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Abstract

We examine how to improve our understanding in stating and managing successfully requirements
for large systems, because the current concept of a system requirement is ill suited to develop true
requirements for such systems. It regards requirements as goals to be discovered and solutions
as separate technical elements. In consequence, current Requirements Engineering (RE) theory
separates these issues and reduces RE to an activity where a technical solution is documented for
a given set of goals (problems). In contrast, we advocate a view where a requirement specifies a
set of mappings between problem and solution spaces, which both are socially constructed and
negotiated. Requirements are emergent and need to be discovered through a contracted process,
which likens to a “garbage-can” decision-making. System requirements thereby embrace an
emergent functional ecology of requirements. This leads to equate requirements engineering
with heterogeneous engineering. The admitted heterogeneity of technological activity avoids a
commitment to social (or technological) reductionism. Requirements engineers need to be seen
as “heterogeneous engineers” who must associate entities that range from people, through skills,
to artifacts and natural phenomena. They are successful only, if built socio-technical networks can
remain stable in spite of attempts of other entities to dissociate them.
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1. Introduction

Information systems development (ISD) has remained
a high-risk proposition despite huge advances in
computing and telecommunications technologies.
Information systems projects in general, and large
information systems projects in particular continue to
fail at an unacceptable rate (Abdel-Hamid et al. 1990;
Drummond 1996; Mitev 1996; Myers 1994; Rosenwein
1997). While some portion of troubled ISD projects is
turned around successfully, intensive research in the
past has generated too little understanding in how to
avoid failures in large systems development initiatives.
From the growing incidence of failed projects, we
conclude that advances in technologies are not
sufficient to save large system projects. Instead, large
projects remain susceptible to failure until we learn
to understand how technological, organizational and
institutional changes are interwoven in large systems
and how system developers should accordingly state
and manage requirements for such systems.

Consider the following example. On March 11, 1993
the world was shocked by the sudden cancellation of
the Taurus project, which the London Stock Exchange
had been developing for more than six years. Taurus
was expected to be instrumental in the radical
restructuring the securities trade, widely known as
the Big Bang, by forming a backbone system for the
London Stock Exchange. The project cost the Stock
Exchange $130 million, and securities companies
invested $600 million more (Drummond 1996). After
years of alternating embarrassments and heroic efforts,
Taurus was cancelled before a single module was
implemented because the required functionality and
performance could never be delivered.

Although Taurus was a very complex project,
involving novel technologies and massive
organizational and institutional scale, ineffective
project controls allowed requirements to change
continuously throughout the project. Moreover,
management ignored clear warning signs about
organizational and technical risks, whilst powerful
interests pushed for Taurus’ development despite
confusion over the system’s purpose and design.
Simply, there was no understanding what the
systems was supposed to do and what stakeholders
it should serve. In the end, advocates held an almost
superstitious faith in the project, dismissing objections
and proposals for modifications and clearer statement

“«

of the requirements with comments like “...we
have had all those arguments. Great idea but no, we
have been arguing about it for twelve years, forget
it” (Drummond 1996) (p. 352). With the benefit of
hindsight, the Taurus failure could have been averted
by adjusting its course based on a more delicate and
politically sensitive requirements cngineering. But this
was not done despite a well known truism shared both
in academia and industry that systematic requirements
engineering is a keystone to a successful delivery of a
large scale system. The failure of Taurus can be partly
attributed to the dismissal of this well known fact, but
we think there is more to learn. Taurus failurc was also
due to the fact that we poor knowledge about how to
state and manage requirements for large systems that
involve political and institutional elements.

Stating requirements for such systems is not just a
technical exercise, but necessitates a new mind set
which we call “heterogeneous engineering” after
Hughes (Hughes 1979a; Hughes 1979b; Hughes 1987).
Heterogeneous engineering sces all requirements
specifications to be inherently heterogeneous due to
the need to establish stable networks involving both
social and technical clements through engineering (if
the network is not stable the system fails!). As Law
(Law 1987) (p. 112) puts this: “The argument is that
those who build artefacts do not concern themselves
with artefacts alone, but must also consider the way
in which the artefacts relate to social, economic,
political, and scientific factors. All of these factors
are interrelated, and all are potentially malleable.”
Consequently, requirements engineers necd to be seen
as “heterogeneous engineers” who must successfully
associate entities that range from people, through skills,
to artefacts and natural phenomena.

In this paper we will examine the problem of
stating and managing requirements for large
system development initiatives qua “heterogeneous
engineering.” Our argument is twofold. First we will
argue that failures like the Taurus disaster do not happen
only because existing approaches to requirements
engineering have not been adopted. In contrast,
we argue that current requirements engineering
techniques used alone will not do the job. This is
because they are based on a fallacious assumption
that business problems and political problems can be
separated from technical requirements engineering
concerns of how to specify a consistent and complete
technical solution to a business problem. In contrast,
large scale system devclopment initiatives involve a
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simultaneous consideration of business, institutional,
political, technical and behavioral issues. Second,
based on behavioral theories of decision-making we
argue, that solutions and problems are intertwined
and addressed simultaneously during a requirements
engineering process. Thus, requirements engineering
can be understood only by using theories of behavioral
and institutional decision making along with applied
technical understandings, but not only through the lens
of rational technical “engineering.”

This paper is organized as follows. In section 2,
we examine the received “view” of requirements
engineering as outlined by the proponents of the current
requirements engineering literature. Our conclusion is
that though forming a necessary step to understand the
difficulties involved in requirements engineering for
technical change, the current view is insufficient alone
to understand how technical requirements relate to the
organizational and institutional “problems.” Therefore,
in section 3, we propose an alternative concept of
requirements engineering which we call the functional
ecology of requirements. In this view, requirements are
not discovered but constructed as mappings between
solution and problem spaces. The construction process
involves a protracted “walk” between these spheres.
Section 4 examines the implications of the functional
ecology model. Section 5 concludes the paper
by drawing some consequences for requirements
engineering research.

2. Requirements Engineering Defined

The concept of a system requirement is relatively
well known in the system and software engineering
literature since mid 70’s. The concept was originally
conceived to involve the stating what the system
is supposed to do before stating how the system
produces the desired functionality (Ross 1977). The
carliest concepts of system requirements can be traced
back to work of Langefors (Langefors 1966) and some
early attempts to develop high level system description
languages!. One reason for separating the how and the
what can be attributed to the desire to achieve what we
call a “responsibility push-back”. By this we mean the
desire to relegate the failure to develop or implement
the system to the prior environment, which gave rise
to the definition of the system development task. Such
attempts to move the “reasons” for failure to higher
level system environments has been a continuing trend

© Scandinavian Journal of Information Systems,2002, 14, 37-55

in software engineering and system development since
the mid 70’s. This has gradually shifted the interest
of the software engineering and system development
communities from implementation considerations
(like “structured programming”, “structured design™)
into problems of how to define what the system is
expected to do and what this involves. This is currently
called fashionably “requirements engineering” (RE)
(Kotonya et al. 1998).

The main concept in the requirements engineering
is the desire to repeatably create successful systems.
The main interest in the requirements engineering
literature is to explore the means to express and
articulate the desire to develop the system, i.e. how to
define features of the new systems, or how to change
current systems that will solve an identified business
need, want, or desire (Loucopoulos et al. 1995;
Pohl 1996; Sommerville et al. 1997). Therefore, the
requirements engineering literature has concentrated
on developing tools and methods which answer
questions like: Who'’s desire? How to express the
desire? Who and what defines success and failure
criteria for addressing the desire? For example, when
doing user-centered design, the end-users of the new
or changed system are expected to define success &
failure criteria (Noyes et al. 1999; Pohl 1996). At the
same time, knowledge of the current state of the art
of system design can influence the choice of success
& failure criteria. These can be seen as system design
constraints and opportunities, which can also affect,
i.e. change, the identified business wants, needs,
and desires. In general, requirements in the received
literature are seen to establish these success & failure
criteria. The “received” definition is the IEEE standard
610.12 (Loucopoulos et al. 1995; Pohl 1996), which
defines requirement as:

1. A condition or capability needed by a user to
solve a problem or achieve an objective.

2. A condition or capability that must be met or
possessed by a system or a system component
to satisfy a contract, standard, specification, or
other formally imposed document.

3. A documented representation of a condition or
capability as in 1 or 2.

Accordingly, requirements engineering denotes a set of
methodologies and procedures used to gather, analyze,
and produce a requirements specification for a proposed



40

Large Scale Requirements Analysis as Heterogeneous Engineering

new system or a change in an existing system.

3. The Functional Ecology of
Requirements: The need for a conceptual
model

In this section we will create a systematic conceptual
model of RE from an emergent functional perspective.
The term functional in the term suggests that any
RE analysis is done in pursuit of practical objectives
for a given task domain, such as to make task
accomplishment more efficient and/or effective. We
use the term emergent to capture the evolutionary
view of how organizational goals, problems and
solutions are constructed during the RE, as opposed
to discovered, in alignment with a behavioral view of
human decision making.

We will develop the model through a set of
conceptual clarifications and definitions, which define
exactly? the content of the major components of a
requirements specification situation. These include the
concepts of problem, solution, requirement, principal
and goals. These are derived (though not explicitly)
from a careful reading and analysis of the literature
in institutional decision-making in complex domains.
As with any conceptual model, our main goal is to
define the major analytic relationships between these
concepts. Constructing this conceptual model allows
us to define more exactly what functional emergence
means and why such emergence is inevitable, thus
making large scale RE so hard to successfully do.
We assert the model explains origins and sources of
RE complexity. In turn, analysis of the model seeks
to offer some means to understand the challenge we
are facing on both conceptual and practical levels for
constructing and stating adequate requircments. As
we will show, this model enables us to pinpoint more
exactly our major disagreements with the received
IEEE definition. By developing rigorously such a
vocabulary3 and underlying model for discussing large
scale RE in all its complexity, the conceptual model
enables us later on to formulate research questions
more systematically and to develop techniques that
can help manage such processes.

Though, the suggested model is still in line with a
dominating model of RE in which it is assumed that
organizational goals are clear, it digresses from it in
how organizations and actors approach these goals and
what mechanisms they have at hand for accomplishing
those objectives. A prevailing bias in the requirements

engineering literature is the notion that requirements
exist “out there” waiting to be captured by the
systems analyst and refined then into a complete and
consistent specification for the system that will be
thereafter created (Davis 1993; Kotonya et al. 1998,
Loucopoulos et al. 1995; Macaulay 1996; Pohl 1996).
Consequently, the main focus has been on formalizing
the content of the system that will deliver the solutions
and how this meets the objectives of being complete
and consistent. Continued disappointing experiences
in large-scale system development suggest, however,
that the challenge is a good deal more complicated.
One point we want to make is that the content of RE
may mean different things for different people, and itis
dynamical due to ambiguity and uncertainty related to
the goals of the stakeholders and the solutions, which
can be brought to bear upon identified problems.

3.1. Requirements Analysis Framework

The crux of the ecological view is to adopt insights
from the study of human decision processes and use
this to inform our formulation of the RE framework.
We draw on two major sources in this endeavor that
digress considerably from the dominating “technical
rationality” of RE. First, in any complex development
initiative, including RE, we must take seriously
Simon’s theory of bounded rationality (Simon 1979;
Simon 1982) in that we can never find an optimal,
but at most a satisficing solution. Accordingly, RE
processes should be analyzed and understood from the
view point of heuristics, limited scarch spaces and the
quest for increased intelligence during the RE process.
This is what RE methods and tools seek to offer. But
their problem is that they scale up poorly for large
systems, and in addition they fail to recognize the type
complexity inherent in large scale RE.

Second, we will draw upon the institutional and
behavioral theories of decision making which have
in the past decades studied complex organizational
decision making processes involving complex social,
business or political change (Lindblom 1979; March
et al. 1976). These studies have shown that complex
organizational decisions are not discrete events
(i.c. bets) in which pros and cons are weighed and
optimal decisions are rendered. Instead, organizational
decision-making forms a protracted processes of
iteration in which problems search for solutions,
solutions search for problems, and decision makers
search for decisions to be made (March et al. 1976). In
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the organizational theory, this is coined the “Garbage-
Can Model.” It is so named because of the relatively
permanent nature of the cans in which different
solutions, problems and decisions are “thrown” within
an organizational arena. Available experience from
many large scale RE (e.g., software engineering)
initiatives coincide with this view. The development of
World Wide Military Command and Control System
(WWMCCS) of the 1970’s and carly 1980°s formed
a continued process of redefining this “can” over two
decades. Hence, contrary to common assumptions
underlying RE, RE decisions are implicated by
solutions searching for problems rather than the other
way around. The behavioral study of decision-making
has thus benefited from the transformation of the
“problem - solution” construction to a new and more
evolutionary view of iteration represented as “solution
- problem -> solution.”

We will next refine this model in relation to RE, and
will therefore begin with an examination of what a
“solution space” means in relation to requirements,
followed by an examination of the mediating “problem
space.” This leads to articulation of the requirements
analysis process as an iterative “walk” between the
solution and problem spaces. The main components
of the framework are depicted in Figure 1. The
acronyms M and N in the figure describe how different
components in the RE environment can be related to
one another during a RE process (i.e. many to many).

3.2. Solution Space

The ecological view suggests that any RE process
starts from an existing solution space, Sy, that will
be affected by a proposed new or changed system
(see Figure 1). We depict the continuous construction
and movement of solutions by rotating arrows around
the solution space. The “existing solution” space, that
we call the Current Solution Space, is denoted as
S;. Fundamentally, this space embodies a history of
solved social, technical and procedural problems and
it constitutes the legacy (or competency) of previously
solved organizational problems. This definition denies
that solutions exist a-historically. Instead, they are
socially constructed and legitimized. Capabilities
to produce such solutions must be acquired and
maintained in the surrounding socio-technical system.
Therefore, the solution space is intimately related to the
principals, i.¢. a set of actors who have the capability to
represent themselves as capable of arriving at solutions
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to an identified problem, or who possess specific skills
that can result in specific solutions. The solutions are
socially constructed also in the sense that the principal’s
must find solutions to fit to their problems and thereby
accept the legitimacy of a specific solution to their
specific problem. Principals have also incentives to
create their own solutions (e.g., goals) so they can
influence the social system in which they reside and
obtain resources. Accordingly, many times solutions
search for problems and not the other way round.

Goals

Anomaly Space

Problem Space
P,

Technologies

4
£
“»§
£
S
k4
z

6

Figure 1; Requirements Analysis Framework

Working solutions form instantiations of one or more
principals’ successful attempts to adapt generic as well
as custom technologies to suit to specific business or
social problems. Hence, solutions embody new and
novel ways of carrying out organizational tasks often
with untried configurations of social arrangements and
technical artefacts. Our concept of technology is thus a
heterogeneous one in the sense that it covers both social
and managerial innovations, and technical innovations
that draw upon properties and laws of the physical
world and which demand that the final solution is a
socio-technical ensemble (Law 1987).

In general there is a M:N (e.g. many to many)
relationship between technologies and solutions.
Hence, any given technology can be used to solve many
types of problems and the same type of technology can
be used to solve many problems. Moreover, any given
problem can be solved or approached (in the spirit of
socio-technical design) by the application of many
types of technologies. This heterogeneity provides
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also a basis for the garbage-can model of organizational
decision making: organizations can and often will
throw several types of technologies into the “can” in
their attempts to solve any given problem.

Organizations change over time, as do their solution
spaces. A Local Solution Space, forms the current
solution space and all locally accessible solution
spaces that can be reached from the current solution
space using available skills and resources offered by
the principalsS. A local solution space thus is a subset
of a Global Solution Space, denoted GS that can be
seen to be the union of all solutions, which can in
principle be reached from the current solution space
if all resources and skills were available. In other
words, the global solution space is the space of all
feasible solution spaces, including those not currently
accessible from the local solution space and which
require mobilization of all principals and technologies.
Reasons for not being able to reach all of them can
be due to lack of resources, lack of intelligence (i.e.
this solution is not known or cannot be connected
cffectively to any known problem), cognitive bias,
shifting goals or incompatibility with organizational
goal(s) or political structure.

In general, a local solution space represents the range
of all locally accessible solution spaces with regard
to organizational resource limitations, but without
regard to any particular proposed new product. A local
solution space is a more general form of a product space
(Davis 1993), but it contains the essential attributes and
context of the product space.

3.3. Anomaly and Problem Spaces

The source of a problem is an anomaly, i.¢. a known
existing inconsistency between the current solution
space and a desired solution space.® The set of all such
inconsistencies we call an existing Anomaly Space. An
anomaly is only a “potential” problem, because not all
anomalies are attended by organizations as problems
that need to be solved due to resource constraints and
cognitive bias.

An anomaly becomes a problem only when it is
observed and acted upon by a principal with a standing
to act. Standing refers here to the power to define and
legitimize an anomaly as a problem to be solved by
collective action, and the demonstrated capability to
mobilize means to address a defined problem’. This
is normally defined in management statements that

justify [T projects, in project goal specifications, or
investment memos. A principal is thus assumed to
wield organizational power, i.e. to have access to
means by which she or he can influence the others and
mobilize sufficient resources (Bacharach et al. 1980;
Fairholm 1993; Pfeffer 1981). It is important to note
that in large scale system development initiatives there
are several or large numbers of principals who can
obtain a standing in relation to problems identified.
Moreover, it is important to understand that in large
scale system development initiatives it is necessary to
enroll a large number of principals to take a standing
and agree on some level of problematization (Baier et
al. 1986). Standing can be later on also held by groups
as well as individuals at different stages of RE process,
which relate to possible rewards, incentives or side-
effects of the possible system solution. Lower-level
participants in organizations hold such standings due
to their knowledge, or access to unique local resources
that are critical in proceeding in the project’. An
example is a system analysts. Standing can and also
often needs to be changed, and therefore it can easily
drift during a large RE process (see ¢.g. Sauer 1994).
In the RE literature, principals are called business
stakeholders (Kotonya et al. 1998; Wieringa 1996).

Due to cognitive limitations, some anomalies are not
recognized by actors with a standing, and thus are not
acted upon. Similarly, anomalies can be observed by
principals as problems, but they choose not to act upon
them due to their resource constraints, or difficulty in
defining a solution space which links with the problem
(e.g., goal failure). Such processes of inattention
relate normally to high political, functional, technical
or implementation risks of moving to a new chosen
solution space (Lyytinen et al. 1998b). Anomalies can
also turn into problems at later stages of RE, or further
down in the design process due to learning by doing.
In the same vein, principals can later drop problems out
of consideration and revert them to mere anomalies,
or even beyond that if they change their goal scts,
or observe high obstacles to move from the current
solution space to the target space?. Thus the set of
principals is not fixed but contextually emerging and
negotiated.

Although the underlying causes of anomalies can
spring from many sources, the conversion of an
anomaly to a problem is a social process we cail
problematization. Problematization begins long
before a recognizable problem space has emerged
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in RE. It begins with a principal’s decisions standing
to act or not act upon anomalies that turn them into
problems. Often, these problematizations can start with
the metaproblems of finding out what the problem is
to which an existing or an emerging solution can be
applied. During this activity, principals determine and
apply legitimizing reasons to change an anomaly into
a problem. Legitimate reasons can relate to the goals
(see Figure 1), i.e. desirable properties of those solution
spaces that can be reached from the current solution
space. These goals are therefore not given or fixed, but
instead are constructed and negotiated as a result of
legitimizing the problematization. This process is by no
means trivial exercise as any principal normally pursues
several goals at the same time, and the same goal can
be chosen by several principals. This results often in
situations where the same problem space can relate to
many different sources. Moreover, different principals
can select them independently. In the same vein,
these problems can be later on mapped to alternative
new solution spaces, which means that several often

S: Solution
Space

contradictory, or supplementary change processes may
be initiated to the same problem causes.

An important capability of a principal with standing
is the power to define particular characteristics of the
desired problem space.!0 These relate to general value
statements and rationales underlying organizational
action like increased control, competitive capability,
shareholder value, or employee participation. Such
features can be used to dictate who has a right to
address the problem space, why this is regarded as the
problem space, among several competing principals
who are jockeying to a mandate to address the problem
space. Moreover, as Fairholm suggests, such power
entails ‘the ability to gain aims in interrelationship
with others, even in the face of their opposition’l.
Altogether, it is the principals who define the problems
and their sources, and by implication, their resulting
solution spaces. Thus, they must be considered the
most important RE stakeholders.

Figure 2: Solution and Problem Spaces

The space of all problems implied by a current solution
space Sy is called the Problem Space, denoted here as
P. A problem space (e.g., the space of all selected
problems) is by definition always a subset of an
anomaly space. Hence, a proposed system problem
space, denoted by Py, contains all of the recognized
and chosen problems by all of the principals at time
t12, This does not mean that elements of this set are
consistent, non-contradictory or selected by following
some overarching organizational “goal” set. What
we say instead is that problems in P; have to be
contextualized into S;!3 by some principals so that

© Scandinavian Journal of Information Systems,2002, 14, 37-55

there is an observed need to change the current solution
space. Accordingly, they can be later on associated with
a proposed new system or system change by some
principal with a standing.

Figure 2 shows a general relationship between S; and
P, where the arcs represent connections to problems in
Py from their contextualizing source in S;.

It is important to understand that multiple solution
sources, as shown in Figure 2, can point to any one
problem, and any one solution source can lead to
multiple problems. This corresponds to the M:N
relationship between the solution space and problem
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space as depicted in Figure 1. What this implies is that
it is possible for a single problem to have multiple
contextualizing sources. Also, a single solution source
can contextualize multiple problems.

The process of problematization uncovers frequently
also other anomalies that are deemed problems by
principals. This can trigger an iterative reconsideration
of the current solution space and its anomalies
resulting in a process called problem blossoming!4.
This iterative process can change the contents, and
hence, the structure, of the current solution space (Sy)
as well as the problem space (Py). This process may
have to be iterated as long as new affected areas of S¢
are being discovered and the corresponding anomalies,
and resulting problems, are constructed and organized
into the current problem space. Once complete, or
prematurely stopped by a principal with standing due
to the fear of endless search, the resulting problem set
is called Pp.15

3.4. Proposed Solution

A Proposed Solution, denoted as Sy 1, forms a new
subspace of the solution space. A proposed solution
by definition implies the reconciliation of S; to Py. In
other words, each part of a proposed solution must be
reconciled with one or more problems in P until all
of the problems in Py are addressed. The process of
reconciliation, changing S; into S¢,.116 by solving for
Py, is called Solution Space Transformation. Finding
this mapping forms the heart of RE. It involves
specifying a mapping from a current solution space
into a future solution space that is contextualized, or
warranted, by the chosen set of problems. In other
words, the analyst’s job is at the intersection of the two
solution spaces (along with technologies embedded in
themn) and the problem space. During this reconciliation
process, constraints are scen as limitations of current
organizational resources as well as limitations
concerning the future IS, including people, artefacts,
rules, processes and the like.

It is a custom desire in the RE literature to find an
optimum path from S to Sy.¢. This is, however, seldom
the case in any given requirements analysis effort,
because 1) the prospect of attaining global solutions
is quite remote due to changing and shifting needs and
goals of the principals, problem blossoming etc, and
2) because system analysts cannot locally foresee the
impact of the chosen solution spaces or the difficulty
of getting their due to their cognitive and resource

limits. The task of the analyst is, instead, to find a
traversable path from a current solution space to a new
one that meets sufficiently the requirement of removing
observed problems (Haumer etal. 1999). This needs to
be accomplished also by identifying problems that will
arise during the process of transformation.

A necessary outcome of the solution space
transformation is to transform, and possibly expand,
the local solution space, S. Transforming S means
not only a changing, and hence a likely expanding,
of some principals technical capability. It also means
a changing, and presumptively expansion, of the
organizational capability in the solution space. Hence,
an expansion of S can reveal previously unavailable,
but now realizable opportunities. The process can even
expand a general solution space, and thus demonstrate
organizational learning and innovation in the sense that
new solution “frames” have been created (Lyytinen et
al. 1998a) 17.

3.5. Redefining Requirements

Per our analysis, RE activity involves always a
deliberate construction of an ecology that consists
of two solution spaces and a problem space!8. The
objective of RE is to reconcile all essential aspects
of the current solution spacc with regard to a problem
space thus producing a specification for a particular
solution space that can be achieved at some future
time point t+x19, It is expected that this will mitigate
or eliminate the identified problem space (though
naturally this cannot be guaranteed). Duc to the
discovery of goals, problem blossoming and dynamics
of the solution spaces, this is an iterative process: new
information on both the solution space and the problem
space is continually discovered, and consequently
decisions need to be continually made to re-state
both the solution space and the problem space in the
direction of reconciliation. The RE specification is thus
an outcome of a co-evolutionary process of discovery
and decision, in which both the solution space and
the problems space are iteratively constructed. This
process is influenced by many constraints arising from
the environment itself (¢.g., physical laws, technical
choices, legal considerations, institutional influences,
organizational goals and capabilities, market forces).
But, at the bottom, it remains a social process of
negotiation and inquiry that is constrained by bounded
rationality and limited organizational resources.

At this point of our treatise we can contrast this
definition of RE with the “received” definition that is
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common to the requirements engineering literature. As
previously stated a requirement as per this literature
is:

4. A condition or capability needed by a user to
solve a problem or achieve an objective.

5. A condition or capability that must be met or
possessed by a system or a system component
to satisfy a contract, standard, specification, or
other formally imposed document.

6. A documented representation of a condition or
capability as in 1 or 2.

In our terminology, item 1 focuses on meeting
some expressed desire of a principal with standing,
usualty the client or the system’s intended user.
Such requirements have been called “functional”
requirements (Loucopoulos et al. 1995; Pohl 1996).
Ttem 2 departs from the issue of desire and addresses
compliance with conditions set by social or technical
environment. Such requirements have been referred to
as “nonfunctional” requirements (Loucopoulos et al.
1995; Pohl 1996). Item 3 expects that a requirement
needs to be represented in a document. In other words,
if a requirement isn’t written up, or equivalent, it is not
a requirement.

A good summary of the requirements definition,
accordingly, would be: a requirement specifies a
written want, need or desire that solves a problem in
the context of a set of constraints or a written constraint
imposed by a formal document.20

We depart from this nomenclature in two ways. First,
we see requirements not as solutions to problems,
but as a set of relationships between solution spaces
and a problem space. Solutions to problems are
determined in design, not during requirements. As
such, requirements are no more fixed than the evolving
understanding of the characteristics of the two solution
spaces and the problem space. Requirements in
this sense cannot be discovered, but rather must be
constructed by a search in the search space that covers
all known mappings between the problem space
and the two solution spaces?!. Hence, requirements
need to be represented by two sets of arcs, as shown
in Figure 3, between the problem and two solation
spaces. An analysis of the resulting requirements arcs
postulates a conceivable alternative solution space for
the identified problem set. More simply, once a stable
set of requirements are known, one can postulate the
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specification for a new or changed technology, ¢.g.
system. Still, as discussed earlier, we consider such
a technology heterogeneous in construction, and thus
includes technical, social, political, economic, and
alike functionalities and constraints (Hughes 1987,
Law 1987). We called this whole set of possible
future solution spaces a conceivable solution space
(Sy). Sy, by definition, contains the proposed solution,
S¢41- Any given element in the conceivable solution
space can, consequently, become the focus of the
system development or enhancement project, in
future. Another way of reading our definition is that
requirements link desired solution spaces to their
original contexts and to problems embedded therein
that truly need to be addressed by a future solution.
Taken together, requirements become a contextualized
set of rules and constraints through which a future
solution can be constructed via design.

Second, we can apply insights from our definition of
requirements to redefine some identified requirement
types. We refer to what the literature calls a functional
requirement as an objective requirement, denoted by
R, An objective requirement is defined as: a want,
need or desire that corresponds to a problem (e.g. Py)
as contextualized by a part or all of a current solution
(e-g., Sp)- AR, is represented by an arc from a solution
to a problem, as shown in Figure 322. In this way,
R, can viewed as a relationship that comes from
a solution looking for a problem. We refer to what
the literature calls a nonfunctional requirement as a
constraint, denoted by R... A constraining requirement,
e.g., a constraint, is defined as: a restraining condition
imposed upon a solution within S | as contextualized
by a problem within Pi23. AR, is represented by an arc
from a problem to a new solution, as shown in Figure
324, The third part of the IEEE requirement definition
remains unchanged, i.e. requirements must still be
documented in some way for the principal(s).

Taken together, R, and R fill in all arrows in the
“solution - problem - solution” framework. Hence,
itrepresents a model of the requirements as a functional
ecology.
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S: Solution
Space

L.eads to by
Solving P,

Figure 3: Solution Space Transformation — The F unctional Ecology of Requirements Conceptual Model

4. Implications

An implication of the new requirements definition is
that since solutions and problems are heterogencous
in nature, requirements are therefore heterogeneous
in nature as well and RE should be conceived as
heterogeneous engineering (Hughes 1987; Law 1987).
This also means requirements of one type can be related
to, and hence, can affect requirements of other types.
Another implication of the new requirements
definition is, by transitivity, the principal(s) who
own the problem(s) that are used to define a R, or
R arc also the owners of that R, or R.. This point
is needed to repair an ownership gap that appears
between problems and requirements. Together, all of
the arcs R, and R, form the essence of a requirements

specification. A requirements specification is the set
of statements selected for attention by the principal
requirements owners. By induction, requirements
owners are also the primary stakeholders of the system
design. Also, by induction, since requirements are
heterogeneous, the requirements specification is a
heterogencous, yet holistic, view of the future solution
under consideration.

The activity of requirements analysis constructs
a set of dynamic relationships between specific
solution spaces and a specific problem space such
that the specific principal’s objectives are realized in
the context of constraints. This definition is simple
and clear, but its simplicity can be misleading. The
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challenge for researchers and practitioners alike is
in the adjective specific that appears before the words
“solution”, “problem” and “principal”. We argue
that most requirements analyses fail first as a result
of insufficient or incorrect specificity (i.e. level of
detail and certainty) conceming the links between the
solution and problem spaces. In fact, in many cases it
can be extremely difficult to achieve such specificity
due to limitations of bounded rationality, changing
environmental conditions, limited resources, problem
blossoming or political shifts among the stakeholders.
Second, we argue that in large scale system
development initiatives the requirements fail because
it is difficult to stabilize the set of “specific” principals
that take a common standing in relation to problems
and later on to solutions due to political difficulties
(see [Bergman, 2001 #123)), or cognitive problems.

As noted earlier, multiple solution parts can point
to one problem and any one solution part can lead
to multiple problems. Hence, as noted, there is a M:
N relationship between S, and Py. This suggests that
there can be a nonlinear number of R, arcs between
the nodes of the two spaces. Similarly, a problem can
affect multiple parts of a future solution, while multiple
problems can point to (i.e. are addressed by) the same
part of a future solution. Hence, similar to Ry, there is
amany to many relationship between P and S 1. This
allows for a nonlinear number of R; arcs in relation to
their sources. Altogether, requirements at any given
time can be represented as the set of all of the arcs,
(Rg, Ry), that reflect the contextualized connections
between the problem space and the current and future
solution space.

The obtained final set of requirement arcs between
S, Py and Sgyq can be seen to form a network of
interrelationships, ¢.g., a requirements web. Thus, any
change to even a single part of S can affect a large
number of problems in P;. The change is nonlinear in
size. Also, due to the reflexivity of the connections via
problem blossoming from Py to Sy, any such change
can show up in other parts S; itself. Accordingly, any
change in P can result in a nonlinear set of new or
changed connections to S; and Sy . Therefore, a
small change in S; or P; could result in a nonlinear,
i.e. potentially explosive, change in the whole
requirements set (R, Re).

In addition, a change in one requirement could have
a non-linear change effect on other requirements.
This has been observed as the “cascade effect” of
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requirements change, and forms the source of a
phenomenon what has been called “requirements shift”
and “requirements creep” (Gause et al. 1989; Pohl
1996). This is a cascade effect because any requirement
statement i.e. a pair of <r01,rci> can influence or be
dependent on a set of other requirements <R LR ">
(Robinson et al. 1999) and the impact may cascade
recursively. Thus, in large system designs, a non-linear
number of requirements connections coupled with
non-linear change effects can yield a very complex,
non-linear delicate requirements web.

These problems can, often in turn, lead to
“requirements paralysis,” i.c. the rational fear of
changing requirements due to the possible devastating
impacts of the change2’. This is well supported by
the observed difficulties in the Taurus project to
manage shifting requirements (Drummond 1996).
The combination of requirements paralysis, bounded
rationality and organizational resource limitations can
create the impression that any serious attempt to change
requirements, or to change their sourcing problems or
solutions would result in incurring spiralling costs that
are simply too high for the principals to pay. Many
times this can lead into a path of escalation, e.g.,
increasing commitment to a failing course of action,
when the project under consideration starts to falter
(Keil et al. 2000).

Another implication of recursive, reflexive, non-linear
requirements change is the following: determining
requirements also determines stakeholders. Thus,
shifting requirements shift our perceptions of who
are the principals and who are the other stakeholders.
These shifts can even change who can be a stakeholder.
This means that the original principals of a project
may not be the final principals of the project. The
implications of this can have profound affects on the
process of requirements determination in ambiguous
and dynamic environments. Again, the demise of
Taurus project associated with the incapability to
manage the stakeholder set is a case in point.

5. Conclusions

The functional ecology of requirements i.c. the intricate
linking and evolution of solution and problem spaces
vis-a-vis a set of principals suggests that requirements
are not solutions to problems. Rather, they establish
links between solution spaces and problem spaces in
a changing environment of environmental conditions,

47



48

Large Scale Requirements Analysis as Heterogeneous Engineering

shifting principals, and the evolution of organizational
knowledge defining what is a solution, and what isa
problem. Accordingly, requirements emerge through
the identification of anomalies in the existing solution
space that are declared by a principal with standing to
be problems, followed by an effort to identify new
solutions that would reconcile those problems. Any
effort to identify new links between solution and
problem spaces can uncover information that alters
perceptions of both the problem space and the solution
space and the set of principals. Under this model,
requirements are not waiting to be discovered by an
analyst, but rather they are systematically constructed
through an iterative and evolutionary process of
defining and redefining the problem and solution
spaces (see also (livari 1990a)). This construction
process is by definition imperfect and often inefficient
due to bounded rationality, organizational resource
limitations, uncertainty due to changing environmental
conditions, and changing views of principals with
standing. Moreover, changes in the problem space can
affect the solution space in nonlinear ways: with modest
changes in one having the possibility of creating large
changes in the other. The same holds in reverse. Thus,
requirements analysis can be exceedingly difficult due
to this instability, even in cases where organizational
objectives are relatively clear.

We believe that an articulation of the functional
ecology of requirements captures one key reason for
the persistent failures in system development, when the
target systems operates in complex domains. The crux
of the ecology is the recursive and reflexive relationship
between solution spaces and problem space, and the
fact that each can influence the other in nonlincar ways.
This creates a situation in which “real” problems and
their corresponding “real” solutions can be impossible
to pin down with confidence. In such situations, the
temptation is strong to abandon the analysis and shift
to old, (at one time) reliable heuristics and learning
by doing to implement one feasible solution without
ever really pinning down its requirements and hoping
that it will fit into the current ecology. Such attempts
correspond to a random walk from the current solution
space to an unknown new solution space. This signals
a failure to state the requirements before the move
but instead making the move and then finding out the
requirements for the move. In other cases, principals
can simply declare a particular problem/solution space
alignment to be real and proceed to implementation.

We call this the “early out strategy” and it was followed
with disastrous consequences in the Taurus system.
In the former case no specification is produced; in
the latter it is likely that a bad specification will be
produced and declared to be good by powers that be.
Either can be damaging to organizational welfare, but
the latter is often more destructive because resources
are consumed in a futile effort to build a useful system
from bad specifications and organizational confidence
in system development suffers (Keil 1995; Markus et
al. 1994).

As per the functionalist requircments model, care
needs to be taken to minimize the size and impacts
of possible requirements cascade affects. One
possible way is to apply to concept of separation of
concerns and modularization {Brooks 1995) at the
heterogeneous level of the requirements web, not
just at the technical level. Such constructs can act
as a “firebreak” to the “wildfire” of cascade failures
at the points of modular connection. This approach
requires a more holistic approach in constructing a
requirements specification. This corresponds to the
construction of complex subassemblies as discussed by
Simon (Simon 1996). Such subassemblies, as argued
by Simon, allow for the creation of more stable and
more highly complex systems. Complex subassemblies
can be heterogeneous, i.e. a system composed of
different types of parts. Indeed, this technique can
allow for different types of possible future solution
combinations that may be difficult to see without such
constructions.

A second method to be gained from this requirements
model is the ability to identify “killer problems” or
what Hughes calls “reverse satients” (Hughes 1987).
A killer problem occurs when a problem that must
be addressed for the system under consideration to
be successful cannot be adequately addressed within
the current solution space. In other words, there is a
gap between what exists and what is wanted by one or
more principals, and it is too wide to cross within the
current solution space. This can be due to either 1) the
cost of crossing the gap being can be too high for the
current principals to pay, which demands enrollment
of new principals, 2) it is simply not known how to
cross it, thus demanding novel technical solutions and
organizational learning, or 3) it is difficult to cross it
in that the resulting socio-technical system may not
stabilize due to the radical nature and pervasiveness of
change. Such killer problems are normally one problem

© Scandinavian Journal of Information Systems 2002, 14, 37-55



Large Scale Requirements Analysis as Heterogeneous Engineering

or a set of interrelated problems- reverse salients- in
the spirit of heterogeneous engineering that block
the progress. By being able to separate such problem
sets, it is easier to set the right targets for specifying
requirement sets. Single problems are normally
technical in nature, which may demand assessment of
technical trajectories and capabilities, while the latter
deal with heterogeneous elements in the solution space
and combine functional, political or technical issues.
The latter ones are normally extremely difficult to
analyze and understand and are therefore often
ignored. The main ways to deal with a killer problem
is to either re-problem (change the project by choosing
alternative, solvable problem(s) where possible) and
correspondingly change the solution space; if possible,
partition the problem into sub-problems which are
solved one at a time and which enable learning and
adaptation (“muddling through™); or end the project
as too risky.

Since requirements are relationships between
problems and solutions, it is very likely that there
are killer requirements in large system development.
These are accordingly, requirements that must
be, but yet cannot be, adequately addressed by a
current system under consideration. We argue that
these are results of either improper relationships or
representations of contextualized killer problems. An
improper relationship is one that creates an objective or
constraint, which cannot be met or makes it impossible
to meet one or more separate requirements. In this
case, it may be possible to either drop the requirement
or rework it such that the connection between the
solution and problem (objective) or problem and
solution (constraint) can still be realized, and other
conflicts mitigated. If such rework is not possible, this
would indicate a gap that cannot be crossed between
what is and what is wanted, i.e. a killer problem.
Unfortunately, such analyses are not normally done
and they rarely form part of a risk-assessment.

The ability to uncover additional problems by
problem blossoming allows for the ability to discover
killer problems, if they exist. Unfortunately, this could
lead to a search in an exponential size search space.
There are at least two methods that can help deal
with this problem. First, if separation of concerns
and modularization are well applied, then the search
space is reduced to the complex components and the
combined system itself. This will tend to isolate such
problems within these subdivisions or at the system
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level, hence reducing the possible search space.

Second, while problems are discovered by analysts,
they tend to be quickly categorized according to their
understanding of how difficult it is to solve them.
Most problems in new systems have therefore known
solutions, otherwise the effort would be pointless.
Some problems may not have obvious solutions, but
usually there are known techniques to work around
them. This leaves problems that are not known
how to solve once they are uncovered. These are
potential killer problems and they quite often relate to
heterogeneous nature of the RE activity, i.e. how the
resulting socio-technical system will stabilize. The list
of these problems is likely to be rather small, but they
are often “deadly enemies.” As noted, these can also
be some of the most tricky to either find, or correctly
identify. Still, being able to perform problem triage to
identify the most serious problems should be part of
a system analyst’s repertoire of RE techniques. We
believe, that by applying the heterogeneous approach
to system analysis would allow analysts to discover
more of these potential killer problems. As such, it can
be considered a risk reduction methodology.

These and other techniques needed to deal with
heterogeneous RE are the subject of future research.
By improving our understanding of the complexity and
uncertainty involved in RE, we should see an overall
reduction in failed systems and a likely increase in the
production of successful systems. In the end, this is the
main goal of requirements engineering.

6. Glossary

Anomaly — A known existing inconsistency between
the current solution space and a desired solution space.
An anomaly is only a potential problem, because not
all anomalies are attended as problems that need to
be solved.

Anomaly Space — The set of all anomalies associated
with the system under consideration.

P — The space of all problems implied by a current
solution space S. A problem space (¢.g., the space of
all selected problems) is by definition always a subset
of an anomaly space.

P, —Aproblem ( 1 of atleastn problems) within Py.
P; — A Proposed System Problem Space is the space
that contains all of the recognized and chosen problems
by all of the principals at time t.

Principal — A person with standing. Standing refers

49



50

Large Scale Requirements Analysis as Heterogeneous Engineering

here to the power to define and legitimize an anomaly
as a problem to be solved by collective action, and the
demonstrated capability to mobilize means to address
a defined problem. A principal is thus assumed to hold
organizational power, i.e. have access to means by
which she or he can influence the others.

Problem — An anomaly that is observed and acted upon
by a principal with a standing to act.

Problem Blossoming — The process of recursive
problem determination. The process of problem
determination (problematization) uncovers frequently
other anomalies that are dcemed problems. This can
trigger an iterative reconsideration of the current
solution space, respectively. This, in turn, can lead
to a further discovery of new anomalies, which
can be deemed problems. This recursive process
continues until all related problems are constructed or
prematurely stopped by one or more a principals.

R, — A constraining requirement. A constraining
requirement, e.g., a constraint, is defined as: a
restraining condition imposed upon a solution within
Si+1 as contextualized by a problem within P. AR,
is represented by an arc from a problem to a new
solution.

R, — An objective requirement. An objective

requirement is defined as: a want, need or desire
that corresponds to a problem (e.g., P, within Py) as
contextualized by a part or all of a current solution (e.g.,
Sp. AR, is represented by an arc from a solution to a
problem. In this way, R, can viewed as a relationship
that comes from a solution looking for a problem.

S¢ — A Local Solution Space is the current solution
space and all locally accessible solution spaces
that can be reached from the current solution space
using available skills and resources offered by the
principals.

S, — A Future Solution Space is an alternative local
solution space postulated from the problem space
analysis for the problem set Py.

S — The Current Solution Space, denoted as Sy
Fundamentally, this space embodies a history of
solved social, technical and procedural problems
which constitutes the legacy of previously solved
organizational problems.

S¢+1 — A Proposed Solution is a subspace of the future
solution space, S’, that includes the reconciliation of
St to Py

Solution Space Transformation — The process of
reconciliation, i.¢. changing Sy into S¢,.1 by solving
for Py.

Notes

1. Foragood historical analysis, see Couger and Knapp (Couger et al. 1974).

. By exactness we mean here that content of the categories introduced and the nature of relationships embedded in the

model are defined in an analytically exact way so that it can be used as a basis for developing techniques and deriving
systematically research questions. To this end we will use simple set theoretic notations to when introducing our basic
concepts.

. Some of the definitions and analyses may look somewhat complex. Therefore we have included a short glossary of terms

and their definitions at the end of the paper.

. We have expanded later this model to cover also situations where goal congruence cannot be assumed (see Bergman et al

2002).

. Those who are knowledgeable in possible world semantics (or Kripke semantics, sce €.8. (Dowty et al. 1981) can see an

immediate similarity with the set of solution spaces that can be reached from the current solution space and the concept
of the accessibility relation R from any given possible world to other possible worlds. The difference is that due to
organizational learning the set of possible solutions spaces accessible from the current solution space is not fixed, but
changes over time. ’
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6. This is similar to DeTombe’s simple definition of a problem (DeTombe 1994). It is also in alignment with the definition
used in the Requirement Engineering literature (Haumer etal. 1999; Kotonya et al. 1998).

7. This formulation does not exclude the possibility that the principal does not have these skills and capabilities available
when the time to act is in. We must, however, believe that there is some belief among actors’ involved in such capabilities
under the rational model, otherwise the principal should choose not to act at all. Within a political scenario, this is not
necessarily the case. This suggestion is also derived from the idea that it is actors with solutions looking for problems
rather than the other way round. Therefore the demonstrated capability is important in any RE process.

8. Latour (1991) call such contingencies or situations as “passage” points that are governed by “gatekeepers (Latour 1991).
9. These are known in the IS literature as abandoned projects or the process of de-escalation (Keil 1995; Keil et al. 2000).
10. of. Foucault’s ‘those who have ability to define ‘truth’ are those who have power’ (Foucault et al. 1980).

11. Organizational Power Politics, pp. 22

12. The issue of “who gets to be a principal” is as important as “what is the problem.” This issue is discussed throughout the rest
of the treatise. A more in-depth treatment of this issue is beyond the scope of this paper.

13. A problem is understood within the context of the socio-technical (e.g., organizational) ecology in which the solution
space resides. Each problem is constructed, legitimized, and owned by one or more principals who reside in this ecology.
Hence, all problems are ecologically situated (Suchman 1987), socially constructed (Berger et al. 1966; March etal. 1976)
and owned. Contextualization includes all of these concepts.

14. For the sake of clarity, each anomaly in Figure 2 has been defined into a problem.

15. Problem blossoming is similar to an aspect of Checkland’s Soft Systems Methodology (SSM) (Checkland 1990).
However, problem blossoming is focused on problem discovery and identification of likely impacted parts of S;.
SSM, in contrast, focuses on the whole process of systems development. Problem blossoming and SSM share the basic
components of iterative learning and discovery, as well as a recognition of the ability to change the current solution and
problem spaces as per new insights.

16. This space, S, is similar to Davis’ product space defined as “the range of all possible problem solutions that meets all
known constraints.” Software Requirements: Objects, Functions, and States, pp. 42

17. We are using here the concept of frame as defined by Bijker (Bijker 1987). Bijker uses the term frame to denote a new
aggregate of concepts and techniques employed by a community of problem-solvers in its problem solving. Changes in
frames embody “revolutions” and discontinuities in technology evolution. Such discontinuities are a reflected in such
elements as goals of technology use, theories and concepts, problem-solving steps and tools, and organizational and
managerial principles related to problem solving practices. An example of this is moving from structured programming to
object-oriented programming.

18. In theoretic terms, a solution space is the subset of the Local Solution Space (S) that is affected by as well as affecting
the system change. In practical terms, a solution space can be represented as a model of this space, for instance a (richly

detailed) workflow or equivalent model.

19. For clarity purposes, t+x is replaced by t+1 throughout the rest of the paper. This is used to indicate the time of an
operational future solution space.
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20. Loucopoulos & Karakostas, as well as most of the requirements engineering literature, transforms a capability into
functionality and a condition into a constraint (e.g., nonfunctionality). Functionality represents a want, need or desire of
one or more principals in S; for a new capability to be made available in response to one or more of their problems in Py.
This corresponds with Gause and Weinberg’s view on requirements engineering; a process to discover what people desire
(Gause et al. 1989). It is also in line with Graham’s view, which focuses on what is needed by people (Graham 1998). A
constraint represents a condition on a future solution in response to a problem.

2

—_

_This same observation has been confirmed by researchers advocating the spiral model of software development which
emphasizes the evolution and learning of requirements and the dynamic nature of mappings between requirements and
implementations (see ¢.g. (Boechm 1988; Tivari1990a; livari 1990b)).

22. As discussed earlier, there could be many arcs from a solution source to a single problem. Still, each arc is an individual
requirement. Also, the arrow on the arc (which is informational only) indicates the node pointed to is contextualized by
the node pointed from. In this case, a problem is contextualized by a solution.

23. A constraint does not originate in a formal document. It is rooted in one or more problems that are implied in the formal
document. Since, by definition, these contextualizing problems come from a formal document, they must have principal
representation and, thus, are part of P;. But, these problems are usually not clearly and specifically identified in most
formal documents. This means they cannot be accurately represented within Py. This is a source of potential requirements
failure. The possibility exists of not truly solving the problems that the formal document wanted addressed by the project
under consideration even if the constraints (or objectives) specified in a formal document are well met. In turn, this allows
for the increased probability of an incorrect future solution, resulting in eventual deployment failure. Altogether, this
highlights the importance of constraints as traceable relationships, not just stated restrictions.

24, The lightened and bolded parts of Si4q corresponds to proposed changes in the solution space S; in response to the
problems in Py.

25. cf. Bak’s adding a grain of sand causing an avalanche ina sand pile (Bak 1996).
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