x | = dC�(x)}).

The elements of	�(x) (resp.,	C�(x)) are called projections onto� (resp.,
C�).

• Given� ⊂ D,� �= ∅ (resp., C� �= ∅), the set of points where the projection
on� (resp., C�) is not unique is called the exterior (resp., interior) skeleton
Skext(�) (resp., Skint(�)). We define Sk(�) = Skext(�) ∪ Skint(�).

The following properties of the skeletons can be found, e.g., in [11, Chap. 4,
Theorems 3.1 and 3.2]:

Proposition 2. The exterior (resp., interior) skeleton is exactly the subset of C�
(resp., of int(�)) where the function d� (resp., dC�) is not differentiable. Moreover,
the exterior and interior skeletons and the boundary ∂� is exactly the subset of D
where d∂� is not differentiable.

At each x of C�\Skext(�), the gradient of the distance function d∂� is well-
defined, of unit norm, and points away from the projection y = 	�(x) of x onto
�, see Figure 1. Similar considerations apply to the case where x ∈ �.

We introduce an additional definition that will be useful in the sequel.

Definition 3. Given � ⊂ D, � �= ∅, and a real number h > 0, the h-tubular
neighborhood of � is defined as

Uh(�)
def={y ∈ D : d�(y) < h}.




Skeint(
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Fig. 1. An example of skeletons.
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Fig. 2. Two shapes whose distance ρ2 is equal to 0; �1 is obtained by removing, from the disk �2,
the three curves C1, C2, C3: ρ2(�1, �2) = 0.

2.2. Some Shape Topologies

The next question we want to address is that of the definition of the similarity
between two shapes. This question of similarity is closely connected to that of
metrics on sets of shapes which in turn touches that of what is known as shape
topologies. We now briefly review three main similarity measures between shapes
which turn out to define three distances.

2.2.1. Characteristic Functions. The similarity measure we are about to define
is based upon the characteristic functions of the two shapes we want to compare.
We denote by X (D) the set of characteristic functions of measurable subsets of
D.

Given two such sets �1 and �2, we define their distance

ρ2(�1, �2) = ‖χ�1 − χ�2‖L2 =
(∫

D
(χ�1(x)− χ�2(x))

2 dx

)1/2

.

This definition also shows that this measure does not “see” differences between two
shapes that are of measure 0 (see Figure 2 adapted from [11, Chap. 3, Fig. 3.1]),
since the integral does not change if we modify the values of χ�1 or χ�2 over
negligible sets. In other words, this is not a distance between the two shapes �1

and �2 but between their equivalence classes [�1]m and [�2]m of measurable
sets. Given a measurable subset � of D, we define its equivalence class [�]m as
[�]m = {�′ | �′ is measurable and �
�′ is negligible}, where �
�′ is the
symmetric difference

�
�′ = C��
′ ∪ C�′�.

The proof that this defines a distance follows from the fact that the L2 norm defines
a distance over the set of equivalence classes of square integrable functions (see,
e.g., [39], [15]).

This is nice and one has even more [11, Chap. 3, Theorem 2.1]: the set X (D) is
closed and bounded in L2(D), and ρ2(·, ·) defines a complete metric structure on
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the set of equivalence classes of measurable subsets of D. Note that ρ2 is closely
related to the symmetric difference

ρ2(�1, �2) = m(�1
�2)
1/2. (2)

The completeness is important in applications: any Cauchy sequence of charac-
teristic functions {χ�n } converges for this distance to a characteristic function χ�
of a limit set �. Unfortunately, in applications, not all sequences are Cauchy se-
quences, for example, the minimizing sequences of the energy functions defined
in Section 5, and one often requires more, i.e., that any sequence of characteristic
functions contains a subsequence that converges to a characteristic function. This
stronger property, called compactness, is not satisfied by X (D) (see [11, Chap. 3]).

2.2.2. Distance Functions. We therefore turn our attention toward a different
similarity measure which is based upon the distance function to a shape. As in the
case of characteristic functions, we define equivalent sets and say that two subsets
�1 and �2 of D are equivalent iff �1 = �2. We note by [�]d the corresponding
equivalence class of �. Let T (D) be the set of these equivalence classes. The
application

[�]d → d�: T (D) → Cd(D) ⊂ C(D)

is injective according to (1). We can therefore identify the set Cd(D) of distance
functions to sets of D with the just-defined set of equivalence classes of sets.

Since Cd(D) is a subset of the set C(D) of continuous functions on D, a Banach
space1 when endowed with the norm

‖ f ‖C(D) = sup
x∈D

| f (x)|,

it can be shown (e.g., [11]) that the similarity measure

ρ([�1]d , [�2]d) = ‖d�1 − d�2‖C(D) = sup
x∈D

|d�1(x)− d�2(x)| (3)

is a distance on the set of equivalence classes of sets which induces on this set
a complete metric. Moreover, because we have assumed D bounded, the corre-
sponding topology is identical to the one induced by the well-known Hausdorff
metric (see [33], [40], [11])

ρH ([�1]d , [�2]d) = max

{
sup
x∈�2

d�1(x), sup
x∈�1

d�2(x)

}
. (4)

In fact, we have even more than the identity of the two topologies, see [11,
Chap. 4, Theorem 2.2].

1 A Banach space is a complete normed vector space.
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Proposition 4. If the hold-all set D is bounded ρ = ρH .

An important improvement with respect to the situation in the previous section
is (see [11, Chap. 4, Theorem 2.2]):

Theorem 5. The set Cd(D) is compact in the set C(D) for the topology defined
by the Hausdorff distance.

In particular, from any sequence {d�n } of distance functions to sets�n , one can
extract a sequence converging toward the distance function d� to a subset� of D.

It would appear that we have reached an interesting stage and that the Hausdorff
distance is what we want to measure shape similarities. Unfortunately, this is not
so because the convergence of areas and perimeters is lost in the Hausdorff metric,
as shown in the following example taken from [11, Chap. 4, Example 4.1 and
Fig. 4.3].

Consider the sequence {�n} of sets in the open square ]− 1, 2[2:

�n =
{
(x, y) ∈ D :

2k

2n
≤ x ≤ 2k + 1

2n
, 0 ≤ k < n

}
.

Figure 3 shows the sets �4 and �8. This defines n vertical stripes of equal width
1/2n each distant of 1/2n. It is easy to verify that, for all n ≥ 1, m(�n) = 1

2
and |∂�n| = 2n + 1. Moreover, if S is the unit square [0, 1]2, for all x ∈ S,
d�n (x) ≤ 1/4n, hence d�n → dS in C(D). The sequence {�n} converges to S for
the Hausdorff distance but since m(�n) = m(�n) = 1

2 � 1 = m(S), χ�n � χS

in L2(D) and hence we do not have convergence for the ρ2 topology. Note also
that |∂�n| = 2n + 1 � |∂S| = 4.

2.2.3. Distance Functions and Their Gradients. In order to recover continuity
of the area one can proceed as follows. If we recall that the gradient of a distance
function is of magnitude equal to 1 except on a subset of measure 0 of D, one

0 1

0

1

0 1

0

1

(a) (b)

Fig. 3. Two shapes in the sequence {�n}, see text: (a) �4 and (b) �8.
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concludes that it is square integrable on D. Hence the distance functions and
their gradients are square-integrable, they belong to the Sobolev space W 1,2(D),
a Banach space for the vector norm

‖ f − g‖W 1,2(D) = ‖ f − g‖L2(D) + ‖∇ f − ∇g‖L2(D),

where L2(D) = L2(D)× L2(D). This defines a similarity measure for two shapes

ρD([�1]d , [�2]d) = ‖d�1 − d�2‖W 1,2(D),

which turns out to define a complete metric structure on T (D). The corresponding
topology is called the W 1,2-topology. For this metric, the set Cd(D) of distance
functions is closed in W 1,2(D), and the mapping

d� → χ
�

= 1 − |∇d�| : Cd(D) ⊂ W 1,2(D) → L2(D)

is “Lipschitz continuous”:

‖χ
�1

− χ
�2

‖L2(D) ≤ ‖∇d�1 − ∇d�2‖L2(D) ≤ ‖d�1 − d�2‖W 1,2(D), (5)

which indeed shows that areas are continuous for the W 1,2-topology, see [11,
Chap. 4, Theorem 4.1].

Cd(D) is not compact for this topology but a subset of it of great practical
interest is, see Section 3.

3. The Set S of All Shapes and its Properties

We now have all the necessary ingredients to be more precise in the definition of
shapes.

3.1. The Set of All Shapes

We restrict ourselves to sets of D with compact boundary and consider three
different sets of shapes. The first one is adapted from [11, Chap. 4, Def. 5.1]:

Definition 6 (Set DZ of Sets of Bounded Curvature). The set DZ of sets of
bounded curvature contains those subsets � of D, �, C� �= ∅ such that ∇d�
and ∇dC� are in BV(D)2, where BV(D) is the set of functions of bounded varia-
tions.

This is a large set (too large for our applications) which we use as a “frame
of reference.” DZ was introduced by Delfour and Zolésio [9], [10] and contains
the sets F and C2 introduced below. For technical reasons related to compactness
properties (see Section 3.2) we consider the following subset of DZ:
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Definition 7 (Set DZ0). The set DZ0 is the subset of DZ such that there exists
c0 > 0 such that, for all � ∈ DZ0,

‖D2d�‖M1(D) ≤ c0 and ‖D2dC�‖M1(D) ≤ c0,

where M1(D) is the set of bounded measures on D and ‖D2d�‖M1(D) is defined
as follows. Let Φ be a 2 × 2 matrix of functions in C1(D), we have

‖D2d�‖M1(D) = sup
Φ∈C1(D)2×2, ‖Φ‖C ≤1

∣∣∣∣
∫

D
∇d� · div Φ dx

∣∣∣∣ ,
where

‖Φ‖C = sup
x∈D

|Φ(x)|R2×2 ,

and

div Φ = [div�1, div�2],

where �i , i = 1, 2, are the row vectors of the matrix Φ.

The set DZ0 has the following property (see [11, Chap. 4, Theorem 5.2]):

Proposition 8. Any � ∈ DZ0 has a finite perimeter upper-bounded by 2c0.

We next introduce three related sets of shapes.

Definition 9 (Sets of Smooth Shapes). The set C0 (resp., C1, C2) of smooth
shapes is the set of subsets of D whose boundary is nonempty and can be locally
represented as the graph of a C0 (resp., C1, C2) function. One further distinguishes
the sets Cc

i and Co
i , i = 0, 1, 2, of subsets whose boundary is closed and open,2

respectively.

Note that this implies that the boundary is a simple regular curve (hence com-
pact) since otherwise it cannot be represented as the graph of a C0 (resp., C1, C2)
function in the vicinity of a multiple point. Also note that when � ∈ Co

i , the set is
identical to its boundary: � = ∂� = �. Another consequence of this definition
is that the shape �1 on the left-hand side of Figure 2 is not in Ci , i = 0, 1, 2,
because the curves C1, C2, C3, parts of ∂�1, cannot be represented as graphs
of a Ci , i = 0, 1, 2, function (see, e.g., [9, Chap. 2, Def. 3.1]). Also note that
C2 ⊂ C1 ⊂ DZ [9], [10].

The third set has been introduced by Federer [16].

2 Meaning here, without and with endpoints, respectively.
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Definition 10 (Set F of Shapes of Positive Reach). A nonempty subset � of D
is said to have positive reach if there exists h > 0 such that 	�(x) is a singleton
for every x ∈ Uh(�). The maximum h for which the property holds is called the
reach of � and is noted reach(�).

We will also be interested in the subsets, called h0-Federer’s sets and noted
Fh0 , h0 > 0, of F which contain all Federer’s sets � such that reach(�) ≥ h0.
Note that Ci , i = 0, 1, 2 ⊂ F , but Ci �⊂ Fh0 .

We are now ready to define the set of shapes of interest.

Definition 11 (Set of All Shapes). The set, noted S, of all shapes (of interest) is
the subset of C2 whose elements are also h0-Federer’s sets for a given and fixed
h0 > 0,

S def= C2 ∩ Fh0 .

This set contains the two subsets Sc and So obtained by considering Cc
2 and Co

2 ,
respectively.

Note that S ⊂ DZ . Note also that the curvature of ∂� is well-defined and
upper-bounded by 1/h0, noted κ0. Hence, c0 in Definition 7 can be chosen in such
a way that S ⊂ DZ0.

At this point, we can represent regular (i.e., C2) simple curves with and without
boundaries that do not curve or pinch too much (in the sense of κ0 and h0, see
Figure 4). Polygons and other nonsmooth structures are not explicitly included
in our theory which assumes smooth shapes. In practice, they are, thanks to the
fact that we intersect C2 with Fh0 . If h0 is chosen to be smaller than the smallest




@



 = @


d > h0

d > h0

� � �0 =
1

h0

(a) (b)

Fig. 4. Examples of admissible shapes: (a) a simple, closed, regular curve; (b) a simple, open regular
curve. In both cases the curvature is upper-bounded by κ0 and the pinch distance is larger than h0.
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distance between pixels, we will not see the difference between a polygon or a
nonsmooth shape and its approximation by an element of S.

There are two reasons why we choose S as our frame of reference. The first
one is because our implementations work with discrete objects defined on an
underlying discrete square grid of pixels. As a result we are not able to describe
details smaller than the distance between two pixels. This is our unit, our absolute
yardstick, and h0 is chosen to be smaller than or equal to it. The second reason is
that S is included in DZ0 which, as shown in Section 3.2, is compact. This will
turn out to be important when minimizing shape functionals.

In the remainder of this paper, the distances ρ(ρH ) and ρD use the distance
functions of the boundaries of the sets we consider.

The question of the deformation of a shape by an element of a group of transfor-
mations could be raised at this point. What we have in mind here is the question of
deciding whether a square and the same square rotated by 45 degrees are the same
shape. There is no real answer to this question, more precisely the answer depends
on the application. Note that the group in question can be finite-dimensional, as
in the case of the Euclidean and affine groups which are the most common in
applications, or infinite-dimensional. In this work we will, for the most part, not
consider the action of groups of transformations on shapes.

3.2. Compactness Properties

Interestingly enough, the definition of the set DZ0 (Definition 7) implies that it is
compact for all three topologies. This is the result of the following theorem whose
proof can be found in [11, Chap. 4, Theorems 8.2, 8.3]:

Theorem 12. Let D be a nonempty bounded regular3 open subset ofR2 andDZ
the set defined in Definition 6. The embedding

BC(D) = {d� ∈ Cd(D) ∩ Cc
d(D) : ∇d�, ∇dC� ∈ BV (D)2} → W 1,2(D),

is compact.

This means that for any bounded sequence {�n}, ∅ �= �n of elements of DZ ,
i.e., for any sequence ofDZ0, there exists a set� �= ∅ ofDZ such that there exists
a subsequence �nk with

d�nk
→ d� and dC�nk

→ dC� in W 1,2(D).

Since b� = d� − dC�, we also have the convergence of b�nk
to b�, and since

the mapping b� → |b�| = d∂� is continuous in W 1,2(D) (see [11, Chap. 5,

3 Regular means uniformly Lipschitzian in the sense of [11, Chap. 2, Def. 5.1].
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Theorem 5.1(iv)]), we also have the convergence of d∂�nk
to d∂�. The convergence

for the ρ2 distance follows from equation (5):

χ�nk
→ χ� in L2(D),

and the convergence for the Hausdorff distance follows from Theorem 5, taking
subsequences if necessary.

In other words, the set DZ0 is compact for the topologies defined by the ρ2,
Hausdorff, and W 1,2 distances.

Note that, even though S ⊂ DZ0, this does not imply that it is compact for
either one of these three topologies. But it does imply that its closure S for each
of these topologies is compact in the compact set DZ0.

3.3. Comparison Between the Three Topologies on S

The three topologies we have considered turn out to be closely related on S. This
is summarized in the following:

Theorem 13. The three topologies defined by the three distances ρ2, ρD , and ρH

are equivalent on Sc. The two topologies defined by ρD and ρH are equivalent on
So.

This means that, for example, given a set� of Sc, a sequence {�n} of elements
of Sc converging toward � ∈ Sc for any of the three distances ρ2, ρ(ρH ), and ρD

also converges toward the same � for the other two distances.
We now proceed with the proof of Theorem 13. Being a bit lengthy, we have

split it into a series of lemmas and propositions.
We start with a lemma.

Lemma 14. Let { fn} be a sequence of uniformly Lipschitz functions K → R
m ,

K a compact of R2, converging for the L2 norm toward a Lipschitz continuous
function f . Then the convergence is uniform.

Proof. The L2 convergence of continuous functions implies the convergence a.e.
Let us show that this implies the convergence everywhere. We note by L the
Lipschitz constant. Let x0 be a point of K such that fn(x0) does not converge
toward f (x0). There exists ε0 > 0 such that for all n0 ≥ 0, there exists n > n0,
| fn(x0)− f (x0)| > ε0.

f being continuous at x0, there exists η > 0 such that for all y in K such that
d(x0, y) < η, | f (y)− f (x0)| < ε0/3.

Consider now the y’s of K such that d(x0, y) < inf(ε0/3L , η). There exists
at least one of them, noted y0, such that fn(y0) converges to f (y0) because the
convergence is a.e.
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We write

| fn(x0)− f (x0)| ≤ | fn(x0)− fn(y0)| + | fn(y0)− f (y0)| + | f (y0)− f (x0)|.

The first term on the right-hand side of this inequality is less than or equal to ε0/3
because of the uniform Lipschitz hypothesis. Because fn(y0) converges to f (y0)

there exists N0(ε0, y) such that for all n ≥ N0, | fn(y0)− f (y0)| ≤ ε0/3. The third
term is also less than or equal to ε0/3 because of the hypothesis on f . Hence

| fn(x0)− f (x0)| ≤ ε0, for all n ≥ N0,

a contradiction. The sequence { fn} converges toward f everywhere in K and since
the fn’s are uniformly Lipschitz, the convergence is uniform (see, e.g., [12]).

This lemma is useful for proving the following:

Proposition 15. In S, the W 1,2 convergence of sequences of distance functions
implies their Hausdorff convergence.

Proof. The W 1,2 convergence implies the L2 convergence of the distance func-
tions. According to Lemma 14 this implies the uniform convergence of the distance
functions and hence the Hausdorff convergence.

We also have the converse

Proposition 16. In S, the Hausdorff convergence of sequences of distance func-
tions implies their W 1,2 convergence.

Proof. We consider the boundary � of a shape � of S. The inequality

‖d�1 − d�2‖L2 ≤ ρ(�1, �2)m(D)
1/2

shows that the Hausdorff convergence implies the L2 convergence of the distance
functions. For the W 1,2 topology we also need the convergence of the L2 norm of
the gradient.

Consider a sequence {�n} of elements of S whose boundaries �n converge
for the Hausdorff distance toward � ∈ S. If we prove the convergence a.e. of
∇ (

d�n − d�
)

to 0, the Lebesgue dominated convergence theorem will give us the
L2 convergence toward 0 since

|∇(d�n − d�)| ≤ 2 a.e.

Because we are in S, all skeletons are negligible (zero Lebesgue measure) [6].
Consider the union Sk = � ∪ Sk(�) ∪n Sk(�n) ∪n �n; as a denumerable union
of negligible sets it is negligible. Let x be a point of D\Sk, yn its projection on
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�n , y its projection on �. According to Definition 1 and Proposition 2, all distance
functions of interest are differentiable at x . We prove that the angle between the
vectors

→
xyn and

→
xyn goes to 0 by proving that yn → y. By compactness of D there

exists a subsequence {ynk } of {yn} converging toward z ∈ �. If z = y we are done.
If z �= y we prove a contradiction. Indeed, since the distance is continuous

lim
k→∞

d(x, ynk ) = d(x, y).

But we also have, by definition, d(x, ynk ) = d�nk
(x); since �nk → � for the

Hausdorff distance, d�nk
→ d� everywhere in D and therefore limk→∞ d�nk

(x) =
d�(x). Hence d(x, y) = d(x, z) and x ∈ Sk(�), a contradiction.

We have shown that all converging subsequences of {yn} converged to z =
	�(x). In order to conclude, we must show that the sequence {yn} converges
to z. Indeed, let us assume that there exists a subsequence {ynk } not converging.
There exists an ε0 > 0 such that there is an infinity of values of k for which ynk is
outside the open disk B(z, ε0). Let us note by {ynl } the corresponding subsequence.
Because of compactness again there exists a converging subsequence of {ynl }
which has to converge toward z but this is impossible since all ynl are ouside
B(z, ε0). Hence the sequence {yn} converges toward z and we have proved that
∇(d�n − d�) → 0 a.e.

We now compare the topologies induced by the ρ2 and the Hausdorff distances.
This only makes sense in Sc. The first result is the following:

Proposition 17. InSc, the Hausdorff convergence of sequences of distance func-
tions to the boundaries implies the L2 convergence of the corresponding charac-
teristic functions of the sets.

Proof. The proof is based on the proof of Proposition 23 below where we show
that if ρH (�1, �2) < ε < h0, given a C2 parametrization p ∈ [0, 1] → �1(p)
of �1, we can build a C2 parametrization p ∈ [0, 1] → �2(p) of �2 such that
the vector

−−−−−−−→
�1(p)�2(p) is normal to �2 for all p’s. Let s2 be the arc length on �2,

L2 its length. The integral
∫ L2

0 ‖−−−−−−−−→
�1(s2)�2(s2)‖ ds2 is equal to m(�1
�2), hence

to (ρ2(�1, �2))
2 (equation (2)). Since ‖−−−−−−−−→

�1(s2)�2(s2)‖ ≤ maxp d�2(�1(p)) ≤
ρH (�1, �2), we have (ρ2(�1, �2))

2 ≤ εL2 ≤ 2εc0, according to Proposition 8.

We also prove the converse in

Proposition 18. In Sc, the ρ2 convergence of sequences of characteristic func-
tions implies the Hausdorff convergence of the distance functions of the boundaries
of the corresponding sets.

In the proof we will need the following two lemmas and proposition:
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Lemma 19. Let � be a C2 curve whose curvature is upper-bounded by κ0. Let
C1 and C2 be two points of �, δ the length of the curve between C1 and C2:

0 ≤ δ − d(C1, C2) ≤ δ2κ0

2
. (6)

Proof. The first inequality in (6) follows from the fact that the straight line is the
shortest path between two points in the plane.

We parameterize � with its arc length s. We recall the Frenet formulas

d�

ds
= t,

dt
ds

= κn,
dn
ds

= −κt,

where t and n are the unit tangent and normal vectors to �, respectively. We then
write the second-order Taylor expansion without remainder of �(s2) = C2 at
�(s1) = C1,

C2 = C1 + (s2 − s1)t(s1)+ (s2 − s1)
2

×
∫ 1

0
(1 − ζ ) κ(s1 + ζ(s2 − s1))n(s1 + ζ(s2 − s1)) dζ. (7)

The second inequality in (6) follows from the fact that |κ| ≤ κ0 and δ = |s2 − s1|.

An easy consequence of this lemma is

Proposition 20. The length of a closed curve in S is greater than or equal to
2h0.

Proof. We use the second inequality in (6) with d(C1,C2) = 0 from which the
conclusion follows.

The second lemma tells us that in a disk of small enough radius we cannot have
too large a piece of a boundary of an element of S.

Lemma 21. Let ε > 0 be such that 2εκ0 � 1. Then any disk of radius ε does
not contain a connected piece of boundary of an element of S of length greater
than h0.

Proof. The proof follows from the previous lemma. Let us first assume that the
piece in question has a boundary, hence two different endpoints C1 and C2. By
definition, d(C1,C2) ≤ 2ε. Using (6) we conclude that the length δ of the curve
between C1 and C2 must satisfy

δ2κ0

2
− δ + 2ε ≥ 0.
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The left-hand side is a second degree polynomial in the variable δ, noted P(δ),
which has two positive roots δ1 ≤ δ2:

δ1 = h0(1 −
√

1 − 2εκ0).

Since P(0) > 0, δ can continuously vary from 0 to its maximal value, and δ1 < δ2,
we must have δ ≤ δ1. Moreover, since 2εκ0 � 1, δ1 < h0/2.

Let us now assume that the connected piece does not have a boundary, hence
is a closed simple curve. We choose two distinct arbitrary points C1 and C2 on the
curve, apply the previous analysis to the each of the two connected components,
and conclude that the length of the curve is less than h0. Because of Proposition 20,
this is impossible.

We now prove Proposition 18.

Proof. Let �1 and �2 be two shapes of Sc with boundaries �1 and �2, ε > 0,
such that ρ2(�1, �2) ≤ ε and 2κ0ε � 1. We assume that there exists a point A
of �1 such that d�2(A) > ε and prove a contradiction.

Consider the open disk B(A, ε) of center A and radius ε. This disk does not
contain any point of�2 by hypothesis, since otherwise we would have d�2(A) ≤ ε.
Moreover, the curve �1 is not included in B(A, ε) because of the hypothesis
2κ0ε � 1 and Lemma 21, therefore there must be a strictly positive even number
of points of intersection between �1 and the border of B(A, ε). If there are more
than two, the same reasoning, as in the proof of Proposition 23 below, shows that
there is a piece of skeleton of �1 within B(A, ε) and hence �1 /∈ Fh0 .

Let A1 and A2 be the endpoints of the arc of�1 going through A. This arc divides
B(A, ε) in two parts, one of them belongs to�1
�2. The idea is that since 2εκ0 �
1, the arc A1 AA2 is equivalent to a line segment, and each area is approximately
equal to πε2/2, hence ‖χ�1 − χ�2‖L2 ≥ ε√π/2 > ε, a contradiction.

In order to prove this, we parameterize �1 between A1 and A2 by its arc length
s and compute an upper-bound on the distance of A(s) to the tangent line to ∂�1

at A. We choose A as the origin of arc length on �1 and use equation (7):

A(s) = A + st(s)+ s2
∫ 1

0
(1 − ζ ) κ(ζ s)n(ζ s) dζ.

The distance of A(s) to the line (A, t(0)) is given by

(A(s)− A) · n(0) = s2
∫ 1

0
(1 − ζ ) κ(ζ s)n(ζ s) · n(0) dζ.

We obtain an upper bound on its magnitude by

|(A(s)− A) · n(0)| ≤ s2

2
κ0. (8)
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A

A2

2ÆmA1

"

Fig. 5. A lower bound on the area of �1
�2 (see text).

The upper bound is maximal for s = s1 (A1 = A(s1) and |s1| def= δ1) or s = s2

(A2 = A(s2) and s2
def= δ2). We obtain upper-bounds from (6); δ1 and δ2 must satisfy

δ2 κ0

2
− δ + ε ≥ 0.

In order for this to be true we must have

0 ≤ δ ≤ 1

κ0

(
1 −

√
1 − 2εκ0

)
def= δm or δ ≥ 1

κ0

(
1 +

√
1 − 2εκ0

)
.

The second alternative is impossible since B(A, ε) cannot contain an arc whose
length is larger than 1/κ0 (Lemma 21). There remains only the first alternative.
Returning to (8), we find that δ2

mκ0/2 is an upper-bound on the distance of A(s) to
the tangent. Referring to Figure 5 we conclude that the area of interest is bounded
below by

πε2

2
− εκ0δ

2
m .

Since 2εκ0 � 1, we have δm = (1/κ0)(εκ0 + o(εκ0)) and, therefore,

εκ0δ
2
m = ε

κ0
((εκ0)

2 + o((εκ0)
2)) = ε2(εκ0 + o(εκ0)).

The area of interest is lower, bounded by

ε2
(π

2
− εκ0 + o(εκ0)

)
and, therefore, for εκ0 sufficiently small, its square root is strictly larger than ε.

This completes the proof of Theorem 13.
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3.4. Minima of a Continuous Function Defined on S

An interesting and practically important consequence of this analysis of the space
S is the following. We know that S is included in DZ0, consider its closure S for
any one of the three topologies of interest. S is a closed subset of the compact
metric space DZ0 and is therefore compact as well. Given a continuous function
f : S → R we consider its lower semicontinuous (l.s.c.) envelope f defined on

S as follows:

f (x) =
{

f (x) if x ∈ S,
lim infy→x, y∈S f (y).

The useful result for us is summarized in

Proposition 22. f is l.s.c. in S and therefore has at least a minimum in S.

Proof. In a metric space E , a real function f is said to be l.s.c. if and only if

f (x) ≤ lim inf
y→x

f (y), for all x ∈ E .

Therefore f is l.s.c. by construction. The existence of a minimum of an l.s.c.
function defined on a compact metric space is well-known (see, e.g., [7], [15])
and will be needed later to prove that some of our minimization problems are
well-posed.

4. Deforming Shapes

The problem of continuously deforming a shape so that it turns into another is
central to this paper. The reasons for this will become clearer in the sequel. Let us
just mention here that it can be seen as an instance of the warping problem: given
two shapes�1 and�2, how do we deform�1 onto�2? The applications in the field
of medical image processing and analysis are immense (see, e.g., [46], [45]). It
can also be seen as an instance of the famous (in computer vision) correspondence
problem: given two shapes �1 and �2, how do we find the corresponding point
P2 in �2 of a given point P1 in �1? Note that a solution of the warping problem
provides a solution of the correspondence problem if we can track the evolution of
any given point during the smooth deformation of the first shape onto the second.

In order to make things more quantitative, we assume that we are given a
function E : C0 × C0 → R

+, called the energy, which is continuous on S × S for
one of the shape topologies of interest. This energy can also be thought of as a
measure of the dissimilarity between the two shapes. By smooth, we mean that it
is continuous with respect to this topology and that its derivatives are well-defined
in a sense we now make more precise.

We first need the notion of a normal deformation flow of a curve � in S. This
is a smooth (i.e., C0) function β : [0, 1] → R (when � ∈ Sc, one further requires
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that β(0) = β(1)). Let � : [0, 1] → R
2 be a parametrization of �, n(p) the unit

normal at the point �(p) of �; the normal deformation flow β associates the point
�(p) + β(p)n(p) to �(p). The resulting shape is noted � + β, where β = βn.
There is no guarantee that�+β is still a shape inS in general but if β is C0 and ε is
small enough,�+β is in C0. Given two shapes� and�0, the corresponding energy
E(�, �0), and a normal deformation flow β of �, the energy E(� + εβ, �0) is
now well-defined for ε sufficiently small. The derivative of E(�, �0) with respect
to � in the direction of the flow β is then defined, when it exists, as

G�(E(�, �0),β) = lim
ε→0

E(� + εβ, �0)− E(�, �0)

ε
. (9)

This kind of derivative is also known as a Gâteaux semiderivative. In our case the
functionβ → G�(E(�, �0),β) is linear and continuous (it is then called a Gâteaux
derivative) and defines a continuous linear form on the vector space of normal de-
formation flows of �. This is a vector subspace of the Hilbert space L2(�)with the
usual Hilbert product 〈β1, β2〉 = 1/|�| ∫

�
β1 β2 = 1/|�| ∫

�
β1(x)β2(x) d�(x),

where |�| is the length of �. Given such an inner product, we can apply Riesz’s
representation theorem [39] to the Gâteaux derivative G�(E(�, �0),β): There
exists a deformation flow, noted ∇E(�, �0), such that

G�(E(�, �0),β) = 〈∇E(�, �0), β〉.

This flow is called the gradient of E(�, �0).
We now return to the initial problem of smoothly deforming a curve �1 onto

a curve �2. We can state it as that of defining a family �(t), t ≥ 0, of shapes
such that �(0) = �1, �(T ) = �2 for some T > 0, and for each value of t ≥ 0
the deformation flow of the current shape �(t) is equal to minus the gradient
∇E(�, �2) defined previously. This is equivalent to solving the following PDE:

�t = −∇E(�, �2)n, �(0) = �1. (10)

In this paper we do not address the question of the existence of solutions to (10).
Natural candidates for the energy function E are the distances defined in Sec-

tion 2.2. The problem we are faced with is that none of these distances are Gâteaux
differentiable. This is why the next section is devoted to the definition of smooth
approximations of some of them.

5. How to Approximate Shape Distances

The goal of this section is to provide smooth approximations of some of these
distances, i.e., that admit Gâteaux derivatives. We start with some notations.
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5.1. Averages

Let � be a given curve in C1 and consider an integrable function f : � → R
n . We

denote by 〈 f 〉� the average of f along the curve �:

〈 f 〉� = 1

|�|
∫
�

f = 1

|�|
∫
�

f (x) d�(x). (11)

For real positive integrable functions f , and for any continuous strictly monotonous
(hence one-to-one) function ϕ from R

+ or R+∗ to R+ we will also need the ϕ-
average of f along � which we define as

〈 f 〉ϕ� = ϕ−1

(
1

|�|
∫
�

ϕ ◦ f

)
= ϕ−1

(
1

|�|
∫
�

ϕ( f (x)) d�(x)

)
. (12)

Note that ϕ−1 is also strictly monotonous and continous from R
+ to R+ or R+∗.

Also note that the unit of the ϕ-average of f is the same as that of f , thanks to the
normalization by |�|.

The discrete version of the ϕ-average is also useful: let ai , i = 1, . . . , n, be n
positive numbers, we note

〈a1, . . . , an〉ϕ = ϕ−1

(
1

n

n∑
i=1

ϕ(ai )

)
, (13)

their ϕ-average.

5.2. Approximations of the Hausdorff Distance

We now build a series of smooth approximations of the Hausdorff distance ρH

(�, �′) of two shapes� and�′. According to (4) we have to consider the functions
d�′ : � → R

+ and d� : �′ → R
+. Let us focus on the second one. Since d� is

Lipschitz continuous on the bounded hold-all set D it is certainly integrable on the
compact set �′ and we have [39, Chap. 3, Prob. 4]

lim
β→+∞

(
1

|�′|
∫
�′

dβ� (x
′) d�′(x ′)

)1/β

= sup
x ′∈�′

d�(x
′). (14)

Moreover, the function R+ → R
+ defined by β → (1/|�′| ∫

�′ dβ� (x
′) d�′(x ′))1/β

is monotonously increasing [39, Chap. 3, Prob. 5].
Similar properties hold for d�′ .
If we note by pβ the functionR+ → R

+ defined by pβ(x) = xβ we can rewrite
(14),

lim
β→+∞

〈d�〉pβ
�′ = sup

x ′∈�′
d�(x

′).



Approximations of Shape Metrics and Application to Shape Warping 23

〈d�〉pβ
�′ is therefore a monotonically increasing approximation of supx ′∈�′ d�(x ′).

We go one step further and approximate d�′(x).
Consider a continuous strictly monotonously decreasing function ϕ : R+ →

R
+∗. Because ϕ is strictly monotonously decreasing

sup
x ′∈�′

ϕ(d(x, x ′)) = ϕ

(
inf

x ′∈�′
d(x, x ′)

)
= ϕ(d�′(x)),

and, moreover,

lim
α→+∞

(
1

|�′|
∫
�′
ϕα(d(x, x ′)) d�′(x ′)

)1/α

= sup
x ′∈�′

ϕ(d(x, x ′)).

Because ϕ is continuous and strictly monotonously decreasing, it is one-to-one
and ϕ−1 is strictly monotonously decreasing and continuous. Therefore

d�′(x) = lim
α→+∞ϕ

−1

((
1

|�′|
∫
�′
ϕα(d(x, x ′)) d�′(x ′)

)1/α
)
.

We can simplify this equation by introducing the function ϕα = pα ◦ ϕ:

d�′(x) = lim
α→+∞〈d(x, ·)〉ϕα�′ . (15)

Any α > 0 provides us with an approximation, noted d̃�′ , of d�′ :

d̃�′(x) = 〈d(x, ·)〉ϕα�′ . (16)

We have a similar expression for d̃� .
Note that because (1/|�′| ∫

�′ ϕ
α(d(x, x ′)) d�′(x ′))1/α increases with α toward

its limit supx ′ ϕ(d(x, x ′)) = ϕ(d�′(x)), ϕ−1((1/|�′| ∫
�′ ϕ

α(d(x, x ′)) d�′(x ′))1/α)
decreases with α toward its limit d�′(x). Examples of functions ϕ are

ϕ1(z) = 1

z + ε , ε > 0, z ≥ 0,

ϕ2(z) = µ exp(−λz), µ, λ > 0, z ≥ 0,

ϕ3(z) = 1√
2πσ 2

exp

(
− z2

2σ 2

)
, σ > 0, z ≥ 0. (17)

Putting all this together we have the following result:

sup
x∈�

d�′(x) = lim
α, β→+∞

〈〈d(·, ·)〉ϕα�′ 〉pβ
� ,

sup
x∈�′

d�(x) = lim
α, β→+∞

〈〈d(·, ·)〉ϕα� 〉pβ
�′ .

Any positive values of α and β yield approximations of supx∈� d�′(x) and supx∈�′

d�(x).
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The last point to address is the max that appears in the definition of the Hausdorff
distance. We use (13), choose ϕ = pγ , and note that, for a1 and a2 positive,

lim
γ→+∞〈a1, a2〉pγ = max(a1, a2).

This yields the following expression for the Hausdorff distance between two shapes
� and �′:

ρH (�, �
′) = lim

α, β, γ→+∞
〈〈〈d(·, ·)〉ϕα�′ 〉pβ

� , 〈〈d(·, ·)〉ϕα� 〉pβ
�′ 〉pγ .

This equation is symmetric and yields approximations ρ̃H of the Hausdorff distance
for all positive values of α, β, and γ :

ρ̃H (�, �
′) = 〈〈〈d(·, ·)〉ϕα�′ 〉pβ

� , 〈〈d(·, ·)〉ϕα� 〉pβ
�′ 〉pγ . (18)

This approximation is “nice” in several ways, the first one being the obvious
one, stated in the following:

Proposition 23. For each triplet (α, β, γ ) in (R+∗)3 the function ρ̃H : S×S →
R

+, defined by equation (18), is continuous for the Hausdorff topology.

We first recall the following properties of the squared distance function η∂� of
the boundary of an element � of S (see [2]):

Proposition 24. η∂� is smooth, i.e., C2, in Uh0(∂�) and for all x ∈ ∂�, the
Hessian matrix ∇2η∂�(x) is the (matrix of) orthogonal projection onto the normal
to ∂� at x .

We now prove Proposition 23.

Proof. For each shape � of S, we consider the square of the distance function
of ∂�, denoted η∂�. We next prove that the length is continuous for the Hausdorff
topology on S. Consider two shapes �1 and �2 of S, their boundaries �1 and �2,
and assume that ρH (�1, �2) < ε. Let p ∈ [0, 1] → �1(p) be a C2 parametrization
of �1, we prove that the mapping

p ∈ [0, 1] → �2(p) = �1(p)− 1
2∇η�2(�1(p)), (19)

is a one-to-one parametrization of �2. If we choose ε < h0, ∇η�2(�1(p)) is
well-defined and continuous for all p’s (Proposition 24), hence p → �1(p) −
1
2∇η�2(�1(p)) is continuous.

It is injective: Assume that there exist p1 and p2 in [0, 1], p1 �= p2, such that
�2(p1) = �2(p2), see Figure 6 (if �1 and �2 are closed, p1, p2 /∈ {0, 1}). Since
the curvature of �1 and �2 is bounded by 1/h0, we choose ε � h0. The two points
�1(p1) and�1(p2) are in the disk of center�2(p1) and radius ε since their distances
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Sk(
1)

�1(p1)

�2(p1) = �2(p2)

�1(p2)

Fig. 6. The mapping is injective.

to �2 are by construction equal to d(�1(p1), �2(p1)) and d(�1(p2), �2(p2)), re-
spectively, and are less than ε. Because of our choice of ε, the curvatures of the
two curves within the disk are negligible and we can consider they are straight
lines, as shown in Figure 6. Therefore there must be a piece of the skeleton of �1

within the disk and this contradicts the hypothesis that �1 ∈ Fh0 .
It is surjective: We proceed by contradiction. Let us assume it is not surjective.

Since the mapping (19) is continuous its image is connected and compact. Its
complement �̂2 (assumed here to be nonempty) is thus an open interval of �2

(possibly two, if �2 is an open curve). Let �0
2 be one of the endpoints of this

interval. There exists a value p0 of p such that

�0
2 = �1(p0)− 1

2∇η�2(�1(p0)).

Two cases can occur. Either �0
2 = �1(p0) and this implies that �2 is not simple

(see Figure 7(a)), or �0
2 �= �1(p0) and this implies that �1(p0) is on the skeleton

of �2, a contradiction if ε is small with respect to h0 (see Figure 7(b)).
Using this parametrization, we now prove that the length is continuous for the

Hausdorff metric. Given a shape � and a sequence {�n} of shapes of S such
that the boundaries �n are converging to the boundary � of � for the Hausdorff
topology, we show that limn→∞ ||�n| − |�|| = 0. If n is large enough, we use the
first part of the proof to parametrize �n:

�n(p) = �(p)− 1
2∇η�n (�(p)), (20)

and proceed from there:

| |∂�n| − |∂�| | =
∣∣∣∣
∫ 1

0
|�′

n(p)| dp −
∫ 1

0
|�′(p)| dp

∣∣∣∣
≤

∫ 1

0
| |�′

n(p)| − |�′(p)| | dp ≤
∫ 1

0
|�′

n(p)− �′(p)| dp.
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�1

�2

�2

�1

p �1(p0) = �0

2

�̂2

�02

p �1(p0)

�2(p
+

0
)

�2

�2

�2

�̂2

(a) (b)

Fig. 7. The mapping is surjective: The dotted line represents a piece of �̂2, see text.

We take the derivative of (20) with respect to p:

�′
n(p) = �′(p)− 1

2∇2η�n (�(p))�
′(p),

where ∇2η�n is the second-order derivative of η�n .
We are only interested in comparing the lengths of � and �n where they differ.

We can therefore exclude from the integral
∫ |�′

n(p) − �′(p)| dp the values of
p for which �n(p) = �(p) and assume that �n(p) �= �(p). At these points, the
first- and second-order derivatives of the distance function d�n are well-defined
and (because �n ∈ S and ε � h0) there exists M > 0, independent of n, such that

|∇2d�n (x)| ≤ M, ∀x /∈ �n.

Using the chain rule we obtain

1
2∇η�n = d�n ∇d�n ,

1
2∇2η�n = d�n ∇2d�n + ∇d�n (∇d�n )

T ,

and, therefore,

|�′
n(p)− �′(p)| ≤ |∇d�n (�(p)) · �′(p)| |∇d�n (�(p))|

+ d�n (�(p))‖∇2d�n (�(p))�
′(p)‖

≤ |∇d�n (�(p)) · �′(p)| + Md�n (�(p))|�′(p)|. (21)

Consider the term ∇d�n (�(p)) · �′(p). We write the following first-order Taylor
expansion without remainder:

0 = d�n (�n(p)) = d�n (�(p))

+
(∫ 1

0
(1 − ζ )∇d�n (�(p)+ ζ(�n(p)− �(p))) dζ

)
· (�n(p)− �(p)).
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We take the derivative with respect to p:

∇d�n (�(p)) · �′(p)

+
(∫ 1

0
(1 − ζ )∇d�n (�(p)+ ζ(�n(p)− �(p))) dζ

)
· (�′

n(p)− �′(p))

+
(∫ 1

0
(1 − ζ )∇2d�n (�(p)+ ζ(�n(p)− �(p)))

× (�′(p)+ ζ(�′
n(p)− �′(p))) dζ

)
· (�n(p)− �(p)),

and obtain the upper bound

|∇d�n (�(p)) · �′(p)| ≤ 1
2 |�′

n(p)− �′(p)| + Ad(�n(p), �(p)).

We use this in (21) to obtain

1
2 |�′

n(p)− �′(p)| ≤ Ad(�n(p), �(p))+ Md�n (�(p))|�′(p)|,
from which follows that

| |�n| − |�| | ≤ 2(A + M |�|)ε. (22)

We next prove that for all Lipschitz continuous functions f on D, the integral∫
�

f (x) d�(x) is continuous for the Hausdorff topology. Consider a shape� and a
sequence {�n} of shapes ofS whose boundaries�n are converging to the boundary
� of � for the Hausdorff topology; we show that limn→∞ | ∫

�n
f (x) d�n(x) −∫

�
f (y) d�(y)| = 0. We use once more the parametrization (20) and write∣∣∣∣

∫
�n

f (x) d�n(x)−
∫
�

f (y) d�(y)

∣∣∣∣
=

∣∣∣∣
∫ 1

0
( f (�n(p))|�′

n(p)| − f (�(p))|�′(p)|) dp

∣∣∣∣
≤

∫ 1

0
| f (�n(p))|�′

n(p)| − f (�(p))|�′(p)|| dp

≤
∫ 1

0
| f (�n(p))| ||�′

n(p)| − |�′(p)|| dp

+
∫ 1

0
| f (�n(p))− f (�(p))| |�′(p)| dp,

where f is continuous on the compact set D and is therefore upper-bounded,
| f (x)| ≤ K , for all x ∈ D. It is also Lipschitz continuous, hence | f (�n(p)) −
f (�(p))| ≤ Ld(�n(p), �(p)) ≤ Lε. We combine this with (22) and obtain∣∣∣∣

∫
�n

f (x) d�n(x)−
∫
�

f (y) d�(y)

∣∣∣∣ ≤ ε((L + 2K M)|�| + 2K A).
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We have used the Lipschitz hypothesis in the proof. It easy to verify that this
hypothesis is satisfied since we are integrating along curves functions of the type
ϕ◦d(·, x). The functions ϕ are defined and at least C1, hence Lipschitz continuous
on [0, diam(D)], where diam(D) is the diameter of D. Hence |ϕ ◦ d(x1, x)− ϕ ◦
d(x2, x)| ≤ Lϕ|d(x1, x)− d(x2, x)| ≤ Lϕd(x1, x2).

5.3. Computing the Gradient of the Approximation to the Hausdorff Distance

We now proceed with showing that the approximation ρ̃H (�, �0) of the Hausdorff
distance ρH (�, �0) is differentiable with respect to � and compute its gradient
∇ ρ̃H (�, �0), in the sense of Section 4. To simplify notations we rewrite (18) as

ρ̃H (�, �0) = 〈〈〈d(·, ·)〉ϕ�0
〉ψ� , 〈〈d(·, ·)〉ϕ�〉ψ�0

〉θ , (23)

and state the result, the reader interested in the proof being referred to Appendix A.

Proposition 25. The gradient of ρ̃H (�, �0) at any point y of � is given by

∇ρ̃H (�, �0)(y) = 1

θ ′(ρ̃H (�, �0))
(α(y)κ(y)+ β(y)), (24)

where κ(y) is the curvature of � at y, the functions α(y) and β(y) are given by

α(y) = ν

∫
�0

ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)[ϕ ◦ 〈d(x, ·)〉ϕ� − ϕ ◦ d(x, y)] d�0(x)

+ |�0|η[ψ(〈〈d(·, ·)〉ϕ�0
〉ψ� )− ψ(〈d(·, y)〉ϕ�0

)], (25)

β(y) =
∫
�0

ϕ′ ◦ d(x, y)

[
ν
ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)+ η

ψ ′

ϕ′ (〈d(·, y)〉ϕ�0
)

]
y − x

d(x, y)
· n(y) d�0(x), (26)

where

ν = 1

|�| |�0|
θ ′

ψ ′ (〈〈d(·, ·)〉
ϕ
�〉ψ�0

) and η = 1

|�| |�0|
θ ′

ψ ′ (〈〈d(·, ·)〉
ϕ
�0

〉ψ� ).

Note that the function β(y) is well-defined even if y belongs to �0 since the
term (y − x)/d(x, y) is of unit norm.

The first two terms of the gradient show explicitly that minimizing the energy
implies homogenizing the distance to �0 along the curve �, that is to say, the
algorithm will take care in priority of the points of � which are the furthest from
�0.

We should also note that this result holds independently of the fact that the
curves are open or closed (see Definition 9 and Appendix A).
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5.4. Other Alternatives Related to the Hausdorff Distance

There exist several alternatives to the method presented in the previous sections
if we use ρ (equation (3)) rather than ρH (equation (4)) to define the Hausdorff
distance. A first alternative is to use the following approximation:

ρ̃(�, �′) = 〈|d� − d�′ |〉pα
D ,

where the bracket 〈 f (·) 〉ϕD is defined in the obvious way for any integrable function
f : D → R

+,

〈 f 〉ϕD = ϕ−1

(
1

m(D)

∫
D
ϕ( f (x)) dx

)
,

and which can be minimized, as in Section 5.6, with respect to d� . A second
alternative is to approximate ρ using

ρ̃(�, �′) = 〈|〈d(·, ·)〉ϕβ�′ − 〈d(·, ·)〉ϕβ� |〉pα
D , (27)

and to compute its derivative with respect to �, as we did in the previous section
for ρ̃H .

5.5. Approximations to the W 1,2 Norm and Computation of Their Gradient

The previous results can be used to construct approximations ρ̃D to the distance
ρD defined in Section 2.2.3:

ρ̃D(�1, �2) = ‖d̃�1 − d̃�2‖W 1,2(D), (28)

where d̃�i , i = 1, 2, is obtained from (16).
This approximation is also “nice” in the usual way and we have

Proposition 26. For each α inR+∗ the function ρ̃D : S×S → R
+ is continuous

for the W 1,2 topology.

Its proof is left to the reader.
The gradient ∇ρ̃D(�, �0) of our approximation ρ̃D(�, �0) of the distance

ρD(�, �0), given by (28) in the sense of Section 4, can be computed. The interested
reader is referred to Appendix B. We simply state the result in

Proposition 27. The gradient of ρ̃D(�, �0) at any point y of � is given by

∇ρ̃D(�, �0)(y)

=
∫

D

[
B(x, y)

(
C1(x)− ϕ′′

ϕ′ (d̃�(x))(C2(x) · ∇d̃�(x))

)

+ C2(x) · ∇ B(x, y)

]
dx, (29)
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where

B(x, y) = κ(y)(〈ϕ ◦ d(x, ·)〉� − ϕ ◦ d(x, y))+ ϕ′(d(x, y))
y − x

d(x, y)
· n(y),

where κ(y) is the curvature of � at y,

C1(x) = 1

|�|ϕ′(d̃�(x))
‖d̃� − d̃�0‖−1

L2(D)(d̃�(x)− d̃�0(x)),

and

C2(x) = 1

|�|ϕ′(d̃�(x))
‖∇(d̃� − d̃�0)‖−1

L2(D)∇(d̃� − d̃�0)(x).

5.6. Direct Minimization of the W 1,2 Norm

An alternative to the method presented in the previous section is to evolve not the
curve � but its distance function d� . Minimizing ρD(�, �0) with respect to d�
implies computing the corresponding Euler–Lagrange equation E L . The reader
will verify that the result is

E L = d� − d�0

‖d� − d�0‖L2(D)
− div

( ∇(d� − d�0)

‖∇(d� − d�0)‖L2(D))

)
. (30)

To simplify notations we now use d instead of d� . The problem of warping �1

onto �0 is then transformed into the problem of solving the following PDE:

dt = −E L ,

d(0, ·) = d�1(·).
The problem, that this PDE does not preserve the fact that d is a distance function,
is alleviated by “reprojecting” at each iteration the current function d onto the set
of distance functions by running a few iterations of the “standard” restoration PDE
[44]

dt = (1 − |∇d|) sign(d0),

d(0, ·) = d0.

6. Application to Curve Evolutions: Hausdorff Warping

In this section we show a number of examples of solving equation (10) with the
gradient given by equation (24). Our hope is that, starting from �1, we will follow
the gradient (24) and smoothly converge to the curve�2 where the minimum of ρ̃H

is attained. Let us examine more closely these assumptions. First, it is clear from
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expression (18) of ρ̃H that in general ρ̃H (�, �) �= 0, which implies in particular
that ρ̃H , unlike ρH , is not a distance. But worse things can happen: there may
exist a shape �′ such that ρ̃H (�, �

′) is strictly less than ρ̃H (�, �) or there may
not exist any minima for the function � → ρ̃H (�, �

′)! This sounds like the
end of our attempt to warp a shape onto another using an approximation of the
Hausdorff distance. But things turn out not to be so bad. First, the existence of a
minimum is guaranteed by Proposition 23 which says that ρ̃H is continuous on S
for the Hausdorff topology, Theorem 12 which says that DZ0 is compact for this
topology, and Proposition 22 which tells us that the l.s.c. extension of ρ̃H (·, �)
has a minimum in the closure S of S in DZ0.

We show in the next section that phenomena like the one described above are
for all practical matters “invisible” since confined to an arbitrarily small Hausdorff
ball centered at �.

6.1. Quality of the Approximation ρ̃H of ρH

In this section we make more precise the idea that ρ̃H can be made arbitrarily
close to ρH . Because of the form of (23) we seek upper and lower bounds of such
quantities as 〈 f 〉ψ� , where f is a continuous real function defined on �. We note
by fmax and fmin the maximum and minimum values of f on �.

The expression

〈 f 〉ψ� = ψ−1

(
1

|�|
∫
�

ψ ◦ f

)
,

yields, if ψ is strictly increasing,

〈 f 〉ψ� ≤ ψ−1

(
1

|�|
∫
�

ψ ◦ fmax

)
= fmax.

and, similarly,

〈 f 〉ψ� ≥ fmin.

If f ≥ fmoy on a set F of the curve �, of length |F | (≤ |�|):

〈 f 〉ψ� = ψ−1

(
1

|�|
∫

F
ψ ◦ f + 1

|�|
∫
�\F

ψ ◦ f

)

≥ ψ−1

( |F |
|�|ψ ◦ fmoy + |�| − |F |

|�| ψ ◦ fmin

)

≥ ψ−1

( |F |
|�|ψ ◦ fmoy

)
.

To analyze this lower bound, we introduce the following notation. Given
, α ≥
0, we note by P(
, α) the following property:

P(
, α): for all x ∈ R+, 
ψ(x) ≥ ψ(αx).
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This property is satisfied for ψ(x) = xβ, β ≥ 0. The best pairs (
, α) verifying
P are such that 
 = αβ . In the sequel, we say that a function ψ is admissible for
P if

for all 
 ∈ ]0; 1[, there exists α ∈ ]0; 1[, P(
, α),
and, conversely,

for all α ∈ ]0; 1[, there exists 
 ∈ ]0; 1[, P(
, α).

Let us assume that ψ is admissible and note that we can rewrite P(
, α),

for all x ∈ R+, ψ−1(
ψ(x)) ≥ αx .

For 
 = |F |/|�| and x = fmoy we obtain for the largest α(
) the following
lower-bound:

〈 f 〉ψ� ≥ ψ−1
(

ψ( fmoy)

) ≥ α fmoy.

In other words, for each arbitrary percentage 
 there exists an α such that if
|{ f ≥ fmoy}| ≥ 
|�|, then 〈 f 〉ψ� ≥ α fmoy. Conversely, for a given value of
α, there exists a 
 such that it is sufficient that |{ f ≥ fmoy}| ≥ 
|�| to have
〈 f 〉ψ� ≥ α fmoy.

For each choice of (
, α), the bracket 〈 f 〉ψ� acts as a filter which only “looks”
at the values of f along � such that the subset F of � where they are reached is
of relative length |F |/|�| ≥ 
, meaning that one neglects the “details of relative
importance ≤ 
,” and that the accuracy of the filter is relative, since it depends
upon the product of α (≤ 1) with fmoy.

One has even more: The above admissible family of functions ψ allows one to
select an arbitrary accuracy, i.e., to choose both
 as close as possible to 0, and α
as close as possible to 1, the best pairs (α, 
) for ψ(x) = xβ satisfying 
 = αβ ,
it is sufficient to choose β large enough.

Similar properties hold for such brackets as 〈 f 〉ϕ� where ϕ is strictly decreasing.
We have, as in the previous case,

fmin ≤ 〈 f 〉ϕ� ≤ fmax.

Proceeding as before, if |{ f ≤ fmoy}| ≥ 
|�| and the pair (
, α) satisfies P for
the function ϕ, we obtain

1

|�|
∫
�

ϕ ◦ f ≥ 
ϕ( fmoy),

〈 f 〉ϕ� ≤ ϕ−1(
ϕ( fmoy)),

〈 f 〉ϕ� ≤ α fmoy.

Admissible functions are ϕ(x) = x−β, β > 0; the accuracy increases when α
tends to 1− and
 to 0+; this is always possible by choosing large values of β, and

 = α−β .

We now have all the ingredients for comparing ρ̃H and ρH . We start with two
definitions.
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�

� j�j

P

d�(P;�)

Fig. 8. Geometric interpretation of d
(P, �): 
 is the “percentage” of points of � whose distance
to P is less than d
(P, �).

Definition 28. Let � be a shape. For each point P of D we note (see Figure 8):

d
(P, �) = inf{x ∈ R+; |{Q ∈ �; d(P, Q) ≤ x}| ≥ 
|�|}.

Definition 29. Let � and �′ be two shapes, we define (see Figure 9):

d
(�′, �) = sup{x ∈ R+; |{Q ∈ �; d(Q, �′) ≥ x}| ≥ 
|�|}.

If ϕ (resp., ψ) is an admissible function, we note (
ϕ, αϕ) (resp., (
ψ, αψ)) a
pair (
, α) for the bracket 〈·〉ϕ� (resp., 〈·〉ψ� ).

The following proposition relates ρ̃H to d
 and d
:

Proposition 30. The following relation is satisfied by ρ̃H , d
, and d
:

αψαψ max(d
ψ (�, �′), d
ψ (�′, �))

≤ ρ̃H (�, �
′) ≤ αϕ max

(
sup
P∈�′

d
ϕ (P, �), sup
P∈�

d
ϕ (P, �
′)
)
.

�
�0

d�(�
0;�)

�j�j

Fig. 9. Geometric interpretation of d
(�′, �): 
 is the “percentage” of points of � whose distance
to �′ is greater than d
(�′, �).
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Proof. We notice that

for all P ∈ R2, d(P, �) ≤ 〈d(P, ·)〉ϕ� ≤ αϕd
ϕ (P, �)

and, therefore,

αψd
ψ (�, �′) ≤ 〈〈d(·, ·)〉ϕ�〉ψ�′ ≤ αϕ sup
P∈�′

d
ϕ (P, �).

ρ̃H is a discrete bracket 〈·, ·〉θ of two such terms, θ an increasing function. We note
by αθ an α associated to 
 = 1

2 through P for θ . For all positive a and b we have

θ−1( 1
2θ(max(a, b))) ≤ 〈a, b〉θ ≤ max(a, b),

αθ max(a, b) ≤ 〈a, b〉θ ≤ max(a, b),

from where the conclusion follows.

We now relate d
 and d
 to the Hausdorff distance ρH .

Proposition 31. For all P ∈ D and for all shapes � and �′ we have

d(P, �) ≤ d
(P, �) ≤ d(P, �)+ 


2
|�|,

and

dH (�, �
′)−
 |�| + |�′|

2
≤ d
(�′, �) ≤ dH (�, �

′)+
 |�| + |�′|
2

.

Proof. The lower-bound on d
(P, �) is easy to obtain, the upper-bound can be
obtained by contradiction as follows: let us assume that there exists a point P and
a curve � such that the upper-bound is not satisfied. Hence

d
(P, �) > d(P, �)+ 


2
|�|,

� being compact, there exists a point Q of � such that d(P, Q) = d(P, �). Let us
now consider � as a C2 function from [0, 1] to R2 such that |�′(p)| = cste = |�|
for all p’s in [0, 1]. Let q ∈ [0, 1] be such that �(q) = Q, and consider the image
by � of I = {p| |p − q| ≤ 
/2} (assuming q ∈ ]
/2, 1 −
/2[, otherwise the
proof can be easily modified). By construction

|�(I )| = |I ||�| = 
|�|,

and for all points R of �(I ) of parameter r ,

P R ≤ P Q + Q R ≤ d(P, A)+ |r − q||�| ≤ d(P, A)+ 1
2
|A|.



Approximations of Shape Metrics and Application to Shape Warping 35

We have found a measurable subset of the curve � of length larger than or equal
to 
|�| such that all its points are at a distance of P less than d(P, �)+ 1

2
|�|,
a contradiction.

The proof of the second set of inequalities proceeds in a similar fashion by
considering subsets of the curves � and �′ centered at points P of � and Q of
�′ such that ρH (�, �

′) = d(P, Q); this is always possible since � and �′ are
compact.

By combining Propositions 30 and 31 we obtain

Proposition 32. ρ̃H (�, �
′) has the following upper and lower bounds:

αθαψ

(
ρH (�, �

′)−
ψ |�| + |�′|
2

)

≤ ρ̃H (�, �
′) ≤ αϕ

(
ρH (�, �

′)+
ϕ |�| + |�′|
2

)
. (31)

We can now characterize the shapes � and �′ such that

ρ̃H (�, �
′) < ρ̃H (�, �). (32)

Theorem 33. Condition (32) is equivalent to

ρH (�, �
′) < 4c0
,

where the constant c0 is defined in Definition 7 and Proposition 8, and 
 in the
proof.

Proof. We use the upper- and lower-bounds (31) derived in Proposition 32 and
write

αθαψ

(
ρH (�, �

′)−
ψ |�| + |�′|
2

)
< αϕ
ϕ|�|.

To simplify the analysis, let us assume that αθαψ = αϕ and 
ψ = 
ϕ = 
, we
obtain

ρH (�, �
′) < ( 3

2 |�| + 1
2 |�′|)
,

and hence (Proposition 8)

ρH (�, �
′) < 4c0
.

Conversely, if �′ is not in the Hausdorff ball with center � and radius 4c0
, we
necessarily have ρ̃H (�, �

′) > ρ̃H (�, �).

From this we conclude that, since
 can be made arbitrarily close to 0, and the
length of shapes is bounded, strange phenomena such as a shape �′ closer to a
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shape � than � itself (in the sense of ρ̃H ) cannot occur or rather will be “invisible”
to our algorithms.

For completeness we now present an example of such a phenomenon. In detail,
we construct a pair (�1, �2) of curves of S such that ρ̃H (�1, �2) < ρ̃H (�1, �1).
We assume for simplicity that the function θ in (23) is the identity. Let O be
a point in the plane and consider the family (Cr ), r > 0, of circles of center
O and radius r . We note T (r) the distance ρ̃H (Cr ,Cr ) and, for all points P ,
D(P, r) = 〈d(P, ·)〉ϕCr

. Notice that T (r) = 〈D(·, r)〉ψCr
. For symmetry reasons

(rotation invariance) D(P, r) is constant on Cr , we note by D(r) this value. Hence
we have T (r) = D(r). Let us compute D(r) (see Figure 10):

D(r) = ϕ−1

(
1

2πr

∫ 2π

0
ϕ

(
2r sin

θ

2

)
r dθ

)

= ϕ−1

(
1

2π

∫ 2π

0
ϕ

(
2r sin

θ

2

)
dθ

)
.

The function r → r sin(θ/2) is strictly increasing for each 0 < θ < 2π , the
functions ϕ and ϕ−1 are strictly decreasing, hence r → T (r) is strictly increasing.
In particular, Cr is not a local minimum of � → ρ̃H (�, �) and hence not a
local minimum of � → ρ̃H (Cr , �). Therefore, there exists ε > 0 such that
ρ̃H (Cr ,Cr−ε) < ρ̃H (Cr ,Cr ), see Figure 10.

6.2. Applying the Theory

In practice, the energy that we minimize is not ρ̃H but is in fact a “regularized”
version obtained by combining ρ̃H with a term EL which depends upon the lengths
of the two curves. A natural candidate for EL is max(|�|, |�′|) since it acts only if
|�| becomes larger than |�′|, thereby avoiding undesirable oscillations. To obtain
smoothness, we approximate the max with a  -average:

EL(|�|, |�′|) = 〈|�|, |�′|〉 . (33)

We know that the function � → |�| is in general l.s.c. It is in fact continuous on S
(see the proof of Proposition 23) and takes its values in the interval [0, 2c0], hence:

r
P

O �
O

r
r � "

Cr�"Cr

Q

Cr

2r sin �

2

Fig. 10. The curves Cr and Cr−ε satisfy ρ̃H (Cr ,Cr−ε) < ρ̃H (Cr ,Cr ).
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Proposition 34. The function S → R
+ given by � → EL(�, �

′) is continuous
for the Hausdorff topology.

Proof. This is clear since EL is a combination of continuous functions.

We combine EL with ρ̃H the expected way, i.e., by computing their  ̃ average
so that the final energy is

E(�, �′) = 〈ρ̃H (�, �
′), EL(|�|, |�′|)〉 ̃ . (34)

The function E : S × S → R
+ is continuous for the Hausdorff metric because of

Propositions 23 and 34 and therefore

Proposition 35. The function � → E(�, �′) defined on the set of shapes S has
at least a minimum in the closure S of S in L0.

Proof. This is a direct application of Proposition 22 applied to the function E .

We call the resulting warping technique the Hausdorff warping. A first example,
the Hausdorff warping of two circles, is shown in Figure 11. A second example,
the Hausdorff warping of two hand silhouettes, is shown in Figure 12

We have borrowed the example in Figure 13 from the database (www.ee.
surrey.ac.uk/Research/VSSP/imagedb/demo.html) of fish silhouettes
collected by the researchers of the University of Surrey at the center for Vision,
Speech, and Signal Processing (www.ee.surrey.ac.uk/Research/VSSP).
This database contains 1100 silhouettes. A few steps of the result of Hausdorff
warping one of these silhouettes onto another are shown in Figure 13. Another
similar example is shown in Figure 14. Note that, prior to warping, the two shapes

Fig. 11. The result of the Hausdorff warping of two circles. The two circles are represented in
continuous line while the intermediate shapes are represented in dotted lines.
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Fig. 12. The result of the Hausdorff warping of two hand silhouettes. The two hands are represented
in continuous line while the intermediate shapes are represented in dotted lines.

have been normalized in such a way as to align their centers of gravity and their
principal axes.

Figures 15 and 16 give a better understanding of the behavior of Hausdorff
warping. A slightly displaced detail “warps back” to its original place (Figure 15).
Displaced further, the same detail is considered as another one and disappears
during the warping process while the original one reappears (Figure 16).

Finally, Figure 17 shows the Hausdorff warping of an open curve to another.
Note also that other warpings are given by the minimization of other approxi-

mations of the Hausdorff distance. Figure 18 shows the warping of a rough curve
to the silhouette of a fish and bubbles given by the minimization of the W 1,2 norm
as explained in Section 5.6. Our “level sets” implementation (see Section 8) can
deal with the splitting of the source curve while warping onto the target one.

Fig. 13. Hausdorff warping a fish onto another.
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Fig. 14. Another example of fish Hausdorff warping.

Fig. 15. Hausdorff warping boxes (i). A translation-like behavior.

Fig. 16. Hausdorff warping boxes (ii). A different behavior: a detail disappears while another one
appears.
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Fig. 17. Hausdorff warping an open curve to another one.

7. Application to the Computation of the Empirical Mean and Covariance
of a Set of Shape Examples

We have now developed the tools for defining several concepts relevant to a theory
of stochastic shapes as well as providing the means for their effective computation.
They are based on the use of the function E defined by (34).

7.1. Empirical Mean

The first one is that of the mean of a set of shapes. Inspired by the work of
Fréchet [17], [18], Karcher [25], W. Kendall [28], and Pennec [38], we provide
the following (classical):

Definition 36. Given �1, . . . , �N , N shapes, we define their empirical mean as
any shape �̂ that achieves a local minimimum of the functionµ : S → R

+ defined
by

� → µ(�, �1, . . . , �N ) = 1

N

∑
i=1,...,N

E2(�, �i ).

Fig. 18. Splitting while warping.
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(a) (b) (c)

Fig. 19. Examples of means of several curves: (a) a square and a circle, (b) two ellipses, and (c) two
hands.

Note that there may exist several means. We know from Proposition 35 that there
exists at least one. An algorithm for computing approximations to an empirical
mean of N shapes readily follows from the previous section: start from an initial
shape �0 and solve the PDE,

�t = −∇µ(�, �1, . . . , �N )n,

�(0, ·) = �0(·). (35)

We show some examples of means computed by this algorithm in Figure 19.
When the number of shapes grows larger, the question of the local minima of

µ becomes a problem (see Figure 20) and the choice of �0 in (35) is an important
issue. We have not explored these questions in great detail but observed that the
following heuristics led to “visually satisfying” results.

Suppose that the example shapes are given in some order, according to the way
they are indexed from 1 to N . Initialize �̂(1) to �1, solve

�
(i+1)
t = −∇µ(�, i �̂(i), �i )n,

�(i+1)(0, ·) = �̂i (·),

and choose �̂(i+1) = �(i+1) at convergence, for i = 1, . . . , N −1. Of course, there
is no guarantee that either the result will be independent of the order of presentation
(this may or may not be important, depending on the application) or that it will
indeed be a local minimum of µ(�, �1, . . . , �N ). Another alternative is to solve
(35) by choosing �0 to be one of the given shapes.

We show the result of computing the mean of nine hands with this method in
Figure 21.
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Fig. 20. Example of an evolution which leads to a local minimum: mean of the same nine hands
obtained by initializing with another curve (the bold quadrilateral, the expected mean being the dashed
curve).

Fig. 21. The mean (the dashed curve) of nine hand silhouettes (the continuous curves) obtained by
the sequential suboptimal method described in the text: first step (mean of the two first curves), fifth
step (weighted mean of the sixth curve and of the mean of the five first curves from the previous step),
and final result.
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Fig. 22. The mean of eight fish.

Another example of mean is obtained from the previous fish silhouettes data-
base: we have used eight silhouettes, normalized them so that their centers of
gravity and principle axes were aligned, and computed their mean, as shown in
Figure 22. The initial curve, �0 was chosen to be an enclosing circle.

7.2. Empirical Covariance

We can go beyond the definition of the mean and in effect define something similar
to the covariance matrix of a set of N shapes.

The function S → R
+ defined by � → E2(�, �i ) has a gradient which

defines a normal velocity field, noted βi , defined on �, such that if we consider
the infinitesimal deformation �−βi ndτ of �, it decreases the value of E2(�, �i ).
Each such βi belongs to L2(�), the set of square integrable real functions defined
on �. Each �i defines such a normal velocity field βi . We consider the mean
velocity β̂ = (1/N )

∑N
i=1 βi and define the linear operator " : L2(�) → L2(�)

such that β → ∑
i=1,N 〈β, βi − β̂〉(βi − β̂). We have the following:

Definition 37. Given N shapes of S, the covariance operator of these N shapes
relative to any shape � of S is the linear operator of L2(�) defined by

"(β) =
∑

i=1,N

〈β, βi − β̂〉(βi − β̂),

where the βi are defined as above, relative to the shape �.
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This operator has some interesting properties which we study next.

Proposition 38. The operator " is a continuous mapping of L2(�) into L2(�).

Proof. We have
∥∥∥∑

i=1,N 〈β, βi − β̂〉(βi − β̂)
∥∥∥

2
≤ ∑

i=1,N |〈β, βi − β̂〉|‖βi −
β̂‖2 and, because of the Schwarz inequality, |〈β, βi − β̂〉| ≤ ‖β‖2‖βi − β̂‖2. This

implies that
∥∥∥∑

i=1,N 〈β, βi − β̂〉(βi − β̂)
∥∥∥

2
≤ K‖β‖2 with K = ∑

i=1,N ‖βi −
β̂‖2

2.

" is in effect a mapping from L2(�) into its Hilbert subspace A(�) generated
by the N functions βi − β̂. Note that if � is one of the empirical means of the
shapes �i , by definition we have β̂ = 0.

This operator acts on what can be thought of as the tangent space to the manifold
of all shapes at the point �. We then have

Proposition 39. The covariance operator is symmetric positive definite.

Proof. This follows from the fact that 〈"(β), β〉 = 〈β,"(β)〉 = ∑
i=1,N 〈β,

βi − β̂〉2.

It is also instructive to look at the eigenvalues and eigenvectors of ". For this
purpose we introduce the N × N matrix "̂ defined by "̂i j = 〈βi − β̂, βj − β̂〉. We
have

Proposition 40. The N × N matrix "̂ is symmetric semipositive definite. Let
p ≤ N be its rank, σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

p > 0 its positive eigenvalues, u1, . . . ,uN

the corresponding eigenvectors. They satisfy

ui · uj = δi j , i, j = 1, . . . , N ,

"̂ui = σ 2
i ui , i = 1, . . . , p,

"̂ui = 0, p + 1 ≤ i ≤ N .

Proof. The matrix "̂ is clearly symmetric. Now let α = [α1, . . . , αN ]T be a
vector of RN , αT "̂α = ‖β‖2

2, where β = ∑N
i=1 αi (βi − β̂). The remainder of

the proposition is simply a statement of the existence of an orthonormal basis of
eigenvectors for a symmetric matrix of RN .

The N -dimensional vectors uj , j = 1, . . . , p, and the p eigenvalues σ 2
k , k =

1, . . . , p, define p modes of variation of the shape �. These modes of variation
are normal deformation flows which are defined as follows. We note by ui j , i, j =
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1, . . . , N , the i th coordinate of the vector uj and vj the element of A(�) defined
by

vj = 1

σj

N∑
i=1

ui j (βi − β̂). (36)

In this case � = �̂, β̂ = 0. We have the proposition:

Proposition 41. The functions vj , j = 1, . . . , p, are an orthonormal set of
eigenvectors of the operator " and form a basis of A(�).

Proof. Let us form the product 〈vj , vk〉:

〈vj , vk〉 = 1

σjσk

〈
N∑

l=1

ul j (βl − β̂),
N∑

m=1

umk(βm − β̂)
〉

= 1

σjσk

N∑
l=1

ul j

N∑
m=1

〈βl − β̂, βm − β̂〉umk = 1

σjσk

N∑
l=1

ul j ("̂uk)l

= 1

σjσk
uj · ("̂uk).

According to Proposition 40, "̂uk = σ 2
k uk and uj · uk = δjk , which proves the

orthonormality and therefore the linear independence. There remains to show that
they generate the whole of A(�). In order to see this, we consider the element
β = ∑N

i=1 αi (βi − β̂) of A(�) and look for the coefficients µk, k = 1, . . . , p,
such that

N∑
i=1

αi (βi − β̂) =
p∑

k=1

µkvk . (37)

We take the Hilbert product of both sides of this equation with βj − β̂ to obtain

("̂α)j =
p∑

k=1

µk〈vk, βj − β̂〉. (38)

We then use (36), replace vk with

vk = 1

σk

N∑
i=1

uik(βi − β̂),

and obtain

〈vk, βj − β̂〉 = 1

σk

N∑
i=1

uik〈βi − β̂, βj − β̂〉 = 1

σk
("̂uk)j = σkuk j .
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Replacing this value in (38) yields

("̂α)j =
p∑

k=1

µkσkuk j ,

or, in matrix form,

"̂α = U diag(σ1, . . . , σp)µ,

where the N × p matrix U is equal to
[
u1, . . . ,up

]
. Because the matrix U satisfies

UT U = Ip, the p × p identity matrix, and "̂U = U diag(σ 2
1 , . . . , σ

2
p ), we obtain

the values of the µk :

diag(σ1, . . . , σp)µ = UT "̂α = ("̂U)Tα = (U diag(σ 2
1 , . . . , σ

2
p ))

Tα,

hence

µ = diag(σ1, . . . , σp)UTα.

Conversely, if we replace the µk by these values in the right-hand side of (37), we
verify that we obtain the left-hand side.

It remains to verify that "(vj ) = σ 2
j vj , j = 1, . . . , p. By definition

"(vj ) =
N∑

i=1

〈vj , βi − β̂〉(βi − β̂).

We replace, in the right-hand side of this equation, vj by its expression (36), use
Proposition 40, and obtain the desired result.

The velocities vk, k = 1, . . . , p, can be interpreted as modes of variation of the
shape and the σ 2

k ’s as variances for these modes. Looking at how the mean shape
varies with respect to the kth mode is equivalent to solving the following PDEs:

�t = ±vkn (39)

with initial conditions �(0, ·) = �̂(·). Note that vk is a function of � through "
which has to be reevaluated at each time t . One usually solves these PDEs until
the distance to �̂ becomes equal to σk .

An example of this evolution for the case of the fingers is shown in Figure 23.
Another interesting case, drawn from the example of the eight fish of Figure 22, is
shown in Figure 24 where the first four principal modes of the covariance operator
corresponding to those eight sample shapes are displayed.

8. Some Remarks About Our Implementation

There are several choices for the definition of ρ̃H and the implementation of the
motion of a curve � under a velocity field v: �t = v. When � is composed of one
or more closed connected components, we use the level set method introduced by
Osher and Sethian in 1987, [36], [41], [35].
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Fig. 23. The first three modes of variation for the nine sample shapes and their mean shown in
Figure 21. The mean is shown in thick continuous lines, the solutions of equation (39) for k = 1, 2, 3
are represented in dotted lines.

8.1. The Approximation of the Hausdorff Distance

We need to decide on the parameters appearing in the definition (18) of ρ̃H , i.e., the
values of α, β, and γ , and on the function ϕ. γ controls how well we approximate
the max operator that occurs in the definition of the Hausdorff distance (4). In
our implementation we have used the value of 2. The parameters α and β control
the accuracy with which we approximate the sup and inf operators that appear in
equation (4). The higher they are, the better the approximation, but the better the
approximation, the higher the numerical difficulties due to the “stiffness” of the
function which is of course due the nondifferentiability of the Hausdorff distance.
As explained in Section 6.1, the values of α and β, together with the function ϕ,
can be ultimately related to the coarseness with which one analyzes the values of
the distance function of one curve at points on the other curve, see Figures 8 and
9. In our implementation we use the values α = β = 4 which we found to be a
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Fig. 24. The first four modes of variation for the eight sample shapes and their mean shown in
Figure 22. The mean is shown in thick continuous lines, the solutions of equation (39) for k = 1, . . . , 4
are represented in dotted lines.

good compromise between the amount of smoothness of ρ̃H and the quality of the
approximation of ρH . The function ϕ is equal to ϕ1 given by equation (17).

8.2. Closed Curves: The Level Set Method

The key idea of the level set method is to represent the curve �(t) implicitly, i.e.,
as the zero level of some function u(x, t) defined for x ∈ D. Usually, u is negative
inside � and positive outside. It can be easily proved that, if u evolves according
to

∂u(x, y)

∂t
+ v∇u = 0,

then its zero level {x |�(x, t) = 0} evolves according to the required equation
�t = v. Here, v is the desired velocity on � and is arbitrary elsewhere (see below).

Often, only the normal velocity field βn is important. As n = ∇u/|∇u|, the
evolution of u becomes

∂u(x, y)

∂t
+ β|∇u| = 0.

The advantages of the level set method are well-known: stability, accuracy,
convergence to the correct solution, easy extension to higher dimensions, correct
handling of topological changes such as breaking and merging.
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An important issue is that β is only defined on curve � in the PDE �t = βn. In
many cases, β has a natural extension everywhere in domain D, so that equation
ut + β|∇u| = 0 is defined. For instance, when β(x) is the curvature of � at point
x ∈ �, one could choose, at each point x ∈ D, β(x) equal to the curvature of
the level set of u going through x . In some other cases, like ours, β can only be
computed on � and some extension procedure has to be used to get β everywhere
in D. This is now classical [37], [1], [20].

It should be noted that the zero level set of function u(·, t) is only extracted to
visualize�(t), usually with the Marching Cubes algorithm [32] which interpolates
its position and gives a nice polygonal approximation of it (a triangulated mesh
in three dimensions). For obvious speed and accuracy reasons, it is important not
to rely on this approximation to compute the velocity β. Useful quantities can
generally be computed directly from u. So it is for the normal and the curvature:

n = ∇u/|∇u|,
κ = −∇ · (∇u/|∇u|),

and for the integral of some quantity f (x) over �:

∫
�

f (x) d�(x) =
∫

D
f (x)δ(u(x))|∇u| dx,

where δ(·) is a one-dimensional Dirac function. Our β also involves the distance
function to the curve � which has to be known without extracting the zero level set
of function u. Usually, one takes the signed distance to the initial curve �(0) as an
initial value of u. Thus, u(·, 0) can be used to compute β at time t = 0. Yet, u(·, t)
has no reason to maintain the distance to �(t) . . . except in some implementations
where β is extended in such a way that the distance function is preserved during
the evolution of u (see [20]): this is exactly what we need. And what we use!

In conclusion, in the case of closed curves, the Hausdorff warping (Section 6)
and the shape statistics (Section 7) are implemented with a level set method with:
(i) velocity extension; (ii) distance function preserving; and (iii) no need to extract
the zero level set (except for visualization).

The minimization of the W 1,2 norm (Section 5.6 and Figure 18) is also imple-
mented with the level set method. As already mentioned, the reprojection on the
set of distance functions is a “standard” level set technique [44].

8.3. Open Curves

For open curves (Figure 17), the level set method cannot be used. A straight
Lagrangian approach and polygonal approximations of the curves were used as a
first step toward more refined methods like the ones described in [3].
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9. Further Comparison with Other Approaches and Conclusion

We have presented in Section 1 the similarities and dissimilarities of our work
with that of others. We would like to add to this presentation the fact that ours is
an attempt to generalize to a nonlinear setting the work that has been done in a
linear setting by such scientists as Cootes et al. [8] and by Leventon et al. [30]
who, like us, proposed to use distance functions to represent shapes in a statistical
framework but used a first-order approximation by assuming that the set of distance
functions was a linear manifold [31], [30] which, of course, it is not. Our work
shows that dropping the incorrect linearity assumption is possible at reasonable
costs, both theoretical and computational. Comparison of results obtained in the
two frameworks is a matter of future work.

In this respect we would also like to emphasize that in our framework the process
of linear averaging shape representations has been more or less replaced by the
linear averaging of the normal deformation fields which are tangent vectors to the
manifold of all shapes (see the definition of the covariance operator in Section 7.2)
and by solving a PDE based on these normal deformation fields (see the definition
of a mean in Section 7.1 and of the deformation modes in Section 7.2).

It is also interesting to recall the fact that our approach can be seen as the
opposite of that consisting of first building a Riemannian structure on the set
of shapes, i.e., going from an infinitesimal metric structure to a global one. The
infinitesimal structure is defined by an inner product in the tangent space (the set of
normal deformation fields) and has to vary continuously from point to point, i.e.,
from shape to shape. As mentioned before, this is mostly dealt with in the work
of Miller et al. [34], [49], [52]. The problem with these approaches, beside that of
having to deal with parametrizations of the shapes, is that there exist global metric
structures on the set of shapes (see Section 2.2) which are useful and relevant to
the problem of the comparison of shapes but that do not arise from an infinitesimal
structure.

Our approach can be seen as taking the problem from exactly the opposite
viewpoint from the previous one: we start with a global metric on the set of
shapes (ρH or the W 1,2 metric) and build smooth functions (in effect smooth
approximations of these metrics) that we use as dissimilarity measures or energy
functions and minimize using techniques of the calculus of variations by computing
their gradient and performing infinitesimal gradient descent. We have seen that in
order to compute the gradients we need to define an inner-product of normal
deformation flows and the choice of this inner-product may influence the way
our algorithms evolve from one shape to another. This last point is related to,
but different from, the choice of the Riemaniann metric in the first approach. Its
investigation is also a topic of future work.

The question of local minima is, as always, important. We have mentioned that
we have found, when computing the mean of a number of shapes, that our warping
was sometimes prone to local minima. This is of course not in contradiction with
the fact that our energy is defined globally rather than locally. Given n shapes there
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are in general many shapes that minimize the function defined in Definition 36
and the larger n the larger the number of such shapes, in general. This is not
counterintuitive. In fact one may argue, as we do above, that the result of the
process of learning an average shape by being shown samples of their distribution
should depend upon the order of presentation of the examples. The problem of
comparing the behavior of our approach with others, using locally defined metrics,
is interesting and important, and another topic of future work.

Another advantage of our viewpoint is that it apparently extends graciously to
higher dimensions thanks to the fact that we do not rely on parametrizations of
the shapes and work intrinsically with their distance functions (or approximations
thereof). This is clearly also worth pursuing in future work.

Appendix A. Computation of ∇ ρ̃H (�, �0)

We prove Proposition 25.

Proof. We make a few definitions to simplify notations:

mϕ,ψ

�0,�
= 〈〈d(·, ·)〉ϕ�0

〉ψ� ,
mϕ,ψ

�,�0
= 〈〈d(·, ·)〉ϕ�〉ψ�0

.

We also define the corresponding functions

mϕ
�(x) = 〈d(x, ·)〉ϕ�, mψ

� (x) = 〈d(x, ·)〉ψ� ,
mϕ
�0
(x) = 〈d(x, ·)〉ϕ�0

, mψ

�0
(x) = 〈d(x, ·)〉ψ�0

.

We then proceed with

G(ρ̃H (�, �0),β) = 1

2θ ′(ρ̃H (�, �0))
[θ ′(mϕ,ψ

�0,�
) G(mϕ,ψ

�0,�
,β)

+ θ ′(mϕ,ψ

�,�0
)G(mϕ,ψ

�,�0
,β)],

because of (13).

Computation of the First Term G(mϕ,ψ

�0,�
, β)

We apply the chain rule and (12) to obtain

G(mϕ,ψ

�0,�
,β) = 1

ψ ′(mϕ,ψ

�0,�
)

[
1

|�|G
(∫

�

ψ(〈d(·, ·)〉ϕ�0
),β

)

+
(∫

�

ψ(〈d(·, ·)〉ϕ�0
)

)
G

(
1

|�| ,β
) ]
.
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We now compute G(1/|�|,β):

G
(

1

|�| ,β
)

= − 1

|�|2 G (|�|,β)

= − 1

|�|2G
(∫ 1

0
|�′(p)| dp,β

)

= − 1

|�|2
∫ 1

0

�′(p)
|�′(p)| · β′(p) dp

= 1

|�|2
∫ 1

0
κ(p)n(p) · β(p)|�′(p)| dp.

The last line is obtained by integrating by parts and using the hypothesis that β is
parallel to n. κ(p) is the curvature of � at the point �(p). This yields

(∫
�

ψ(〈d(·, ·)〉ϕ�0
)

)
G

(
1

|�| ,β
)

= 1

|�|ψ(m
ϕ,ψ

�0,�
)

∫
�

κ(y)n(y) · β(y) d�(y).

(40)
We continue with

G
(∫

�

ψ(〈d(·, ·)〉ϕ�0
),β

)

= G
(∫ 1

0
ψ(〈d(�(p), ·)〉ϕ�0

)|�′(p)| dp,β

)

=
∫ 1

0

ψ ′

ϕ′ (〈d(�(p), ·)〉
ϕ
�0
)

1

|�0|

× lim
τ→0

∫
�0
(ϕ(d(�(p)+ τβ(p), ·)− ϕ(d(�(p), ·)))

τ
|�′(p)| dp

+
∫ 1

0
ψ(〈d(�(p), ·)〉ϕ�0

) lim
τ→0

|�′(p)+ τβ′(p)| − |�′(p)|
τ

dp.

The last term is equal to (using the hypothesis that β(p) is parallel to n(p) for all
p’s):

−
∫ 1

0
ψ(〈d(�(p), ·)〉ϕ�0

)κ(p)n(p) · β(p)|�′(p)| dp.

The first term can be written

∫ 1

0

ψ ′

ϕ′ (〈d(�(p), ·)〉
ϕ
�0
)

1

|�0|
×

(∫
�0

ϕ′(d(�(p), x))
�(p)− x

d(�(p), x)
· β(p) d�0(x)

)
|�′(p)| dp.
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Combining them we obtain

∫
�

(
ψ ′

ϕ′ (m
ϕ
�0
(y))

〈
ϕ′(d(y, ·)) y − ·

d(y, ·)
〉
�0

− ψ(mϕ
�0
(y))κ(y)n(y)

)
· β(y) d�(y).

(41)
We finally combine (40) and (41),

G(mϕ,ψ

�0,�
,β) = 1

ψ ′(mϕ,ψ

�0,�
)|�|

∫
�

(
ψ ′

ϕ′ (m
ϕ
�0
(y))

〈
ϕ′(d(y, ·)) y − ·

d(y, ·)
〉
�0

+ (ψ(mϕ,ψ

�0,�
)− ψ(mϕ

�0
(y)))κ(y)n(y)

)
· β(y) d�(y). (42)

Computation of the Second Term G(mϕ,ψ

�,�0
,β)

Because of (12) we can write

G(mϕ,ψ

�,�0
,β) = 1

ψ ′(mϕ,ψ

�,�0
)

1

|�0|
∫
�0

ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)G

×
(

1

|�|
∫ 1

0
ϕ(d(x, �(p)))|�′(p)| dp,β

)
d�0(x).

Using the chain rule

G
(

1

|�|
∫ 1

0
ϕ(d(x, �(p)))|�′(p)| dp,β

)

=
(∫

�

ϕ ◦ d(x, ·)
)

1

|�|2
∫ 1

0
κ(p)n(p) · β(p)|�′(p)| dp

+ 1

|�|
∫ 1

0
ϕ′(d(�(p), x))

�(p)− x

d(�(p), x)
· β(p)|�′(p)| dp

+ 1

|�|
∫ 1

0
ϕ (d(x, �(p)))

�′(p)
|�′(p)| · β′(p) dp.

Under the same hypothesis for β, the last term is equal to

− 1

|�|
∫ 1

0
ϕ(d(�(p), x))κ(p)n(p) · β(p)|�′(p)| dp.
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The expression of G(ρ̃H (�, �0),β) is obtained by reordering these terms. This
yields

G(ρ̃H (�, �0),β)

= 1

2θ ′(ρ̃H (�, �0))

∫
�

[[
νκ(p)

∫
�0

ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)

× [ϕ ◦ 〈d(x, ·)〉ϕ� − ϕ ◦ d(x, y)] d�0(x)+ |�0|ηκ(p)

× [ψ(〈〈d(·, ·)〉ϕ�0
〉ψ� )− ψ(〈d(·, y)〉ϕ�0

)]

]
n(p)+

∫
�0

ϕ′ ◦ d(x, y)

d(x, y)

×
[
ν
ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)+ η

ψ ′

ϕ′ (〈d(·, y)〉ϕ�0
)

]
(y − x) d�0(x)

]
· β(p) d�(y),

where

ν = 1

|�| |�0|
θ ′

ψ ′ (〈〈d(·, ·)〉
ϕ
�〉ψ�0

) and η = 1

|�| |�0|
θ ′

ψ ′ (〈〈d(·, ·)〉
ϕ
�0

〉ψ� ).

The gradient ∇ ρ̃H (�, �0) is obtained by identifying the previous expression as
an inner product of normal deformation flows

∫
�

∇ ρ̃H (�, �0)(y)β(y) d�(y),

∇ ρ̃H (�, �0)(y)

= 1

θ ′(ρ̃H (�, �0))

×
[
νκ(p)

∫
�0

ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)[ϕ ◦ 〈d(x, ·)〉ϕ� − ϕ ◦ d(x, y)] d�0(x)

+ |�0|ηκ(p)[ψ(〈〈d(·, ·)〉ϕ�0
〉ψ� )− ψ(〈d(·, y)〉ϕ�0

)] +
∫
�0

ϕ′ ◦ d(x, y)

d(x, y)

×
[
ν
ψ ′

ϕ′ (〈d(x, ·)〉
ϕ
�)+ η

ψ ′

ϕ′ (〈d(·, y)〉ϕ�0
)

]
(y − x) · n(p) d�0(x)

]
.

We should note that all these results hold independently of the fact that the curves
are open or closed since we only used in the integration by parts the fact that the
field β was parallel to the normal field n.

Appendix B. Computation of ∇ρ̃D(�, �0)

We prove Proposition 27.

Proof. From the definitions

G(ρ̃D(�, �0),β) = G(‖d̃� − d̃�0‖L2(D), β)+ G(‖∇(d̃� − d̃�0)‖L2(D), β),
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and

G(‖d̃� − d̃�0‖L2(D),β) = 1

‖d̃� − d̃�0‖L2(D)

∫
D

|d̃�(x)− d̃�0(x)|G(d̃�(x), β) dx,

and

G(‖∇(d̃� − d̃�0)‖L2(D), β) = 1

‖∇(d̃� − d̃�0)‖L2(D)

×
∫

D
∇(d̃�(x)− d̃�0(x)) · ∇(G(d̃�(x), β)) dx .

We now compute G(d̃�(x), β) and its gradient. Starting with (16), we readily
obtain

G(d̃�(x),β) = 1

|�|ϕ′(d̃�(x))

[ (∫
�

κ(y)n(y) · β(y) d�(y)

)
〈ϕ ◦ d(x, ·)〉�

+
∫
�

ϕ′(d(x, y))
y − x

d(x, y)
· β(y) d�(y)

−
∫
�

ϕ(d(x, y))κ(y)n(y) · β(y) d�(y)

]
.

According to our initial hypothesis, β(y) = β(y)n(y). We define

B(x, y) = κ(y)(〈ϕ ◦ d(x, ·)〉� − ϕ ◦ d(x, y))+ ϕ′(d(x, y))
y − x

d(x, y)
· n(y),

so that

G(d̃�(x),β) = 1

|�|ϕ′(d̃�(x))

∫
�

B(x, y)β(y) d�(y).

Let us compute the gradient of this expression with respect to the x variable:

∇G(d̃�(x),β) = − ϕ′′(d̃�(x))

|�| ϕ ′2(d̃�(x))

(∫
�

B(x, y)β(y) d�(y)

)
∇d̃�(x)

+ 1

|�|ϕ′(d̃�(x))

∫
�

∇ B(x, y)β(y) d�(y).

After some manipulation, we find that

∇ B(x, y) = κ(y)

(〈
ϕ′ ◦ d(x, ·) x − ·

d(x, ·)
〉
�

− ϕ′ ◦ d(x, y)
x − y

d(x, y)

)

+
(
ϕ′′(d(x, y))− ϕ′(d(x, y)

d(x, y)

)
n(y),
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where we have used, in particular, the fact that

∇d̃�(x) = 1

ϕ′(d̃�(x))

〈
ϕ′ ◦ d(x, ·) x − ·

d(x, ·)
〉
�

.

We also define

C1(x) = 1

|�|ϕ′(d̃�(x))
‖d̃� − d̃�0‖−1

L2(D)(d̃�(x)− d̃�0(x)),

so that

G(‖d̃� − d̃�0‖L2(D),β) =
∫

D

∫
�

B(x, y)C1(x)β(y) d�(y) dx

=
∫
�

(∫
D

B(x, y)C1(x) dx

)
β(y) d�(y). (43)

We then define the vector quantity

C2(x) = 1

|�|ϕ′(d̃�(x))
‖∇(d̃� − d̃�0)‖−1

L2(D)∇(d̃� − d̃�0)(x),

so that

G(‖∇(d̃� − d̃�0)‖L2(D), β)

= −
∫

D

∫
�

ϕ′′

ϕ′ (d̃�(x))
(

C2(x) · ∇d̃�(x)
)

B(x, y)β(y) d�(y) dx

+
∫

D

∫
�

(C2(x) · ∇ B(x, y)) β(y) d�(y) dx

=
∫
�

(∫
D

(
C2(x) · ∇ B(x, y)− ϕ′′

ϕ′ (d̃�(x))(C2(x) · ∇d(x, �))

× B(x, y)

)
dx

)
β(y) d�(y). (44)

Combining equations (43) and (44) we obtain the corresponding gradient ∇ρ̃D

(�, �0):

∇ρ̃D(�, �0)(y)

=
∫

D

[
B(x, y)

(
C1(x)− ϕ′′

ϕ′ (d̃�(x))(C2(x) · ∇d̃�(x))

)
+C2(x) · ∇ B(x, y)

]
dx,

and this completes the proof.
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[17] M. Fréchet, L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application
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