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Foreword

The present textbook contains the records of a two–semester course on queue-
ing theory, including an introduction to matrix–analytic methods. This course
comprises four hours of lectures and two hours of exercises per week and has
been taught at the University of Trier, Germany, for about ten years in se-
quence. The course is directed to last year undergraduate and first year grad-
uate students of applied probability and computer science, who have already
completed an introduction to probability theory. Its purpose is to present ma-
terial that is close enough to concrete queueing models and their applications,
while providing a sound mathematical foundation for the analysis of these.
Thus the goal of the present book is two–fold.

On the one hand, students who are mainly interested in applications easily
feel bored by elaborate mathematical questions in the theory of stochastic
processes. The presentation of the mathematical foundations in our courses
is chosen to cover only the necessary results, which are needed for a solid
foundation of the methods of queueing analysis. Further, students oriented to-
wards applications expect to have a justification for their mathematical efforts
in terms of immediate use in queueing analysis. This is the main reason why
we have decided to introduce new mathematical concepts only when they will
be used in the immediate sequel.

On the other hand, students of applied probability do not want any heuris-
tic derivations just for the sake of yielding fast results for the model at hand.
They want to see the close connections between queueing theory and the theory
of stochastic processes. For them, a systematic introduction to the necessary
concepts of Markov renewal theory is indispensable. Further, they are not in-
terested in any technical details of queueing applications, but want to see the
reflection of the mathematical concepts in the queueing model as purely as
possible.
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A prominent part of the book will be devoted to matrix–analytic methods. This
is a collection of approaches which extend the applicability of Markov renewal
methods to queueing theory by introducing a finite number of auxiliary states.
For the embedded Markov chains this leads to transition matrices in block form
having the same structure as the classical models. With a few modifications
they can be analyzed in the same way.

Matrix–analytic methods have become quite popular in queueing theory dur-
ing the last twenty years. The intention to include these in a students’ intro-
duction to queueing theory has been the main motivation for the authors to
write the present book. Its aim is a presentation of the most important matrix–
analytic concepts like phase–type distributions, Markovian arrival processes,
the GI/PH/1 and BMAP/G/1 queues as well as QBDs and discrete time ap-
proaches. This is the content of part III of this book.

As an introductory course for students it is necessary to provide the required
results from Markov renewal theory before. This is done in part I, which con-
tains Markovian theory, and part II which combines the concepts of part I with
renewal theory in order to obtain a foundation for Markov renewal theory. Cer-
tainly only few students would like to acquire this theoretical body without
some motivating applications in classical queueing theory. These are intro-
duced as soon as the necessary theoretical background is provided.

The book is organized as follows. The first chapter gives a short overview of
the diverse application areas for queueing theory and defines queues and their
system processes (number of users in the system). The appendix sections in
chapter 15 provide an easy reference to some basic concepts of analysis and
probability theory.

For the simple Markovian queueing models (in discrete and continuous time)
it suffices to give a short introduction to Markov chains and processes, and
then present an analysis of some queueing examples. This is done in chapters
2 through 4. Chapter 5 gives an introduction to the analysis of simple queue-
ing networks, in particular Jackson and Gordon–Newell networks as well as
BCMP networks. This concludes the first part of the book, which deals with
Markovian methods exclusively.

The second part is devoted to semi–Markovian methods. In chapter 6 the most
important results of renewal theory are provided. Chapter 7 contains a short
introduction to Markov renewal theory. This will be necessary for the analy-
sis of the classical semi–Markovian queues (namely the GI/M/1 and M/G/1
systems), which is presented in chapter 8.

More recent approaches which are usually subsumed under the term ”matrix–
analytic methods” are presented in the third part of the book. In chapters
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9 and 10 the basic concepts of phase–type distributions and Markovian ar-
rival processes are introduced. The matrix–analytic analogues to the GI/M/1
and M/G/1 queues, namely the GI/PH/1 and BMAP/G/1 systems are analyzed
in chapters 11 and 12. Chapter 13 gives a short overview on discrete time
analogues. Further blockwise skip–free Markov chains, also known as QBD
processes, are analyzed, with an application to the PH/PH/1 queue in dis-
crete time. Finally, in chapter 14 a generalization of BMAPs towards spatial
Markovian arrival processes is presented.

Of course, most of the more classical material can be found in existing text-
books on stochastic processes. For example, Çinlar [25] and Ross [75] stillCC
contain, in our view, the most systematic treatment of semi–Markovian queues.
Also of great value, mostly for the theory of Markov chains and processes, are
the courses on stochastic processes by Karlin and Taylor [46, 47]. Further im-
portant results may be found in Doob [31], Asmussen [5], and Nelson [61].
The material on queueing networks can be found in Mitrani [60], Kelly [48],
and Kleinrock [50]. Monographs on matrix–analytic methods are the pioneer-
ing books by Neuts [65, 66], and Latouche and Ramaswami [52]. For discrete
time methods the overview paper by Alfa [2] was helpful.

However, some aspects of standard presentation have been changed in order to
alleviate the mathematical burden for the students. The stationary regime for
Markov chains has been introduced as an asymptotic mean over time in order
to avoid the introduction of periodicity of states. The definition of Markov
processes in chapter 3 is much closer to the derivation of immediate results. It
is not necessary to derive the standard path properties in lengthy preliminary
analyses, since these are already included in the definition. Nevertheless, the
close connection between the phenomena observed in queueing systems and
the definition given in our textbook is immediately clear to the student.

The introduction of renewal theory has been postponed to the second part of the
book in order to show a variety of queueing application of a purely Markovian
nature first. The drawback that a proof for asymptotic behaviour of Markov
processes must be deferred appears bearable for an average student. The proof
of Blackwell’s theorem, and thus also for the equivalent key renewal theorem,
has been omitted as it is too technical for a student presentation in the authors’
opinion. The same holds for proofs regarding the necessity of the stability
condition for the queues GI/PH/1 and BMAP/G/1. Only proofs for sufficiency
have been included because they are easily based on the classical Foster crite-
ria.

At the end of each chapter there will be a collection of exercises, some of them
representing necessary auxiliary results to complete the proofs presented in
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the lectures. Additional material is given as exercises, too, e.g. examples of
computer networks or certain special queueing system.

The book is written according to the actual scripts of the lecture courses given
at the University of Trier, Germany. It is intended not only to collect material
which can be used for an introductory course on queueing theory, but to pro-
pose the scripts of the lectures themselves. The book contains exactly as much
material as the authors (as lecturers) could present in two semesters. Thus a
lecturer using this textbook does not need to choose and reassemble the ma-
terial for a course from sources which must be shortened because there is no
time to treat them completely. This entails saving the work of reformulating
notations and checking dependencies. For a course of only one semester we
propose to teach parts I and II of this book, leaving out sections 5.3 and 8.3.




