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ABSTRACT: 

End-user development has enormous potential to make computers more useful in a large variety of 
contexts by providing people without any formal programming training increased control over 
information processing tasks. This variety of contexts poses a challenge to end-user development 
system designers. No individual system can hope to address all of these challenges. The field of end-
user development is likely to produce a plethora of systems fitting specific needs of computer end-users. 
The goal of this chapter is not to advocate a kind of universal end-user development system, but to cut 
across a variety of application domains based on our experience with the AgentSheets end-user 
simulation-authoring tool. We have pioneered a number of programming paradigms, experienced a slew 
of challenges originating in different user communities, and evolved end-user development mechanisms 
over several years. In this chapter we present design guidelines that cut across this vast design space by 
conceptualizing the process of end-user development as a learning experience. Fundamentally, we claim 
that every end-user development system should attempt to keep the learning challenges in proportion to 
the skills end-users have. By adopting this perspective, end-user development can actively scaffold a 
process during which end-users pick up new end-user development tools and gradually learn about new 
functionality. We structure these design guidelines in accordance to their syntactic, semantic and 
pragmatic nature of support offered to end-users. 
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1. INTRODUCTION 

The fundamental aim of End-User Development (EUD) (Klann, 2003; Paternò, 
2003) is to empower users to gain more control over their computers by engaging in 
a development process. The users we have in mind, called end-users, are typically 
not professional software developers. End-users employ pre-existing computer 
applications to achieve a variety of goals. They may be using email and browser 
applications to communicate with other users, word processors to write books, 
graphic applications to create computer art. Often, to make these applications truly 
useful, end-users may have to adapt these applications to their specific needs. 
Adaptation may assume many forms ranging from simple forms such as changing 
preference settings of applications, to more complex such as writing filtering rules 
for email applications or defining formulas for spreadsheets. The need to enable 
these more complex forms of adaptation is quickly increasing for various reasons. 
For instance, browsers are used to access quickly growing information spaces. Only 
the end-users of an application, not the developers of that application, can decide on 
how to deal with all this information. Application developers can no longer 
anticipate all the needs of end-users. This discrepancy between what application 
developers can build and what individual end-users really need can be addressed 
with End-User Development. 

The term End-User Development is relatively new, but it stems from the field of 
End-User Programming (Bell & Lewis, 1993; Cypher, 1993; Eisenberg & Fischer, 
1994; Fischer & Girgenson, 1990; Ioannidou & Repenning, 1999; Jones, 1995; 
Lieberman, 2001; Nardi, 1993; Pane & Myers, 1996; Rader, Cherry, Brand, 
Repenning, & Lewis, 1998; Alexander Repenning & Sumner, 1995). The shift from 
“programming” to “development” reflects the emerging awareness that, while the 
process of adapting a computer to the needs of a user may include some form of 
programming, it certainly is not limited to it. In that sense, most of the research 
questions from end-user programming carry over to end-user development but 
because of the widened scope of end-user development new issues need to be 
explored. End-User Development is of relevance to potentially large segment of the 
population including most end-users of traditional computer applications but also of 
information technology associated with ubiquitous computing. How, then, can the 
emerging field of end-user development provide answers to adaptation challenges 
including this wide range of applications, devices, contexts and user needs? How 
can we conceptualize this end-user and how can we help to make the process of end-
user development as simple as possible? 

Focusing initially on the programming aspect of end-user development we can 
benefit from research areas exploring strategies to make programming simpler. 
Visual Programming, for instance, has explored the consequences of replacing 
traditional, text-based, representations of programs with more visually oriented 
forms of representations. An early period of superlativism ascribing near magical 
powers to visual programming tried to polarize visual and textual programming 
approaches into good and bad. Many instances were found when textual 
programming worked just as well if not better then visual programming (Blackwell, 
1996). Gradually, it was recognized that the question of visual versus textual 



programming approaches cannot be decided on an class level but needs to be 
explored at the level of instances and closely investigated in the context of actual 
users and real problems. A number of frameworks have been postulated to evaluate 
programming approaches at a much finer level of grain. The Cognitive Dimensions 
framework by Green (Green, 1989; Green & Petre, 1996) introduced 14 cognitive 
dimensions to compare programming environments. Over time this useful 
framework has been extended with additional dimensions and a number of cases 
studies evaluating and comparing exiting programming environments. 

A framework in support of evaluation does not necessarily support the design 
and implementation of systems. For this article we like to assume a more 
prescriptive position by providing a collection of design guidelines that we collected 
over a period of twelve years of developing, using and improving the AgentSheets 
simulation authoring tool. The majority of these guidelines emerged from user 
feedback initially from the AgentSheets research prototype and later the commercial 
product. Design intuition may initially be the only clue on building a system, but it 
will have to be replaced with real user experiences to be useful.  

The process of end-user development is about learning. Many different users 
ranging from elementary school kids to NASA scientist have used AgentSheets over 
the years. Trying to reflect and generalizing over user populations and problem 
domains we found one perspective of experience that all of these users had in 
common. End-user programming, or for that matter end-user development, can be 
conceptualized as a learning experience. The process of end-user development is not 
a trivial one. End-user development environments cannot turn the intrinsically 
complex process of design into a simple one by employing clever interfaces no 
matter how intuitive they claim to be. Design cannot be addressed with walkup-and-
use interfaces (Lewis, Polson, Wharton, & Rieman, 1990; Lewis & Rieman, 1993). 
We found the learning perspective useful because it allowed us to characterize the 
end-user as a learner and to create end-user development tools in support of 
learning. 

 The essence of End-User Development is, we claim, to scaffold a programming 
or development tasks as a learning experience. We can neither make any 
assumptions on what the problem that a user tries to solve is nor the usage context. 
However, we can make some assumptions about the motivation and background of 
an end-user. Similar to the person trying to program a VCR, an end-user developer 
is not intrinsically motivated to learn about programming or development processes. 
Programming is simply a means to an end. The goal is to record the show, not to 
create a program. The VCR programming task is not likely to be enjoyed. At the 
same time an end-user programmer is not likely to have a computer science 
background and also not typically paid to do end-user programming.  

The appearance of an End-User Development system is largely irrelevant: this is 
not a question of visual versus textual programming. What is extremely important is 
that the End-User Development system carefully 

• balances the user’s skill and the challenges posed by a development 
process; and  

• enables an end-user developer to gradually acquire necessary skills for 
tackling development challenges.  

In short, what is needed is to conceptualize the process of end-user development 
as a learning experience. 
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1.1 Flow 

A framework that has allowed us to explore design options comes from psychology. 
The notion of flow has been introduced by Csikszentmihalyi to analyze motivational 
factors in learning (Csikszentmihalyi, 1990). In a nutshell, the idea of flow is that 
optimal learning can take place when there is a proportional relationship between 
the challenges a task poses and the skills the learner has. Anxiety results if the 
challenges outweigh the skill, while boredom results if skills outweigh the 
challenges (see flow diagram in Figure 1). Assume a really experience tennis player 
is matched up against a beginning player. The experienced player exhibits a large 
amount of skills. Playing against the beginning player will pose little of a challenge. 
The beginning player, in contrast, has almost no skills but will certainly perceive 
playing against the experienced player to be a high challenge. Putting these values 
into the diagram we see that the experienced player is likely to get bored whereas 
the beginning player is likely to enter a state of anxiety.  

 

Figure 1. Flow: The zone of optimal flow provides good learning conditions by 
balancing challenges posed to users with their skills. End-user programming 

requires low thresholds but may not necessarily scale well. Professional 
programming is less concerned with initial learning.  

We have used the notion of flow during several workshops on End-User 
Programming to discuss how users gradually learn different End-User Programming 
tools. In the computer context we look at the programming/development skills a user 
is likely to have and compare that to the perceived challenge of using an end-user 
development system. According to Csikszentmihalyi’s theory the ideal learning 
situation is established by keeping the ratio of challenge to skill in the diagonal band 
of the diagram called optimal flow.  



In the Syntactic, Semantic, and Pragmatic Guidelines sections of this article we 
will discuss design guidelines with respect to flow. A specific end-user development 
activity can be conceptualized as a single point reflecting development experience 
and problem complexity in the flow diagram. More importantly, repeated or long-
term use of an end-user development system is captured as arrows indicating a 
transition in skills and challenge. This transition may be due to using the same end-
user development system over time or could also be the result of transfer of using 
other systems.  

The shape of skill/challenge transition chains reveals the usability profile of a 
system. A programming environment for professional programmers is significantly 
different from an end-user development system. The complexity of a professional 
programming environment such as Visual Studio is overwhelming even to new 
professional programmers. Because they are paid, however, they are likely to be 
willing to make a transition through a non-optimal territory including anxiety. End-
user development systems typically cannot afford this without frustrating users. A 
simple development task for end-users needs to be sufficiently supported that even 
low skills will be sufficient to solve simple challenges without the overhead of a 
complete computer science education first. In most cases anxiety translates into 
giving up. Ideally, end-user development tools would strive for the goal of a “low-
threshold, no ceiling” tool (Papert, 1980). Realistically, a low threshold will 
probably need to be traded for scalability. This may be acceptable, since nobody 
expects end-user programming environments such as a VCR programming interface 
to be scalable to the point where an operating system could be implemented with it. 

The majority of our discussion relating design guidelines to flow will be focused 
on AgentSheets, since it is the system we have the most experience with. The 
following section will provide a brief introduction to AgentSheets sufficient to 
understand the design guidelines. 

2. AGENTSHEETS 

AgentSheets (Ioannidou & Repenning, 1999; Alexander Repenning & Ioannidou, 
1997; Alexander Repenning, Ioannidou, & Ambach, 1998; Alexander Repenning & 
Sumner, 1995) initially grew out of the idea of building a new kind of computational 
media that allows casual computer users to build highly parallel and interactive 
simulations, replacing simple numbers and strings of spreadsheets with autonomous 
agents. The simulations are used to communicate complex ideas or to simply serve 
as games. Adding a spreadsheet paradigm to agents enabled the manipulation of 
large numbers of agents and, at the same time, organize them spatially through a 
grid. An early prototype of AgentSheets was built in 1988 to run on the Connection 
Machine (a highly parallel computer with 64000 CPUs). 

Partially influenced by the spreadsheet paradigm, the AgentSheets agents were 
designed to feature a rich repertoire of multimodal communication capabilities. 
Users should be able to see agents and to interact with them. As more 
communication channels became available in mainstream computers, they got added 
to the repertoire of agent perception and action. Text-to-speech allowed agents to 
talk and speech recognition allowed users to talk to their agents. When the Web 
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started to gain momentum agents got extended to be able to read and interpret Web 
pages (Figure 2). 

 

Figure 2. AgentSheets' includes multimodal Agents that can perceive and act 

An agentsheet (also called a worksheet) is a grid-structured container of agents. 
In contrast to a spreadsheet each cell in an agentsheet may contain any number of 
interacting agents stacked on top of each other. The grid allows agents to employ 
implicit spatial relations, e.g., adjacency, to communicate with other agents. Table 1 
shows examples of agentsheets used for a variety of applications. End-user 
development consists of creating these applications by defining agent classes 
including the definitions of the agent looks, i.e., iconic representations, as well as 
the behaviour of agents.  

The programming part of End-User Development lies in the specification of 
agent behavior. Agent behaviors are rule-based using a language called Visual 
AgenTalk (VAT) (Alexander Repenning & Ambach, 1996a, 1996b; Alexander 
Repenning & Ioannidou, 1997). Visual AgenTalk is an end-user programming 
language that has emerged from several iterations of design, implementation and 
evaluation of previous AgentSheets programming paradigms including 
programming by examples using graphical rewrite rules, and programming by 
analogous examples.  

Visual AgenTalk rules are organized as methods including a trigger defining 
when and how a method will be executed. Figure 3 shows a traffic light agent 
cycling between green, yellow and red. The first method called “While Running” 
will be triggered one every simulation cycle. A rule can have any number of 
conditions and actions. The only rule of the “While Running” method checks time 
and calls another method called “Switch” every 3 seconds. The “Switch” method 
will advance the traffic light to the next state. The next color is selected based on the 
current state of the traffic light. Details on how end-users program in VAT are 
discussed in the design guidelines.  

 



 

Figure 3. A Visual AgenTalk Behavior Editor: Rules can have any number of 
conditions and actions. Rules are grouped into methods including triggers defining 

when and how methods will be invoked.
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K-12 Education: Elementary School 

 
Collaborative Learning: Students 

learn about life science topics such as 
food webs and ecosystems by 
designing their own animals. The 
AgentSheets Behavior Exchange is 
used to facilitate collaborate animal 
design. Groups of students put their 
animals into shared worlds to study the 
fragility of their ecosystems. 

K-12 Education: High School 

 
Interactive Story Telling: History 

students create interactive stories of 
historical events such as the 
Montgomery bus boycott.  

Training 

 
Distance Learning: With SimProzac 

patients can explore the relationships 
among Prozac, the neurotransmitter 
serotonin, and neurons. By playing 
with this simulation in their browsers, 
patients get a better sense of what 
Prozac does than by reading the cryptic 
description included with the drug.  

Scientific Modelling 

 
Learning by visualization and 

modeling: The effects of 
microgravity onto E.coli bacteria are 
modelled by NASA. This is a 
simulation of an experiment that was 
aboard the Space Shuttle with John 
Glenn. This simulaton requires 
several thousand agents. 
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Educational Games 

 
Learning through simulation use: 

This simple voting simulation explains 
concepts such as clustering, migration 
and stability of two party systems. Can 
it predict the outcome of the election in 
2000? 

Non-Educational Games 

 
Learning through design: Even if 

the finished simulation/game is not 
directly related to educational goals, 
the process of building the simulation 
may be very educational. The 
Ultimate Pacman is a complete game 
based on complex Artificial 
Intelligence algorithms and the non-
trivial math of diffusion processes. 

 
 
 
 
 

Interactive Illustrations 

 
How does a TV work? This 

simulation illustrates how a picture is 
scanned in by a camera (left), 
transmitted to a TV set and converted 
back in to a picture (right). Users can 
paint their own pictures and play with 
TV signal processing parameters. 

Deconstruction Kits 

 
Learning by taking apart: What 

makes a bridge stable? The goal 
presented to the users of this 
simulation is to remove as many 
elements of the bridge as possible 
without making the bridge collapse. 
A number of connected issues are 
revealed including forces, 
architecture, and geometric 
perspective. This simulation was 
featured on the PBS Mathline. 

Table 1. AgentSheets Examples 
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This minimalist introduction to AgentSheets is only provided to give the reader 
on a quick sense on what AgentSheets is and what type of applications it has been 
used for. The focus of this chapter is to provide design guidelines that may help 
designers building end-user development systems. These design guidelines are 
intended to provide prescriptive descriptions of End-User Development suggestions. 
These guidelines have emerged from observing people using the AgentSheets 
system. The guidelines are generalized as much as possible to help designers of 
systems that have nothing to do with simulation authoring and programming 
environments for kids. Nonetheless, AgentSheets examples are included to provide 
sufficient substance illustrating concrete problems. Our hope is that while concrete 
manifestations of problems may change over time (e.g., new versions of operating 
systems, GUIs) the guidelines will still hold. In contrast to design patterns 
(Alexander et al., 1977; Gamma, Helm, Johnson, & Vlissides, 1995), the design 
guidelines not only observe existing patterns but provide descriptive instructions in 
form of implementation examples. For simpler reference, we have categorized the 
design guidelines into syntactic, semantic and pragmatic. Finally, all guidelines are 
presented with optimal flow in mind. Many guidelines are reactions to breakdowns 
where users reacted with either anxiety or boredom.  

This list of design guidelines is not exhaustive. No set of design guidelines can 
guarantee the design of a successful end-user development system. The notion of 
flow can help us – to a certain degree – to design systems that can be learned. The 
following three sections will present guidelines at the syntactic, semantic and the 
pragmatic level. 

3. SYNTACTIC GUIDELINES 

Syntactic problems of traditional languages, e.g., the frequently mentioned missing 
semicolon in programming language such as Pascal or C, pose a challenge to most 
beginning programmers for no good reason. This quickly leads to anxiety without 
contributing much towards the conceptual understanding of a programming 
language. A number of end-user but also professional programming environments 
have started to address this problem. 

Visual programming (Burnett, 1999; Burnett & Baker, 1994.; Glinert, 1987; 
Smith, 1975) is one such paradigm that attempts to pictorially represent language 
components that can be manipulated to create new programs or to modify existing 
ones. Visual programming languages are “a concerted attempt to facilitate the 
mental processes involved in programming by exploiting advanced user interface 
technology” (Blackwell, 1996). For instance, the visual representation of the 
language components and constructs often eliminates the need to remember syntax. 
Professional programming, not geared towards end-users, is following by using 
approaches that range from making syntactic errors hard to impossible. 
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3.1 Make syntactic errors hard 

Syntax coloring of reserved words and symbols in traditional programming 
language environments helps the programmer’s perception, which in turn helps in 
creating syntactically correct programs. Symbol completion in languages such as 
Lisp, and more recently C, helps programmers to produce complete and correct 
symbols already defined in the programming language, minimizing the possibility of 
making a typographical error and therefore a syntax error. Finally, wizards utilizing 
templates for defining program attributes and then generate syntactically correct 
code, such as the wizard in the CodeWarrior programming environment, 
syntactically support programmers. 

3.1.1 example: Apple Xcode development environment 
Apple’s Xcode developer tool set includes highly customizable syntax coloring 
(Figure 4) combined with code completion that can be manually or automatically 
invoked by a user. Project templates will generate boilerplate code for the user when 
creating certain types of projects. 

 

Figure 4. Syntax Coloring in Apple’s Xcode Programming Tools 

Even with this type of support these tools are only marginally useful to end-users 
since they still pose a high challenge and require sophisticated skills such as the 
ability to create programs in C. 

3.2 Make syntactic errors impossible 

Other programming approaches employ mechanisms that help with the syntactic 
aspects of programming in such a way that syntactic errors are essentially 
impossible. 
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3.2.1 example: Programming by Example  
In Programming by Example (PBE) (Cypher, 1993; Lieberman, 2001) syntactic 
problems are avoided by having the computer, not the user, generate programs. A 
computer observes what the user is doing and, for repetitive tasks, learns them and 
ultimately does them automatically.  

An instantiation of the PBE approach is found in AgentSheets’ Graphical 
Rewrite Rules (GRR) (Bell & Lewis, 1993). In GRR the program is the result of 
manipulating the world. As the user interacts with the computer world, the PBE 
system observes users and writes the program for them. The only skill users need to 
have is the skill to modify a scene. To program a train, the user creates examples of 
how trains interact with their environment (Figure 5). The fact that trains follow 
train tracks is demonstrated by putting a train onto a train track, telling the computer 
to record a rule, and moving the train along the train track to a new position. The 
computer records this user action as a pair of Before/After scenes. The generalize 
the rule users will narrow the scope of the rule to the required minimum and, if 
necessary, remove irrelevant objects. A tree next to the train track is likely to be 
irrelevant and consequently should be removed from the rule, whereas, a traffic light 
could be essential to avoid accidents. 

 

Figure 5. Programming by Example through graphical rewrite rules. 

Programming by Example works well for end-user development from a flow 
perspective, especially at the beginning. Skills and challenges are well balanced 
because programming is achieved by merely manipulate scenes (moving, deleting, 
and creating objects). However, many programming by example systems do not 
scale well with problem complexity. Two scenarios are possible.  
1) Getting bored: Assume the user wants to create Conway’s “Game of Life”. A 

first concrete rule is built quickly but then, in order to implement the entire 
condition of n out of m cells alive the user is forced to create all f(n, m) rules 
since the system cannot generalize. Using only a medium amount of skill for 
basically no challenge (as all rules are simple variants of the first existing one), 
the user becomes bored. 
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2) Getting anxious: Assume the user wants to create a situation where numerical 
diffusion is necessary – for example to illustrate how heat diffuses in a room. 
The pure iconic nature of Graphical Rewrite Rules makes them ill suited for 
implementing such numerical problems. The mismatch of the language and the 
problem makes the task of implementing diffusion complex. If the complexity 
of the task increases in a way that the main programming paradigm gets 
exhausted, the user is expected to learn something new that cannot easily be 
connected or does not fit to the current paradigm. As a consequence, the 
challenges soar up disproportionally. The learning curve is no longer a gentle 
slope and the end-user programmer leaves the optimal flow area of the graph 
and ends up in a state of anxiety (Figure 1). 

In either of these two cases, the programming paradigm worked well for a short 
learning distance, keeping challenges in proportion to skills. But the paradigm 
reaches a critical threshold at which either the challenges go way up or the existing 
skills are no longer well used. We called this effect “trapped by affordances” 
(Schneider & Repenning, 1995). 

3.3 Use Objects as Language Elements 

Instead of just representing programming language elements as character strings – 
the way it is done in most professional programming language such as C or Java – 
they can be represented as complete objects with user interfaces. Visual 
representations of these objects (shapes, colors, and animation) may be selected in 
ways to strongly suggest how they should be combined into a complete working 
program. Drag and drop composition mechanisms including feedback functions can 
be employed to guide users. Additionally, language elements may embody user 
interfaces helping users to define and comprehend parameters of language elements. 

3.3.1 example: Puzzle Shape Interfaces 
One approach to achieve easy program composition was languages that use a 
compositional interfaces for assembling programs from language components with 
visual representations. Glinert’s BLOX Pascal uses flat jigsaw-like pieces that can 
be snapped together (Glinert, 1987). The BLOX method was one of the first 
proposals on using the third dimension for visual programming. While this approach 
alleviates some syntactic issues such as correct sequencing of language statements 
and parameter setting, the BLOX Pascal language is still, in essence, a professional 
programming language. End-user programming languages have been developed 
with the same philosophy. LEGO Mindstorms includes an end-user programming 
environment for kids to program the LEGO RCX Brick, which can be used to 
control robotic LEGO creations. The language used to program the Brick is LEGO 
RCX Code, which uses a jigsaw puzzle user interface similar to BLOX Pascal.  
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3.3.2 example: AgentSheets Visual AgenTalk 
The AgentSheets simulation environment the Visual AgenTalk language (Alexander 
Repenning & Ambach, 1996a, 1996b; Alexander Repenning & Ioannidou, 1997). 
All language elements (conditions, actions and triggers) in VAT are predefined and 
reside in palettes (Figure 6). Using drag and drop, users essentially copy these 
language elements and assemble them into complete programs, in if-then forms in 
an agent’s behavior editor, such as the one shown in Figure 3. 

 

Figure 6. The Visual AgenTalk action palette 

Command parameters, called “type interactors” in AgentSheets, are set by the 
user via direct manipulation. For instance, the SEE condition tests for the presence 
of an agent with a certain depiction in a specific direction (Figure 7). Direction and 
depiction are parameters to the command and are both set via direct manipulation. 
This is important because, as pointed out by Nardi (Nardi, 1993), the way 
parameters are specified can affect the extent to which the programmer must learn 
language syntax. The integration of parameters that are directly manipulatable, such 
as the 2D pop-up dialogs for direction and depiction, elevate the program onto the 
level of a user interface combining ideas of form-based interfaces (Nardi, 1993) with 
end-user programming.  

In terms of flow, an initial price needs to be paid because the end-user is forced 
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to explicitly deal with programming language constructs. Direct manipulation 
interfaces help to avoid syntactic problems. A form-based interface includes iconic 
representations of object created by the end-user (e.g., drawings of agents). 
Depending on the repertoire of the end-user programming language this approach is 
likely to be more expressive compared to programming by example approaches by 
allowing the end-user to combine language constructs in way that could not have 
been anticipated by a PBE approach.  

 

 

Do I look like a brick? 

 

 

 
Change direction parameter: 
 
 
 
Does the agent to my right 
look like a brick? 

 

 

Change depiction parameter: 
 
 
 
 
 
 
 
 
 
 
 
Does the agent to my right 
look like a truck? 

Figure 7. SEE condition and its parameters 

4. SEMANTIC GUIDELINES 

The reduction of syntactic problems is a necessary but not sufficient goal of end-
user development. The frustration over missing or misplaced semicolons in 
professional programming has probably put an early end to many programming 
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careers. However, a program that is syntactically correct not necessarily an efficient, 
working, or meaningful program. Support at the semantic level helps end-users with 
bridging the conceptual gap between problem and solution.  

4.1 Make domain-oriented languages for specific EUD 

The elements of a programming language are often close to the elements of a natural 
language. Using some form of syntax, programming language elements representing 
words such as nouns, verbs, and adjectives are aggregated into complete statements. 
In early, low level, programming languages these words were typically heavily 
inspired by the domain of computers. In assembly programming nouns refers to 
elements found on the CPU such as registers and verbs refer to instructions at the 
CPU level such as “load”. Modern high-level languages have replaced references to 
low-level technological details with more general concepts such as data structures 
(e.g., integer, floats, structures, objects). But even this level is difficult for end-user 
developers. Correlating concepts relevant to a certain application with elements of a 
generic language can be a large challenge. Nardi suggest the use of task-specific 
programming languages (Nardi, 1993) as means to reduce this correlation effort. 
Along a similar vein Eisenberg and Fischer postulate the use of domain-oriented 
programming languages (Eisenberg & Fischer, 1994). A good example of such a 
domain-oriented programming language was the pinball construction kit allowing 
people not only to play a simulated pinball game but also to build their own. The 
pinball construction kit language consisted of a palette of pinball components such 
as flippers and bouncers.  

With an extensible architecture, AgentSheets was used to build a number of 
domain-oriented languages such as the Voice Dialog Design Environment (Alex 
Repenning & Sumner, 1992), the AgentSheets Genetic Evolutionary Simulations 
(Craig, 1997) and the EcoWorlds environment by the Science Theater team (Brand, 
Rader, Carlone, & Lewis, 1998; Cherry, Ioannidou, Rader, Brand, & Repenning, 
1999; Ioannidou, Rader, Repenning, Lewis, & Cherry, 2003). Domain-orientation 
can dramatically reduce the challenge of using a tool but at the same time reduces 
the generality of a tool. In terms of flow, this translates into highly specific 
environments that require little training, but have a limited range of applications. 

4.1.1 example: EcoWorlds 
The EcoWorlds system, a domain-oriented version of AgentSheets for ecosystems, 
was used as a life sciences learning tool in elementary schools. A learning activity 
would consist of students working in teams to create artificial creatures participating 
in an ecosystem. Large predators can eat small animals that may eat even smaller 
animals or plants. The goal of this activity was for students to understand the fragile 
nature of ecosystems. They had to tweak their designs very carefully to create stable 
environments. A first attempt of the project tried to use AgentSheets and KidSim 
(Smith, Cypher, & Spohrer, 1994) (later called Creator). The challenge of mapping 
domain concepts relevant to the curriculum such as reproduction rates and food 
dependencies was simply too much of a challenge for kids to achieve. The Science 
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Theater team created a domain-oriented version of AgentSheets (called EcoWorlds) 
to capture the domain of ecosystems. A trivial example of this process was the 
replacement of the Erase action with the Eat action. More complex language 
elements included complete templates referring to reproduction rates, food 
categories and other ecosystem-specific concepts.  

With EcoWorlds, kids were able to create complex, and most importantly, 
working ecosystem simulations. There are trade offs, of course. The design of a 
well-working domain-oriented language is by no means trivial. Many domains tend 
to change over time requiring maintenance of the domain-oriented programming 
langue. The conceptualization of a domain by the language designers may not match 
the conceptualizations of the same domain by the users. User-centered design 
(Lewis & Rieman, 1993; Norman, 1986) can help to some degree. Finally, the 
specificity of a language to one domain may render it useless to other, non-related 
domains.  

4.2 Introduce Meta-Domain Orientation to Deal with General EUD 

A more general-purpose EUD language can make few, if any, assumptions about the 
application domain. Consequently, the usefulness of a domain-oriented language is 
severely limited. Meta-Domain oriented languages are languages that are somewhat 
in between the application domain and the computer domain. Spreadsheets are 
examples of meta-domain orientation. The spreadsheet metaphor, while inspired 
originally by bookkeeping forms, is a neutral form of representation that is neither 
directly representing the application domain nor is a low-level computer domain 
representation. People have used spreadsheets for all kinds of applications never 
anticipated by the designers of spreadsheet tools. More specific applications that 
initially were solved with spreadsheets, such as tax forms, have meanwhile been 
replaced with complete, domain-oriented tools such as tax-form tools. Where 
domain-orientation is possible and effective (from the economic point of view, e.g., 
if there are enough people with the exact same problem) domain-oriented tools are 
likely to supersede more generic tools in the long run. 

AgentSheets uses its grid-based spatial structure as meta-domain allowing people 
to map general problems onto a spatial representation. A grid is an extremely 
general spatial structure that can be employed to represent all kinds of relationships. 
In some cases, the grid is employed to spatially represent objects that also have a 
natural spatial representation. In other cases, the grid is used to capture conceptual 
relationships that have no equivalence in the physical world.  

Meta-domain orientation manifests itself in the End-User Development 
language. In AgentSheets the Visual AgenTalk language includes a variety of spatial 
references embedded at the level of commands and type interactors. 
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Actions: Some VAT actions are intrinsically spatial. 
For instance, the Move action is used to make an 
agent move in space from one grid location to 
another adjacent position. Others actions are spatial 
in conjunction with their parameters. The parameter 
of the Erase action defines where to erase an agent.  

 

Conditions: A large number of VAT conditions are 
used to evaluate spatial relationships. The See 
condition allows an agent to check if an adjacent 
cell in a certain direction contains an agent with a 
certain depiction.  

 

Type Interactors: Type Interactors are parameters of 
VAT condition/action commands including a user 
interface. Some type interactors such as Direction-
Type allow users to select a direction to an adjacent 
grid location. 

Table 2: Visual AgenTalk Actions, Conditions and Type Interactors  

4.3 Use Semantic Annotations to Simplify the Definition of Behavior 

End-User Development is not limited to programming. It includes the creation and 
management of resources such as icons, images, and models. The program defining 
the behavior of an application needs to be connected with resources defining the 
look of an application. End-User Development tools should support the creation as 
well as the maintenance of these connections. At a simple, syntactic level, this 
connection should become visible to a user. Visual AgenTalk, for instance, includes 
the Depiction-Type interactor, which essentially is a palette of all the user-defined 
icons. Things get more complex at the semantic level because development systems 
cannot automatically derive semantic information from artwork. However, with a 
little bit of semantic annotation or meta-data provided by users an end-user 
development system can greatly simplify the development process. 

4.3.1 Example: Semantic Rewrite Rules 
Graphical rewrite rules, as a form of end-user programming, suffer from their 
implicit underlying model. Interpretation of rewrite rules limited to syntactic 
properties makes it laborious for end users to define non-trivial behavior. 
Semantically-enriched graphical rewrite rules have increased expressiveness, 
resulting in a significantly reduced number of rewrite rules. This reduction is 
essential in order to keep rewrite rule-based programming approaches feasible for 
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end-user programming. The extension of the rewrite rule model with semantics not 
only benefits the definition of behavior but additionally it supports the entire visual 
programming process. Specifically the benefits include support for defining object 
look, laying out scenes consisting of dependent objects, defining behavior with a 
reduced number of rewrite rules, and reusing existing behaviors via rewrite rule 
analogies. These benefits are described in the context of the AgentSheets 
programming substrate. 

 

Figure 8. Connectivity Editor. Users add semantic annotations to define the meaning 
of an icon. A horizontal road connects the right side with left side and the right side 

with the left side. 

 

Figure 9. Icons and their semantic annotations are geometrically transformed. 
Semantic information is used to establish isomorphic structures for generalized 

rules and analogies. 

Semantic Rewrite Rules (Alexander Repenning, 1995) allow users to annotate 
their icons with semantic information such as connectivity. For instance, an icon 
representing a horizontal strip of road can be annotated with connectivity arrows 
indicating that this road connects the right with the left and the left with the right. 
AgentSheets can then transform these icons syntactically as well as semantically. 
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The syntactic transformation will bend, rotate, split, and intersect icons by applying 
bitmap operations to the original road icon (Figure 8). The semantic information will 
be transformed by automatically deriving the connectivity information of the 
transformed icons. Finally, the single rewrite rule describing how a train follows a 
train track (Figure 5) is now interpreted on a semantic level. This one rule is 
powerful enough that the train can follow any variant of train tracks without the 
need to create the large set of all the permutations of trains driving in different 
directions and train tracks. In terms of flow, the user can now, with the same degree 
of skill, tackle substantially larger challenges.  

4.3.2 Example: Programming by Analogous Examples 
Analogies are powerful cognitive mechanisms for constructing new knowledge from 
knowledge already acquired and understood. When analogies are combined with 
programming by example, the result is a new end-user programming paradigm, 
called Programming by Analogous Examples (Alexander Repenning & Perrone, 
2000; Alexander Repenning & Perrone-Smith, 2001), combining the elegance of 
PBE to create programs with the power of analogies to reuse programs.  

This combination of programming approaches substantially increases the 
reusability of programs created by example. This merger preserves the advantages of 
programming by example and at the same time enables reuse without the need to 
formulate difficult generalizations. For instance, if programming by example is used 
to define the behavior of a car following roads in a traffic simulation, then by 
analogy this behavior can be reused for such related objects as trains and tracks by 
expressing that “trains follow tracks like cars follow roads”.  

 

Figure 10. An analogous example defines the interactions between cars and roads 
by establishing an analogous connection to trains and train tracks. 

The analogy between cars and trains can be established because of the semantic 
information. At the syntactic level the system could not have recognized the 
relationships between cars and trains but the semantic information is sufficient to 
allow the system to find the corresponding match based on the connectivity of icons. 
In terms of flow, Programming by Analogous Examples simultaneously reduces the 
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challenge of programming and requires few skills to establish an analogy. However, 
sometimes analogies can be hard to see and even when they can be applied analogies 
may break down requiring some kind of analogy exception handling.  

5. PRAGMATIC GUIDELINES  

In addition to the syntactic and semantic support described above, a programming 
language has to provide pragmatic support to be effective as an end-user 
development tool kit. That is, an end-user development language should make 
programs personally relevant to the end-user and the programming process more 
practical. 

5.1 Support Incremental Development 

When a programming language allows and supports incremental development of 
programs, end-user programmers do not feel that what they are asked to do with the 
computer is too difficult, but instead that they are building up the necessary skills in 
an incremental fashion, thus staying in the optimal flow of the learning experience. 
Incremental development provides instant gratification, avoids leaps in challenge 
and allows skills to grow gradually. 
• Get instant gratification: end-user programmers have the opportunity to execute 

and test partially complete programs or even individual language components, 
getting feedback and gratification early on in the programming process.  

• Avoid leaps in challenge: the step-by-step creation of a program enables end-
user programmers to incrementally add complexity to their program, avoiding 
huge leaps in challenge and tasks that would otherwise be infeasible and would 
undoubtedly lead to anxiety (Figure 1). Traditional languages that force the 
programmer to have a complete program-compile-run cycle before each test of 
the program are typically more time-consuming and drive programmers into a 
style of programming where they write big chunks of code before trying it out, 
which often makes debugging harder. 

• Allow skills to grow gradually: when end-users incrementally develop, test, and 
debug programs, their skills grow in proportion to the challenge they face. 
Incremental development provides the end-user programmers with mechanisms 
to first tackle small parts of the challenge before incorporating them to the 
bigger picture.  

The form of exploratory and experimental programming that is afforded by small 
increments of code is well suited to end-user programmers that are not experienced 
programmers and have not received formal education in software design methods 
and processes. 

5.1.1 example: Tactile Programming 
AgentSheets’ Visual AgenTalk is an end-user programming language that elevates 
the program representation from a textual or visual representation to the status of a 
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user interface. In its elevated form, the program is the user interface. By providing 
language objects (conditions and actions) packaged up with user interfaces, VAT is 
rendered into a tactile programming language. 

Tactility is used here not in the sense of complex force feedback devices that are 
hooked up to computers, but much more in the sense used by Papert to explain the 
closeness of bricoleur programmers to their computational objects (Papert, 1993). 
One departure from Papert's framework is that the notion of computational objects in 
Visual AgenTalk is not limited to the objects that are programmed, such as the Logo 
turtle, but also applies to the programming components themselves, which are 
elevated to the level of highly manipulatable objects (Alexander Repenning & 
Ioannidou, 1997). 

Visual Programming is employing visual perception to simplify programming by 
increasing the readability of programs. Tactile Programming does not question this 
goal, but hopes to make programming more accessible to end-users by adding the 
perception of manipulation to visual perception. In Tactile Programming, programs 
are no longer static representations nor is the notion of manipulation reserved to 
only editing programs. Instead, tactile programs and their representations are 
dynamic and include manipulation, such as setting parameters by manipulating 
parameter spaces (Figure 11) or composing programs by dragging and dropping 
languages pieces in behavior editors. 

 

 

 

Figure 11. The function of a tactile programming object can be perceived through 
interaction. 

Tactile Programming primitives and programs not only have enhanced visual 
representations to help program readability, but also have interactive interfaces to 
assist with program writability. With Tactile Programming programs can be 
composed incrementally along clearly defined boundaries, making program 
composition easy.  

5.2 Facilitate Decomposable test units 

Traditional programming languages do not allow out-of-context testing of individual 
statements, because for instance there may be undefined variables in that small 
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fragment of code to be tested. In contrast, the kind of interface tactile programming 
provides, supports an exploratory style of programming, where users are allowed to 
“play” with the language and explore its functionality. Perception by manipulation 
afforded by tactile programming allows end-users to efficiently examine 
functionality in a direct exploration fashion. Any VAT language component at any 
time can be dragged and dropped onto any agent. The component will execute with 
visual feedback revealing conditions that are true or false and showing the 
consequences of executed actions. 

Program fragments can be tested at all levels: conditions/actions, rules, and 
methods. For instance, dragging the move command from the action palette onto the 
Ball agent in the worksheet will make the ball move to the right (Figure 12). 

 

 

⇒ 

 

Figure 12. What does move right do? Drag program fragment onto agent to see 
consequences. Dragging move-right action onto ball will make ball move to the 

right one position. 

Condition commands, when dragged and dropped onto agents, will reveal 
whether the condition holds for the agent in its current context. If the See condition 
is dragged onto the soccer player in the worksheet, visual and acoustic feedback will 
immediately indicate that this condition would not hold. In the case of Figure 13, it 
will indicate that the condition is “true”. 

 

Figure 13. Testing conditions: dragging See-right-ball condition onto soccer player 
agent will test if there currently is a ball immediately to the right. The condition is 

true. 

Dragging and dropping an entire rule onto an agent will test the entire rule. Step-
by-step with visual feedback, all the conditions are checked. In our example rule 
(Figure 14), only one condition exists. If the soccer player agent sees to his right a 
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ball agent, the condition is successfully matched and, as consequence, all the actions 
are executed— in this case, changing the depiction of the player (Change action), 
colorizing him red to show who is in control of the ball (Set color to action) and 
keep that for a while (wait action); then tell the ball (which happens to be to his 
right) to run its “kick-right” method and reset the colorization back to its original 
colors. The results of the executed rule are graphically shown on the right (Figure 
14). Had the condition of that rule failed, acoustic feedback would have been 
provided and the condition that failed would have blinked to indicate the problem.  

 

 

 

 

 

 

Figure 14. Testing Rules. If all the conditions of the rule are true then the actions 
will be excuted. One action after anoter get highlited, and the consequence of 

running it visualized in the simulation.The agent changes to look like the kicking 
player, it turns red, after some time it sends the kick-right message to the ball, and 

turn its color back to normal. 

Tactile programming with decomposable test units at different levels of 
granularity of the programming language (individual commands, rules, methods) 
provides easy debugging even for end-user programmers that do not posses the skills 
of professional programmers in debugging.  

On the down side, drag and drop may not necessarily be the best mechanism for 
testing these language components. While drag and drop is an excellent mechanism 
for program composition, for this type of testing it may not be as intuitive or obvious 
as one may think. User testing has shown that when using the Macintosh version of 
the AgentSheets simulation-authoring tool, users have to be told this drag and drop 
testing feature exists. This was remedied in the Windows version of the software by 

adding a Test button in the behavior editor window. Instead of dragging 
and dropping commands or rules onto agents in the worksheet, a user 
simply selects the language component to be tested and the agent on 
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which to test it on and presses the Test button. Not only this makes this debugging 
feature more apparent, but it also affords multiple tests of the same language 
component without the mundane effort of dragging and dropping the same piece 
over and over again. 

Whatever the mechanism, the point remains that end-user programming 
languages need to allow their users to test any piece of the program at multiple 
granularities (command, rule, method) in the context of an agent in the worksheet at 
any time during the development process. This supports understandability of the 
language and therefore enhances program writability. 

5.3 Provide Multiple Views with Incremental disclosure 

One of the criticisms of visual programming languages is that they use a lot of 
screen real estate (Green & Petre, 1996). To improve program readability and 
consequently program comprehension, multiple views of the same program should 
be available to end-user programmers. Using disclosure triangles is one technique to 
collapse and expand program components.  

5.3.1 example: Disclosure Buttons and Disclosure Triangles 
In AgentSheets, disclosure triangles are used to show or hide methods in an agent’s 
behavior editor. Figure 15 shows the collapsed “Advance” method of the Car agent 
with only its name, documentation, and number of rules contained visible in the 
editor. 

 

Figure 15. A collapsed method shows only the documentation information and, as 
indicator for method complexity, the number of rules contained. 

Figure 16 shows the expanded version of the same method with all the rules 
exposed. 
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Figure 16. The expanded view provides access to al the rules. 

In terms of flow, the ability to switch between views helps to manage 
information clutter and consequently simplifies the location of relevant information.  

5.4 Integrate Development Tool with Web Services 

The Web is a rich resource of information that can help the design process. 
Development tools in general and end-user development tools specifically should 
make use of these resources by providing seamless connection mechanisms helping 
to find relevant resources based on the current design state.  

5.4.1 Example: Design-Based Google Image Search 
AgentSheets can locate relevant artwork based on the design state 
of an agent using the Google image search. Say a user creates an 
agent called “red car” and designs an icon quickly using a bitmap 
editor. Instead of creating their own artwork users may use 
AgentSheet’s “Search Depictions on Web” function. This function 
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will use information from the design environment, the name of the agent class “red 
car”, compute a Google query and open a Web browser. There is no guarantee that a 
suitable image is found but if users do find a good match they can import images 
into AgentSheets. 

 

Figure 17. A Goggle Image search triggered by the Design of a "red car" agent. 
Suitable images can be imported into AgentSheets. 

Integration with Web services are relevant to flow, in the sense that integration 
not only extends design spaces with external resources but also reduces rough 
transitions between otherwise non-connected tools.  

5.5 Encourage Syntonicity 

Papert used the term syntonicity to describe how children's physical identification 
with the Logo turtles helped them more easily learn turtle geometry (Papert, 1980, 
1993; Papert & Harel, 1993). Syntonicity helps people by allowing them to put 
themselves into the “shoes” of the objects they create and program. As a mindset 
syntonicity encourages the development of mini scenarios helping to disentangle 
potentially complex interaction between multiple objects: “If I where the car driving 
on the bridge doing …” As an extension to Papert’s stance towards syntonicity, we 
found that syntonicity can be actively cultivated by a system through a number of 
mechanisms. Moreover, we find syntonicity relevant to end-user development in 
general because it helps to overcome some essential misconceptions of 
programming often found in non-programmers. 
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5.5.1 example: First-Person Domain-oriented language components 
Students often find it difficult to map their ideas about science phenomena onto the 
operations provided by a visual language (Brand & Rader, 1996). Commands that 
match the problem domain can simplify this process and also focus the students’ 
attention on important aspects of the content. The Visual AgenTalk language has 
been customized by researchers at the University of Colorado conducting research 
on modeling ecosystems in elementary school settings to support the programming 
of concepts in that domain. A number of domain-oriented commands were 
introduced to support the definition of predator-prey interactions. For example, rules 
that enable a predator to eat are stated as, “If I can select food <description of prey, 
based on features> then try to eat it, because I am <description of self, specifying 
why I can eat this prey>.” This set of commands replaces more basic actions, such 
as “see” and “erase,” with the specific actions of selecting food and trying to eat it. 
The design of the commands also requires students to enter features of the predator 
and prey, thereby reinforcing science ideas about structure and function (Brand et 
al., 1998; Cherry et al., 1999; Rader, Brand, & Lewis, 1997; Rader et al., 1998).  

Not only were these customized commands domain-oriented, but they were also 
presented in the first person, e.g. “I eat”. The result was for students to identify with 
the agents they were building (namely, the animals), which was apparent in their 
lively discussions about their ecosystem simulation. The students typically referred 
to their animals in the first person, saying for example “I’m dead” rather than “My 
animal is dead,” or “I can eat you” rather than “my Ozzie can eat your Purple 
Whippy Frog.” Perhaps because of this identification, students were very motivated 
to ensure that their animals survived. Although students initially had a tendency to 
want their animals to survive at the expense of other populations, this tendency was 
often mitigated once they realized that the other species were necessary for their 
animal’s long-term well-being (Ioannidou et al., 2003). 

Whereas the benefits from domain-oriented language pieces are evident from the 
example above, such a method is not always the most appropriate. The language can 
quickly get verbose and more importantly its customized components become 
incompatible with the language of the standard system. 

5.5.2 example: Explanations via Animated Speech and Animated tool tips 
Syntonicity can manifest itself not only as customized language pieces, but also in 
the form of explanations of the language components. In AgentSheets for example, 
individual commands and entire rules are syntonically explained via a unique 
combination of animation and speech (in the Mac version) or animation and textual 
tool tips (in the Windows version). When the “Explain” button is pressed when a 
single command is selected, the system steps through each component of the 
command annotating with blinking animation and verbally explains (either with 
speech synthesis or animated text in tool tips) what the command does. For instance, 
for the WWW read condition, the system explains that the condition is true in the 
context of an agent, if that agent finds the string specified when reading a specified 
Web page (Figure 18). First person is used to stress the fact that language pieces 
only make sense in the context of an agent, as pieces of that agent’s behavior. 
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Figure 18. An Animated Speech/Tooltip will explain command through a complete 
English sentence. Speech/Animation is synchronized with the selection of command 

parameters to establish the correspondence. 

Explanations are not static but they will interpret the current values of 
parameters. In some cases this will result in simple variations of sentences whereas 
in other cases the explanatory sentence will be more considerably restructured in 
other to clarity the meaning to the user (Figure 19).  

 

Explanation: Remove me from the worksheet 

 

Explanation: Erase the agent to my right. 

Figure 19. Explanation variations depending on parameters 

Explanations reduce challenges based on the comprehension of programs. At the 
same time they eliminate the need for languages to be more verbose which is often 
considered a good property for beginning programmers but gets in the way for more 
experienced programmers.  

5.6 Allow Immersion 

Immersing end-user programmers into the task and helping them experience the 
results of their programming activity by directly manipulating and interacting with 
their artifacts is an important factor for keeping them in the optimal flow part of the 
learning experience.  

5.6.1 example: LEGOsheets and direct control of motors 
LEGOsheets (Gindling, Ioannidou, Loh, Lokkebo, & Repenning, 1995) is a 
programming, simulation and manipulation environment created in AgentSheets for 
controlling the MIT Programmable Brick. The brick, developed at the MIT Media 
Lab as the research prototype of what is now known as LEGO Mindstorms, receives 
input from sensors, such as light and touch sensors and controls effectors, such as 
motors, lights and beepers. The combination of LEGOsheets and the Brick gives 
children the ability to create physical artifacts (vehicles and robots) and program 
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them with interesting behaviors (Resnick, 1994; Resnick, Martin, Sargent and 
Silverman, 1996).  

 

 

 

 

Figure 20. LEGOsheets a programming environment to program and directly 
control the MIT programmable brick. LEGOsheets programs are highly parallel 

putting rule-based behaviors into sensor effector agents. 

A lot of the children’s excitement and engagement with LEGOsheets arose from 
the physical aspect that the Brick provided. It is interesting to create a simulation of 
a car running around on a computer screen, but it is richer and more interesting 
when the car is programmed to do so in the real world. The richness of the resulting 
behavior of the behaving artifact did not come from the complexity of the program 
itself, but from its interactions with the real world (Simon, 1981). 

   

Figure 21. “Programming” the Vehicle in the Real World 

Giving the opportunity to children to engage in interesting explorations in the 
world as part of social activities not only provided an engaging but also a highly 
motivating atmosphere that enabled even 3rd grade elementary school kids to take 
the step towards programming. 
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5.6.2 example: Mr. Vetro, the simulated human being 
Mr. Vetro is an application we have developed using a unique architecture for 
compact, connected, continuous, customizable, and collective simulations (C5). This 
architecture can be generally geared towards helping students to experience and 
understand all kinds of complex distributed systems such as the human body, 
economies, ecologies, or political systems. 

 

Figure 22. Mr. Vetro is a distributed simulation of a human being. 

Mr. Vetro1 (left) is a simulated human being with a collection of simulated 
organs (such as heart and lungs) each of which are distributed as client simulations 
running on handhelds (right). 

Using these client simulations users can control Mr. Vetro’s organs. For 
instance, a group of students can control his lungs by varying parameters such as the 
breathing rate and tidal volume as a response to changing conditions such as 

 
1 Translated from Italian, “vetro” means “glass”. The name is derived from Mr. Vetro’s glass skeleton. 
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exercise or smoking. Another group can control Mr. Vetro’s heart by varying heart 
parameters such as heart rate and stroke volume. A third group can act as the 
decision-making part of Mr. Vetro’s brain to control decisions such as engaging in 
exercise and the intensity of the exercise.  

With a wireless network, the client simulations send data to the server running 
the central simulation (the 
complete Mr. Vetro) each time 
the parameters get the updated. 

A life signs monitor keeps track of Mr. 
Vetro's vital signs and displays them in the form of graphs or numerical values. O2 
saturation in the blood, partial pressure of CO2, and O2 delivered to tissue are some 
of the values calculated and displayed. 

Activities with Mr. Vetro are compelling and engaging as they promote 
interesting inter-group as well as intra-group discussions and collaborations to solve 
the tasks presented to students. Moreover they provide new ways to learn, not 
previously available by simply reading about human organs and systems in books.  

Direct manipulation interfaces of changing the organ parameters allow users to 
change the simulation without having to engage in anything that can be perceived as 
traditional programming. As skills increase – mainly domain skills, but also skills 
related to interacting with the system – students can be exposed to more complex 
end-user development activities.  

End-User Development related to Mr. Vetro takes place at two levels. At the 
highest level the handheld devices representing Mr. Vetro’s organs have become the 
building blocks of a collaborative design activity. At the lower level users employ 
end-user programming to script organs or to analyze physiological variables. 
Teachers, for instance, may want students to express rules to determine different 
states of Mr. Vetro that need to be identified and addressed. Students could use an 
end-user language such as VAT to express a rule relating the level of partial pressure 
of CO2 to hyperventilation and hypoventilation.  
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[…] when ventilation is normal the partial 
pressure is about 40 mm Hg. 
Hyperventilation: means that Alveolar 
Ventilation is excessive for metabolic 
needs. The [partial pressure] PaCO2 is 
less than 35 mm Hg. Hyperventilation 
may occur in response to hypoxia or 
anxiety. Hypoventilation means that the 
Alveolar Ventilation is too low for 
metabolic needs and that the PaCO2 is 
more than 45 mm Hg. The most common 
cause of hypoventilation is respiratory 
failure (Berne & Levy, 2000). 

 

 

Figure 23. The physiological rules can be directly turned into Visual AgenTalk. 
Rules are used to recognize physiological conditions and link them to existing Web 

information such as WebMD explaining condition and treatment. 

5.7 Scaffold Typical Designs 

Whereas modeling is a desired computational literacy (diSessa, 2000) for a wide 
spectrum of computer end-users, programming is typically not. Therefore engaging 
in modeling activities should not necessarily have as a prerequisite the need to learn 
programming, especially in classroom settings. On the one hand, given the 
pragmatic concerns of heavy time limitations, using existing simulations is much 
easier and much more attainable in current educational settings than building 
simulations from scratch, even with EUD approaches. On the other hand, building 
simulations is an educationally effective activity (Ioannidou et al., 2003; Ioannidou, 
Repenning, & Zola, 1998; Technology, 1997; Wenglinsky, 1998; Zola & Ioannidou, 
2000). Therefore, finding a middle ground would be essential for making 
simulations viable educational tools for mainstream classrooms. One such way 
would be to provide scaffolding mechanisms for the model-creation process. 
Scaffolding is the degree of structure provided by a system (Guzdial, 1994). High-
level behavior specification paradigms provide a lower threshold to programming 
and therefore can be considered scaffolding mechanisms. 

5.7.1 Example: Programmorphosis: Multi-layered programming with the 
Behavior Wizard 

The Programmorphosis approach (Ioannidou, 2002, 2003) was developed as a multi-
layered approach to end-user programming, which, at the highest level, enables 
novice end-user programmers to define behaviors of interacting agents in a high-
level abstract language. In Programmorphosis, behavior genres are used to group 
and structure domain concepts in a template. Therefore, the task of programming is 
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elevated from a task of synthesis to one of modification and customization of 
existing behavior templates.  

The Behavior Wizard was added to AgentSheets to instantiate 
Programmorphosis. Specifying behaviors is achieved by altering behavioral 
parameters in templates in a wizard environment that subsequently generates lower-
level executable code. For instance, the behavior of an Octopus animal agent for an 
ecosystem simulation would be represented in Visual AgenTalk as shown in Figure 
24 (left), with if-then rules defining eating, mating, and moving behaviors. In the 
Behavior Wizard, the user would specify the same behavior by manipulating 
parameters such as prey, hunting effectiveness, reproduction rate, as shown in 
Figure 24 (right). 

 

 

 

 

 

 

 

 

Figure 24. Behavior of an Octopus animal agent expressed in AgentSheets Visual 
AgenTalk (left). The same behavior expressed in the Behavior Wizard using the 

animal template (right) 

The high-level behavior specification language featured with the Behavior 
Wizard essentially adds a layer in the programming process. As a result, this multi-
layered programming approach enables a wide range of end-users to do the 
programming because multiple levels of abstraction address the different needs or 
levels of ability. At the higher level, a novice end-user may be “programming” 
declaratively through wizards, revealing meaningful customizations of existing 
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behaviors. At the lower level, a user may be programming procedurally in a 
programming language such as a rule-based language. 

A general trade-off exists between the expressiveness of a programming 
language and its ease of use. Instead of selecting a fixed point in this space, 
Programmorphosis adds a high-level behavior specification layer and introduces a 
multi-layered approach to programming. Ideally, these programming layers should 
be connected to allow end-users to gradually advance, if they want to, from very 
casual end-user programming, which may be as simple as changing a system 
preference, to sophisticated end-user programming.  

5.8 Build Community Tools 

For end-users to harness the power of the Web and be encouraged for more active 
and productive participation, the image of the Web as a broadcast medium should be 
expanded to include end-user mechanisms that support collaborative design, 
construction and learning. This can be done by supporting: 

• Bi-directional use of the web: Enable and motivate consumers of 
information to become producers of resources on the web. 

• Richness of content: Make rich and expressive computational artifacts, 
such as simulation components and behaving agents, utilizing the web 
as a forum of exchange. 

The Behavior Exchange is one such forum that achieves that. 

5.8.1 example: The Behavior Exchange 
The Behavior Exchange (Alexander Repenning & Ambach, 1997; Alexander 
Repenning, Ioannidou, & Phillips, 1999; Alexander Repenning, Ioannidou, Rausch, 
& Phillips, 1998), a Web-based repository that enables the sharing of simulation 
components, namely agents. The Behavior Exchange enables white-box reuse of 
agents by allowing inspection of agents acquired from the exchange as well as 
modification of their behavior because the full specification of agents' behaviors 
comes along with them when they are downloaded.  
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Figure 25. The AgentSheets Behavior Exchange. Uses can give and take agent 
including descriptions what these agents do and who they look like. 

The Behavior Exchange contains two kinds of information: informal and formal. 
Informal information is not interpreted by the computer. The look of an agent, 
textual descriptions concerning what the agent does, who created it, why and how it 
is used belong into the informal information category. Formal information is 
interpreted by the computer. All the rules that determine the behavior of an agent are 
considered formal information. The combination of informal and formal information 
turns these agents into a social currency of exchange. Users produce agents and 
share them. Other users pick them up and modify them to better fit into their own 
environment. This reuse mechanism allows a community of users to build and 
incrementally improve simulation content. The ability to build simulations by 
combining and modifying agents makes the agent level ideal for supporting 
collaboration among users, whether they reside in the same physical location or not, 
and for supporting the scaffolding (Guzdial, 1994) of the simulation creation 
process. 

6. CONCLUSIONS 

There cannot be one universal end-user development tool useful for all possible 
application contexts. Whether an end-user development is useful and gets accepted 
by an end-user community for a certain type of application depends on a number of 
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factors. The presentation formats used are of secondary relevance. A "useful and 
usable (Fischer, 1987, 1993) end-user development tool does not need to be iconic, 
visual, or textural for that matter. However, one perspective that we do think is 
universal is the viewpoint of end-user development as a learning experience 
balancing challenges and skills. A variety of scaffolding mechanisms presented in 
this article can help in making this learning experience more manageable. We have 
outlined a number of scaffolding mechanisms and extrapolated thirteen design 
guidelines from our experience with the AgentSheets simulation-authoring 
environment: 

1. Make syntactic errors hard  
2. Make syntactic errors impossible 
3. Use Objects as Language Elements 
4. Make domain-oriented languages for specific EUD 
5. Introduce Meta-Domain orientation to deal with general EUD 
6. Support Incremental Development 
7. Facilitate Decomposable test units 
8. Provide Multiple Views with Incremental disclosure 
9. Integrate Development Tool with Web Services 
10. Encourage Syntonicity 
11. Allow Immersion 
12. Scaffold Typical Designs 
13. Build Community Tools 
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