Skip to main content

Integral Invariants and Shape Matching

  • Chapter
Statistics and Analysis of Shapes

Abstract

For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group, and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential cousins, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (asymptotically), they do not exhibit the noise sensitivity associated with differential quantities and therefore do not require pre-smoothing of the input shape. Our formulation allows the analysis of shapes at multiple scales. Based on integral invariants, we define a notion of distance between shapes. The proposed distance measure can be computed efficiently, it allows for shrinking and stretching of the boundary, and computes optimal correspondence. Numerical results on shape matching demonstrate that this framework can match shapes despite the deformation of subparts, missing parts, and noise. As a quantitative analysis, we report matching scores for shape retrieval from a database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alferez and Y. F. Wang. Geometric and illumination invariants for object recognition. IEEE Trans. on Patt. Anal. and Mach. Intell., 21(6):505–536, 1999.

    Article  Google Scholar 

  2. K. Arbter, W. E. Snyder, H. Burkhardt, and G. Hirzinger. Applications of affine-invariant Fourier descriptors to recognition of 3-D objects. IEEE Trans. on Patt. Anal. and Mach. Intell., 12(7):640–646, 1990.

    Article  Google Scholar 

  3. N. Ayache and O. Faugeras. HYPER: A new approach for the recognition and positioning of two-dimensional objects. IEEE Trans. on Patt. Anal. and Mach. Intell., 8(1):44–54, Jan. 1986.

    Google Scholar 

  4. M. Bakircioglu, U. Grenander, N. Khaneja, and M. I. Miller. Curve matching on brain surfaces using Frenet distances. Human Brain Mapping, 6:329–333, 1998.

    Article  Google Scholar 

  5. R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable shapes. Vision Research, 38:2365–2385, 1998.

    Article  Google Scholar 

  6. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. IEEE Trans. on Patt. Anal. and Mach. Intell., 24(24):509–522, Apr 2002.

    Article  Google Scholar 

  7. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. IEEE Trans. on Patt. Anal. and Mach. Intell., 24(4):509–522, 2002.

    Article  Google Scholar 

  8. A. Bengtsson and J.-O. Eklundh. Shape representation by multiscale contour approximation. IEEE Trans. on Patt. Anal. and Mach. Intell., 13(1):85–93, 1991.

    Article  Google Scholar 

  9. M. Boutin. Numerically invariant signature curves. IJCV, 40(3):235–248, 2000.

    Article  MATH  Google Scholar 

  10. R. D. Brandt and F. Lin. Representations that uniquely characterize images modulo translation, rotation and scaling. PRL, 17:1001–1015, 1996.

    Google Scholar 

  11. A. Bruckstein, N. Katzir, M. Lindenbaum, and M. Porat. Similarity invariant signatures for partially occluded planar shapes. IJCV, 7(3):271–285, 1992.

    Article  Google Scholar 

  12. A. M. Bruckstein, R. J. Holt, A. N. Netravali, and T. J. Richardson. Invariant signatures for planar shape recognition under partial occlusion. CVGIP:IU, 58(1):49–65, 1993.

    Article  Google Scholar 

  13. A. M. Bruckstein, E. Rivlin, and I. Weiss. Scale-space semi-local invariants. IVC, 15(5):335–344, 1997.

    Article  Google Scholar 

  14. E. Calabi, P. Olver, C. Shakiban, A. Tannenbaum, and S. Haker. Differential and numerically invariant signature curves applied to object recognition. IJCV, 26:107–135, 1998.

    Article  Google Scholar 

  15. S. Carlsson. Order structure, corrspondence and shape based catagories. LNCS, 1681, 1999.

    Google Scholar 

  16. D. Chetverikov and Y. Khenokh. Matching for shape defect detection. LNCS, 1689(2): 367–374, 1999.

    Google Scholar 

  17. I. Cohen, N. Ayache, and P. Sulger. Tracking points on deformable objects using curvature information. In Proc. Europ. Conf. Comp. Vis., pages 458–466, 1992.

    Google Scholar 

  18. T. Cohignac, C. Lopez, and J. M. Morel. Integral and local affine invariant parameter and application to shape recognition. ICPR, 1:164–168, 1994.

    Google Scholar 

  19. J. B. Cole, H. Murase, and S. Naito. A lie group theoretical approach to the invariance problem in feature extraction and object recognition. PRL, 12:519–523, 1991.

    Google Scholar 

  20. D. Cremers, T. Kohlberger, and C. Schnörr. Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36(9):1929–1943, 2003.

    Article  MATH  Google Scholar 

  21. D. Cremers, S. J. Osher, and S. Soatto. Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk. In C. E. Rasmussen, editor, Pattern Recognition, Lect. Not. Comp. Sci., TĂĽbingen, Sept. 2004. Springer.

    Google Scholar 

  22. D. Cremers and S. Soatto. A pseudo-distance for shape priors in level set segmentation. In N. Paragios, editor, IEEE 2nd Int. Workshop on Variational, Geometric and Level Set Methods, pages 169–176, Nice, 2003.

    Google Scholar 

  23. A. DelBimbo and P. Pala. Visual image retrieval by elastic matching of user sketches. IEEE Trans. on Patt. Anal. and Mach. Intell., 19(2):121–132, Feb. 1997.

    Google Scholar 

  24. A. Dervieux and F. Thomasset. A finite element method for the simulation of Raleigh-Taylor instability. Springer Lecture Notes in Math., 771:145–158, 1979.

    Article  MathSciNet  Google Scholar 

  25. L. E. Dickson. Algebraic Invariants. John Wiley & Sons, New York, 1914.

    MATH  Google Scholar 

  26. J. Dieudonne and J. Carrell. Invariant Theory: Old and New. Academic Press, London, 1970.

    Google Scholar 

  27. I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. Wiley, Chichester, 1998.

    MATH  Google Scholar 

  28. J. Flusser and T. Suk. Pattern recognition by affine moment invariants. Pat. Rec., 26(1):167–174, 1993.

    Article  MathSciNet  Google Scholar 

  29. D. A. Forsyth, J. L. Mundy, A. Zisserman, and C. M. Brown. Projectively invariant representations using implicit algebraic curves. IVC, 9(2):130–136, 1991.

    Article  Google Scholar 

  30. D. A. Forsyth, J. L. Mundy, A. P. Zisserman, C. Coelho, A. Heller, and C. A. Othwell. Invariant descriptors for 3-D object recognition and pose. IEEE Trans, on Patt. Anal. and Mach. Intell., 13(10):971–991, 1991.

    Article  Google Scholar 

  31. Y. Gdalyahu and D. Weinshall. Flexible syntactic matching of curves and its application to automatic hierarchical classication of silhouettes. IEEE Trans, on Patt. Anal. and Mach. Intell., 21(12):1312–1328, 1999.

    Article  Google Scholar 

  32. L. Van Gool, T. Moons, E. Pauwels, and A. Oosterlinck. Semi-differential invariants. In J. Mundy and A Zisserman, editors, Geometric Invariance in Computer Vision, pages 193–214. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  33. L. Van Gool, T. Moons, and D. Ungureanu. Affine/photometric invariants for planar intensity patterns. ECCV, 1:642–651, 1996.

    Google Scholar 

  34. J. H. Grace and A. Young. The Algebra of Invariants. Cambridge University Press, 1903.

    Google Scholar 

  35. C. E. Hann and M. S. Hickman. Projective curvature and integral invariants. IJCV, 40(3):235–248, 2000.

    Article  Google Scholar 

  36. M. K. Hu. Visual pattern recognition by moment invariants. IRE Trans. on IT, 8:179–187, 1961.

    Google Scholar 

  37. K. Kanatani. Group Theoretical Methods in Image Understanding. Springer, New York, 1990.

    MATH  Google Scholar 

  38. P. N. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A tree-edit-distance algorithm for comparing simple, closed shapes. In Symposium on Discrete Algorithms (San Francisco), pages 696–704, 2000.

    Google Scholar 

  39. E. P. Lane. Projective Differential Geometry of Curves and Surfaces. University of Chicago Press, 1932.

    Google Scholar 

  40. J. Lasenby, E. Bayro-Corrochano, A. N. Lasenby, and G. Sommer. A new frame-work for the formation of invariants and multiple-view constraints in computer vision. ICIP, pages 313–316, 1996.

    Google Scholar 

  41. L. J. Latecki and R. Lakämper. Shape similarity measure based on correspondence of visual parts. IEEE Trans. on Patt. Anal. and Mach. Intell., 22(10):1185–1190, 2000.

    Article  Google Scholar 

  42. H. Le and D. G. Kendall. The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. The Annals of Statistics, 21(3):1225–1271, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Lei. Recognition of planar objects in 3-D space from single perspective views using cross ratio. Robot. and Automat., 6(4):432–437, 1990.

    Article  Google Scholar 

  44. R. Lenz. Group Theoretical Methods in Image Processing, volume 413 of LNCS. Springer, 1990.

    Google Scholar 

  45. M. E. Leventon, W. E. L. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In Proc. Conf. Computer Vis. and Pattern Recog., volume 1, pages 316–323, Hilton Head Island, SC, June 13–15, 2000.

    Google Scholar 

  46. S. Z. Li. Shape matching based on invariants. In O. M. Omidvar, editor, Progress in Neural Networks: Shape Recognition, volume 6, pages 203–228. Intellect, Exeter, U.K., 1999.

    Google Scholar 

  47. S. Liao and M. Pawlak. On image analysis by moments. IEEE Trans. on Patt. Anal. and Mach. Intell., 18(3):254–266, 1996.

    Article  Google Scholar 

  48. H. Liu and M. Srinath. Partial shape classification using contour matching in distance transforms. IEEE Trans. on Patt. Anal. and Mach. Intell., 12(2):1072–1079, Nov. 1990.

    Article  Google Scholar 

  49. T. Liu and D. Geiger. Approximate tree matching and shape similarity. In ICCV, pages 456–462, 1999.

    Google Scholar 

  50. S. Manay, D. Cremers, B. Hong, A. Yezzi, and S. Soatto. One shot shape priors for variational segmentation. In Int’l Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, St. Augustine, FL, Nov. 2005.

    Google Scholar 

  51. S. Manay, B. Hong, A. Yezzi, and S. Soatto. Integral invariant signatures. In ECCV, May 2004.

    Google Scholar 

  52. T. Miyatake, T. Matsuyama, and M. Nagao. Affine transform invariant curve recognition using Fourier descriptors. Inform. Processing Soc. Japan, 24(1):64–71, 1983.

    Google Scholar 

  53. F. Mokhtarian and A. K. Mackworth. Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Trans. on Patt. Anal. and Mach. Intell., 8(1):34–43, 1986.

    Google Scholar 

  54. F. Mokhtarian and A. K. Mackworth. A theory of multi-scale, curvature-based shape representation for planar curves. IEEE Trans. on Patt. Anal. and Mach. Intell., 14(8):789–805, 1992.

    Article  Google Scholar 

  55. D. Mumford. Mathematical theories of shape: do they model perception? In In Geometric Methods in Computer Vision, volume 1570, pages 2–10, 1991.

    Google Scholar 

  56. D. Mumford, J. Fogarty, and F. C. Kirwan. Geometric Invariant Theory. Springer-Verlag, Berlin and New York, 3rd edition, 1994.

    Google Scholar 

  57. D. Mumford, A. Latto, and J. Shah. The representation of shape. IEEE Workshop on Comp. Vis., pages 183–191, 1984.

    Google Scholar 

  58. J. L. Mundy and A. Zisserman, editors. Geometric Invariance in Computer Vision. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  59. L. Nielsen and G. Saprr. Projective area-invariants as an extension of the crossratio. CVGIP, 54(1):145–159, 1991.

    Article  MATH  Google Scholar 

  60. P. J. Olver. Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  61. S. J. Osher and J. A. Sethian. Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys., 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  62. T. Pajdla and L. Van Gool. Matching of 3-D curves using semi-differential invariants. ICCV, pages 390–395, 1995.

    Google Scholar 

  63. M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical structures using association graphs. IEEE Trans. on Patt. Anal. and Mach. Intell., 21(11):1105–1120, 1999.

    Article  Google Scholar 

  64. A. Pikaz and I. Dinstein. Matching of partially occluded planar curves. Patt. Rec., 28(2):199–209, Feb. 1995.

    Article  Google Scholar 

  65. A. Pitiot, H. Delingette, A. Toga, and P. Thompson. Learning object correspondences with the observed transport shape measure. In Information Processing in Medical Imaging IPMI’03, 2003.

    Google Scholar 

  66. T. H. Reiss. Recognizing planar objects using invariant image features. In LNCS, volume 676. Springer, 1993.

    Google Scholar 

  67. C. Rothwell, A. Zisserman, D. Forsyth, and J. Mundy. Canonical frames for planar object recognition. ECCV, pages 757–772, 1992.

    Google Scholar 

  68. C. Rothwell, A. Zisserman, D. Forsyth, and J. Mundy. Planar object recognition using projective shape representation. IJCV, 16:57–99, 1995.

    Article  Google Scholar 

  69. M. Rousson and N. Paragios. Shape priors for level set representations. In A. Heyden et al., editors, Proc. Europ. Conf. on Comp. Vis., volume 2351 of Lect. Not. Comp. Sci., pages 78–92, Copenhagen, May 2002. Springer, Berlin.

    Google Scholar 

  70. G. Sapiro and A. Tannenbaum. Affine invariant scale space. IJCV, 11(1):25–44, 1993.

    Article  Google Scholar 

  71. G. Sapiro and A. Tannenbaum. Area and length preserving geometric invariant scale-spaces. IEEE Trans. on Patt. Anal. and Mach. Intell., 17(1):67–72, 1995.

    Article  Google Scholar 

  72. J. Sato and R. Cipolla. Affine integral invariants for extracting symmetry axes. IVC, 15(8):627–635, 1997.

    Article  Google Scholar 

  73. H. Schulz-Mirbach. Invariant features for gray scale images. In G. Sagerer, S. Posch, and F. Kummert, editors, 17 DAGM Symposium, Reihe informatik aktuell, pages 1–14, Mustererkennung, Bielefeld, 1995. Springer.

    Google Scholar 

  74. J. Schwartz and M. Sharir. Identification of partially obscured objects in two and three dimensions by matching noisy characteristic curves. Int. J. Rob. Res., 6(2):29–44, 1987.

    Article  Google Scholar 

  75. T. B. Sebastian, P. N. Klein, and B. B. Kimia. Alignment-based recognition of shape outlines. In IWVF, pages 606–618, 2001.

    Google Scholar 

  76. D. Sharvit, J. Chan, H. Tek, and B. Kimia. Symmetry-based indexing of image databases. In IEEE Workshop on Content-based Access of Image and Video Libraries, pages 56–62, 1998.

    Google Scholar 

  77. A. Shashua and N. Navab. Relative affine structure: Canonical model for 3D from 2D geometry and applications. IEEE Trans. on Patt. Anal. and Mach. Intell., 18(9):873–883, 1996.

    Article  Google Scholar 

  78. K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape matching. In ICCV, pages 222–229, 1998.

    Google Scholar 

  79. C. E. Springer. Geometry and Analysis of Projective Spaces. Freeman, San Francisco, 1964.

    Google Scholar 

  80. H. Tagare, D. O’Shea, and A. Rangarajan. A geometric correspondence for shape-based non-rigid correspondence. In Intl. Conf. on Comp. Vision, pages 434–439, 1995.

    Google Scholar 

  81. Q. M. Tieng and W. W. Boles. Recognition of 2d object contours using the wavelet transform zero-crossing representation. IEEE Trans. on Patt. Anal, and Mach. Intell., 19(8):910–916, 1997.

    Article  Google Scholar 

  82. C. Tomasi and R. Manduchi. Stereo without search. In Proc. Europ. Conf. Comp. Vis., pages 452–465, 1996.

    Google Scholar 

  83. A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, E. Grimson, and A. Willsky. Model-based curve evolution technique for image segmentation. In Comp. Vision Patt. Recog., pages 463–468, Kauai, Hawaii, 2001.

    Google Scholar 

  84. S. Umeyama. Parameterized point pattern matching and its application to recognition of object families. IEEE Trans. on Patt. Anal. and Mach. Intell., 15(2):136–144, Feb. 1993.

    Article  Google Scholar 

  85. J. Verestoy and D. Chetverikov. Shape detection in ferrite cores. Machine Graphics and Vision, 6(2):225–236, 1997.

    Google Scholar 

  86. A. Verri, C. Uras, P. Frosini, and M. Ferri. On the use of size functions for shape analysis. In Proc. Qualitative Vision, pages 89–96, June 1993.

    Google Scholar 

  87. I. Weiss. Noise resistant invariants of curves. IEEE Trans. on Patt. Anal. and Mach. Intell., 15(9):943–948, 1993.

    Article  Google Scholar 

  88. A. P. Witkin. Scale-space filtering. Int. Joint. Conf. AI, pages 1019–1021, 1983.

    Google Scholar 

  89. H. Wolfson. On curve matching. IEEE Trans. on Patt. Anal. and Mach. Intell., 12(5):483–489, May 1990.

    Article  Google Scholar 

  90. L. Younes. Optimal matching between shapes via elastic deformations. Image and Vision Computing, 17:381–389, 1999.

    Article  Google Scholar 

  91. C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane closed curves. Trans. Comp., 21:269–281, 1972.

    MATH  MathSciNet  Google Scholar 

  92. S. Zhu and A. Yuille. Forms: A flexible object recognition and modeling system. Int. J. Comp. Vision, 20(3):187–212, 1996.

    Article  Google Scholar 

  93. A. Zisserman, D. A. Forsyth, J. L. Mundy, C. A. Rothwell, and J. S. Liu. 3D object recognition using invariance. Art. Int., 78:239–288, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Manay, S., Cremers, D., Hong, BW., Yezzi, A., Soatto, S. (2006). Integral Invariants and Shape Matching. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_6

Download citation

Publish with us

Policies and ethics