
A SERVICE ORIENTED SYSTEM BASED
INFORMATION FLOW MODEL FOR DAMAGE
ASSESSMENT

Yanjun Zuo and Brajendra Panda
Department of Computer Science and Computer Engineering
University of Arkansas, Fayetteville, AR 72701
Email: {yzuo,bpanda}@uark.edu
Phone: (479) 575-2067, Fax: (478) 575-5339

The process of damage assessment and recovery in case of an information
attack is time consuming. Any delay during recovery process may lead to
system unavailability and is unacceptable in many time-critical applications.
In this research we have developed a model to reduce this delay and aid in
prompt assessment of damage, which is essential for faster recovery. In case of
an attack notification, the goal of this model is to identify the affected data
items quickly without having to evaluate too many data items and then make
the unaffected data items available as soon as possible. This model can be
used along with other intrusion detection mechanisms.

Information flow, damage assessment

1. INTRODUCTION

Damage assessment and recovery are time consuming processes. They
could lead to denial-of-service in some situations and that is unacceptable.
Any uncertainty in intrusion response can make the situation worse [3].
Some of the recent developments on damage assessment and recovery from
information attacks are ([6], [8], [7], [10], [11], [13]). This paper focuses on

Abstract:

Key words:

achieving faster damage assessment by analyzing the patterns of information
flow within an organization (or closely related organizations), which we call
a domain. A very common situation in a domain is the time lag between the
moment when an attack took place and the time when the attack is actually
detected. During this period, any other legitimate programs or transactions
may still read damaged data items and use their values to update other data
items, thus, affecting latter. In database systems, damage may also spread
via other means as discussed in [1] and [4]. Before the recovery process it is
necessary to make accurate evaluations to determine the sets of data items
that have been damaged or the sets that are clean so that clean sets of data
items can be made available to user while feeding the damaged sets to
recovery module. This can effectively reduce system down time after an
attack. The approach presented in this paper employs a simple method to
make preliminary damage assessment and can be used with other intrusion
response systems.

A domain is an abstract entity, which is made up of multiple units. A
unit, denoted by U, is a multi-service entity involved in multiple types of
services in a domain. Each type of service is associated with and supported
by a set of relevant data items distributed in multiple units. A unit could be a
business department, a functional office, or a service center within an
organization. Each of these units communicates with other units in the same
domain and share information with them. We consider each unit to consist of
multiple abstract entities, called service groups (SGs). For the service group
in unit U, which is involved in the type of service S, we denote it as
Each SG owns and manipulates a group of relevant data items, which are
involved only in that type of service. There may be a public group
corresponding to a unit in the domain, which is kept in a public group area
and is available for SGs of that unit. Each public group owns and
manipulates public data items for the corresponding unit. That public group
area in the domain keeps all public groups for all units. Figure 1 shows the
structure of a domain, which consists of units and a public
group area containing public group 1 for unit 1, public group 2
for unit 2, and so on. Figure 2 illustrates the typical structure of a unit U,
which has multiple service groups involved in service

Data items in public groups can only be updated by authorized
administrators in controlled environments. Within a domain any data item in
a unit is only owned and manipulated by one service group (SG) and each
service group corresponds to only one service type. Information in each
public group (PG) may be released to the corresponding SGs of the unit or

178 Integrity and Internal Control in Information Systems

1.1 The Data Model

available for other PGs of units under administrative control. However, no
information flow is allowed between any two SGs of the same unit.

1.2 Separation of Service Data Items

The concepts of domain, unit and service group separate data items in a
social network based on their services. Instead of grouping data items based
on conflict of interests as done in the Chinese Wall Security Policy [2], our
model separates data items based on relevant types of services provided in a
domain. This restriction of possible information flows not only prevents
manipulations of unnecessary data items but also helps perform quick
damage assessment in case of an attack. The following examples would
clarify the idea. Consider a domain such as a national administrative system,
which consists of government bodies at federal, state, and city levels. Each
government agency can be viewed as a unit. Each unit provides social
services and manipulates data items related to military and civil sectors.
There may be no (at least no need to allow) information flow from military
sector to civil sector for each government unit. For those information
needed by both sectors, a public group can be set up in the public group area
within the domain. Information flow could happen from a civil service
group in a state government unit to civil service groups in other state, federal
or city government units, or vice versa. As another example consider a
supply chain, which consists of wholesalers, retailers, customers, and
vendors. Each component in this domain can be viewed as a unit. A

A Service Oriented System Based Information Flow Model For Damage Assessment 179

wholesaler unit may have different service groups, each of which handles
different product lines. For each product line, it has business connections
with some vendors in that industry. There is no need to allow information
flow between different service groups in this whole seller unit, say, from
food group to baby cloth group. Common information such as financial
data, or human resources data, can be retrieved from public group. The last
example is about an academic body such as a university or a college, which
consists of academic departments, administrative offices, and other agents.
If we view each academic department as a unit, then it may have multiple
abstract SGs, such as student academic group, faculty administrative group,
computing facility group, and others. The department unit may keep
administrative data such as faculty payroll information separated from
student academic records and computer lab information from faculty
research projects.

The following definitions would be useful in explanation of the damage
assessment model. The first definition has been taken from [9] with slight
modification.

Definition 1: Data item a “can-influence” data item b if a is allowed to
be used to update b. This permission to update is determined by the SG of
the unit, which owns a, based on the SG’s functional roles and policies or
mutual agreements of relevant units. This relationship is denoted as
If b also can-influence a, we denote the relationship as

Definition 2: “can-influence” if a data item of
can-influence a data item of where and are two units within
one domain and S is a type of service. This relationship is denoted as

It must be ensured that this type of relationship only
exists between SGs involved in the same type of service.

Property 1: It is obvious that does not influence and
does not influence We denote these as

and respectively.
Definition 3: We use the representation for

actual information flow from to Moreover, when there is
two way information flow between and we use the symbol

180 Integrity and Internal Control in Information Systems

2. DAMAGE ASSESSMENT MODEL

Information flow has the following characteristics:

Non-commutative:

1)

2)

Reflexive:

For those data items involved in the same type of service as the damaged
one, a probability graph can be used to make quick damage assessments.
We recognize the dynamic nature of a domain in a time span. Given a type
of service S, each unit (or SG) may change its policies dynamically affecting
the “can-influence” relationships with SGs of other units. A static period t
for S refers to the time duration when no unit (or SG) changes its “can-
influence” policies and the domain is in a static period. A time period refers
to a static time period in the following sections unless stated otherwise. An
evaluation time period for S is the time range from the time point when the
attack started (as detected) until its effects were stopped (usually the time
when the damage assessment process begins). During this period, legitimate
transactions may still read dirty data.

Definition 4: A probability graph for a given type of service S in a time
period is a directed graph representing can-influence relationships among
SGs of different units in a domain involved in S. It is denoted as A
node in a probability graph denotes an SG of a unit and an edge represents
can-influence relationship between the two connected nodes. An edge can
be unidirectional or bi-directional. An unit has no more than one SG as a
node in a probability graph for a given service type S and static time period

Figures 3(a) and (b) show two probability graphs for the static time
period and respectively.

A Service Oriented System Based Information Flow Model For Damage Assessment 181

3) Transitive: and

While the “can-influence” relationship is a direct reflection of units’
functional polices, the “information flow” relationship is the actual
functional activity between two SGs. For example, if unit provides
certain type of service S in a domain and allows unit to use its data items
related to that service, then a “can-influence” relationship exists between the
corresponding two SGs of and respectively. When unit actually
updates its data items using information from unit then the information
flow takes place (via SGs).

2.1 Probability Graph Analysis

In this model, we assume the attack has been detected by using some
intrusion detection methods. The separation of service data items facilitates
the speedup of the damage assessment process. If we can determine the
service group, which a damaged data item belongs to, then any other data
items belonging to different type of services can be made free and available
to users.

2.1.1 Probability Graph

182 Integrity and Internal Control in Information Systems

A cumulative probability graph reflects any possible “can-influence”
relationships among units during a cumulative time period t for a given
service type. It is calculated based on the probability graphs in each time
period (these time periods are continuous). Figure 4 represents such a
cumulative probability graph for the evaluation time period t, where and
are continuous and t has the same starting time as and the same ending
time as which is the end time of spreading of damage.

If we can effectively reduce the evaluation time period (e.g., detect the
intrusion earlier), then the cumulative probability graph may be simpler. On
the other hand, if a domain is less dynamic in term of changes of “can-

Definition 5: Pt(S) is a cumulative probability graph for an evaluation
period t for a given type of service S and
based on the following rules:

Period are continuous, and t has the
same beginning time as and the same ending time as
If a node node set, where or then

node set;
If an edge edge set, where or then

edge set.

1)

2)

3)

influence” relationships, then the needs to accumulate probability graphs
could also be reduced (or eliminated).

Definition 6: If G’ is a sub graph of G (where G and G’ are built based
on the same time period), then the graph(s) G-G’ contains only the nodes in
G but not in G’. Further, all edges in G except those with a vertex in G’ are
still in G-G’. If a node N is in G, and {N} denotes a single-node graph, G-
{N} will be the result if we delete N from G.

Property 2: If we consider graph accumulation as a special operation of
graph “addition”, as denoted as then

Definition 7: A critical node in a probability graph or an information
flow graph (see section 2.2) is a specific connecting point, removal of which
may divide the graph into multiple connected graphs (the original graph is
no longer connected). In Figure 4, nodes 5, 7, and 9 are critical nodes. A
critical node in this paper is similar to an articulation point in a graph as
described in [12]. Critical nodes in a graph can be found using the
corresponding algorithm presented in [5]. But not every probability graph or

A Service Oriented System Based Information Flow Model For Damage Assessment 183

184 Integrity and Internal Control in Information Systems

an information flow graph has critical nodes. If there is a cycle in a graph
visiting every node, then this graph has no critical node.

Definition 8: A distance of a critical node in a probability graph or an
information flow graph is the number of nodes along the shortest path from
the node (SG), which contains the initially detected damaged data item(s), to
that critical node.

All the critical nodes for a given graph form a critical node set, denoted as
CNS. We record CNS in increasing order. In Figure 4, the distance of node
5 from node1 (source of the damage) is 2, the distance of node 7 is 3, and the
distance of node 9 is also 3. So CNS = {5, 7,9} or {5,9,7}.

Definition 9: A sector is a connected graph formed by nodes as obtained
after the removal of a critical node from a probability graph. Several sectors
may be resulted after removal of one critical node. The sector, which
contains the initially known damaged data item, is called dirty sector. Figure
5 depicts two sectors produced after removal of critical node N9 from the
graph shown in Figure 4. Sector 1 will be marked as a dirty sector if we
identify the initially detected damaged data in N1, for example.

For any critical node, if we can determine it is free of damage, then
all of the nodes it “can-influence” can be ensured not damaged. If the
considered critical node cannot be eliminated, we then pick up the next
critical node with smallest distance value and perform the same evaluation.

For every critical node two logs are maintained: release log and update
log. An entry in each log for a critical node has two fields, namely, SG_id
and timestamp. However, these fields mean differently for the two logs. We
use an example of a service group, sg, to clarify these concepts.

For sg’s update log, the first field, “SG_id”, represents the ID of an SG,
from which a data item was read earliest or latest by sg. We consider the
possible earliest time since a base point when the domain has no damaged
data item for the given type of service (e.g., organization startup time, or the
last time when the intrusion was detected and cleaned). Before an entry is
added, if there has been no more than one entry for the SG in sg’s update
log, then the new entry is inserted. Otherwise, overwrite the most recent
entry for the SG.

For sg’s release log, the “SG_id” field represents the ID of an SG, into
which a data item in sg flows most recently. Before an entry is added, if
there is already an entry for the SG, then overwrite that entry using the most
recent timestamp.

The second field, “timestamp” records the moment when the information
flow takes place for each recorded entry in both release and update logs. The
complete format for this field should be
year:month:date:hour:minute:second. This paper uses the format
hour:minute for simplicity.

Property 3: A node N*’s update log always keeps the earliest and the
most recent time for incoming information flows from each other SGs (if
there is only one entry for the SG, the earliest and the most recent time are
the same). N*’s release log only keeps the most recent outgoing information
flow from N* for each other node.

For each SG, we don’t keep information flow for each individual
data item. Rather we keep information for communications among SGs. An
example is given in Table 1 to show the update log for node N9 based on
Figure 4 and 5 as well as actual information flow records. In addition, we
assume that an attack was detected as taking place at 11:00.

A Service Oriented System Based Information Flow Model For Damage Assessment 185

2.1.2 Evaluation of a Critical Node

It is possible for a critical node to be quickly assessed to determine
whether it contains damaged data items without reading all other nodes in a
probability graph. This could be done by several means, such as by carefully
studying the legitimate transactions and calculating the “should-be” values
for data items in that critical node. Then comparisons can be made to decide
the cleanness of that critical node. This paper introduces a method to
determine whether any data item in a critical node has been damaged
without analyzing other nodes.

2.1.2.1 Release Log and Update Log

Based on the analysis for a critical node, there are two cases as discussed
below in analyzing the probability graph (we use node N5 in Figure 4 as an
example).

Case1: If we cannot evaluate any data item in N5 as damage free or we
can determine at least one data item in N5 has been damaged, we will then
move to the next critical node, such as N7.

Case 2: If we can determine that no data item in N5 was damaged during
the evaluation time t, this will lead us to remove the critical node N5 (along
with all its edges) resulting in two sectors as shown in Figure 5. Since sector
2 is not the dirty sector, we can determine all data items in sector 2 are clean.
For sector 1, which contains the source of damaged data item, if it still
contains critical nodes and one of these critical nodes has not been evaluated,
then the same procedure is applied to that critical node. If there is no
unevaluated critical node in the dirty sector, we stop. Next we present an
algorithm that evaluates a probability graph to identify the damage.

186 Integrity and Internal Control in Information Systems

2.1.2.2 Latest In-flow Timestamp
As mentioned previously, if a critical node N* in a probability graph or an

information flow graph, G, is removed, several sectors are formed. In G,
some nodes of a sector have incoming and outgoing edges from and/or to
N*. We are interested in finding one parameter related to a sector s for N*
as follow. Latest in-flow timestamp from s to N* is the largest timestamps
in N*’s update log entries, which are associated with any node in s. This
value represents the time for the most recent read operation by N* from a
node in s. Based on Table 1 and Figures 4 and 5, L(in, N9, Sector 1) =
max{7:00, 10:10, 9:00} = 10:10. Since this time is earlier than the time
when the attack took place, which is 11:00, we can determine for sure that
N9 is damage free. This way, preliminary assessment of a critical node is
done.

2.1.2.3 Algorithm to Evaluate a Probability Graph

CNS: a set of all ordered critical nodes in G based on their distance
values

iNode = CNS[0]; //assigns the first node in CNS to an initial critical
node to be analyzed

ESet={}; //ESet holds only evaluated critical nodes. Initially it is empty
FreeSet={}; //FreeSet holds all of the nodes which are determined free

of damage
G: the cumulative probability graph for an evaluation period t
(All the above variables have global scopes for the algorithm)

A Service Oriented System Based Information Flow Model For Damage Assessment 187

Algorithm 1

Eval_Prob_Graph(G, iNode)
{
1 If iNode is Null then exit //no critical node
2 If iNode is damage free, then

2.1 Add iNode to ESet
2.2 Obtain sectors if iNode is removed from G
2.3 For each in

2.3.1 if is not the dirty sector, then
2.3.1.1 Put all nodes of into FreeSet
2.3.1.2 Put all critical nodes of into ESet

2.3.2 else // is the dirty sector
2.3.2.1 If any node N in has only an incoming edge from

iNode, put N into FreeSet
2.3.2.2
2.3.2.3
2.3.2.4 Let Nod is the critical node in with smallest

distance value
2.3.2.5 Call Eval_Prob_Graph(G, Nod)

3 else //iNode can not be determined damage free
3.1 Add iNode to Eset
3.2 Find next critical node Node in CNS but not in Eset (if no such

node, set
Node = Null)

3.3 INode = Node
3.4 Call Eval_Prob_Graph(G, iNode)

} //end of Eval_Prob_Graph()

If any nodes are left with at least one critical node after the analysis of
probability graph, then an information flow graph should be built and
analyzed. Although probability graphs for each time period can be built well
ahead of time, a cumulative probability graph for an evaluation period
should be calculated whenever an attack is detected. This cumulative

probability graph reflects possible information flows in this domain during
the period between attacks took place and the attacking effects are stopped.
Furthermore, we are only interested in part of this cumulative probability
graph. When an attack took place and some data items in an SG are detected
as damaged, this cumulative probability graph can eliminate any node,
which has no direct or indirect information flow from the damaged SG. For
example, if node A has only an outgoing edge, which is towards the
damaged SG node, it can be eliminated from this cumulative probability
graph.

188 Integrity and Internal Control in Information Systems

2.2 Information Flow Graph Analysis

In this section, we analyze an information flow graph, which could be
built after a probability graph.

2.2.1 Information Flow Graph

Definition 10: An information flow graph for a given type of service S
in an evaluation period t is a directed graph representing actual information
flow related to S in a domain. It is denoted as IFt(S). A node in an
information flow graph represents an SG and an edge represents information
flow relationship between the two connected nodes. An edge can be
unidirectional or bi-directional. An information flow graph is created based
on actual information flow records kept by the domain. A critical node can
be defined and found for an information flow graph in the same way as that
for a probability graph.

Consider the information flow graph in Figure 6 obtained by assuming
that the critical node N9 in Figure 4 is determined damage free. Figure 7
shows three sectors if the critical node, N5, is removed from the graph in
Figure 6.

Property 4: An information flow graph is a sub graph of the
corresponding probability graph.

Property 5: Any critical node that remains in an information flow graph
cannot be evaluated to be damage free.

Property 6: For a critical node N* in an information flow graph G’, L(in,
N*, DS) > st, where DS is the dirty sector after removal of N* from G’, and
st is the time when an attack was made. If this is not hold, then N* is
damage free as shown in section 2.1.

Elimination of nodes based on critical nodes in an information flow graph
is a complex process. An efficient analysis of the information flow and
timestamp at each step is required to identify any clean nodes, if there are
any.

A Service Oriented System Based Information Flow Model For Damage Assessment 189

2.2.2 Analysis of an Information Flow Graph

An example of release log and update log for node N5 related to Figure 6
is given in Table 2 and Table 3 respectively.

In section 2.1, we discussed the concept “latest in-flow timestamp from s
to N*”, where s is a sector, which consists of multiple nodes, and N* is a
critical node. We discuss other two concepts, “earliest in-flow timestamp
from s to N* since the attack” and “latest out-flow timestamp from N* to s”.

“Earliest in-flow timestamp from s to N* since the attack” is the smallest
timestamp value (earliest time) in N*’s update log entries associated with an
SG in s, which is later than the time when the attack occurred. It is denoted
as E(in, N*, s). This parameter represents the earliest time when N* read a
data item from an SG in s after the attack occurred. Related to Figures 6 and
7, E(in, N5, Sector 1) = min{12:00, 13:15, 14:00, 15:30} = 12:00, where
{12:00, 13:15, 14:00, 15:30} is the set of all timestamps related to nodes in
Sector 1 in Table 3 and the timestamp is later than the time of occurrence of
attack (which is 11:00 as mentioned in 2.1).

Latest out-flow timestamp from N* to s is the largest timestamp value in
N*’s release log entries, which are associated with an SG in s. It is denoted
as L(out, N*, s). This parameter represents the latest time when N* wrote a
data item to one SG in s. Related to Figures 6 and 7, L(out, N5, Sector 2) =
max{10:10} = 10:10, where {10:10} is the set of all timestamps related to
nodes in Sector 2 in Table 2. Similarly, L(out, N5, Sector 3) = max{l 1:15,
12:30) = 12:30, where {11:15, 12:30} is the set of all timestamps related to
nodes in Sector 3 as shown in Table 2. Similar concepts can be applied to a
node N relative to the critical node N*, such as E(in, N*, N) and L(out, N*,
N).

There are two steps to analyze the sectors in Figure 7. The first step is to
analyze a sector s as a whole. Relative to the critical node N*, if the latest
read time for all nodes in s from N* is still earlier than the earliest write time
from a node of the dirty sector to N*, we can guarantee that all nodes in s are
clean. In Figures 6 and 7, since L(out, N5, Sector 2) = 10:10 and E(in, N5,
Sector 1) = 12:00 as we calculated above, hence L(out, N5, Sector 2) < E(in,
N5, Sector 1) and all nodes in Sector 2 are damage free. Hence, node N6
can be released (N6 is the only node in Sector 2). Because L(out, N5, Sector
3) > E(in, N5, Sector 1), however, we can’t eliminate any node in Sector 3 at
this time.

The second step follows if step 1 fails for a sector and it attempts to
evaluate individual node in a sector. Any node, N, in a sector with a sole
incoming edge from N* (in term of the original information flow graph), is
analyzed first. If there is no such node, the analysis stops. If L(out, N*, N)
< E(in, N*, DS), where DS is the dirty sector, then node N is determined free
of damage. Then node N and all of its outgoing edges within that sector can
be removed. Consider sector 3 in Figure 7. Since L(out, N5, N7) =11:15
found in Table 2 and E(in, N5, Sector 1) = 12:00 as calculated before, thus
L(out, N5, N7) < E(in, N5, Sector1). So node N7 is damage free. Hence

190 Integrity and Internal Control in Information Systems

N7 and its outgoing edges (from N7 to N8 and from N7 to N15) can be
removed. For any other node in the considered sector, if it has only one
incoming edge and that edge is from the removed node (in term of the
original information flow graph), it can also be removed. Hence, node N15
in Figure 7 can be removed. However, we cannot remove N8 since N8 also
has another incoming edge from N5 in addition to N7. Since L(out, N5, N8)
= 12:30 found in Table 2 and E(in, N5, Sector 1) = 12:00 from Table 3,
L(out, N5, N8) > E(in, N5, Sector 1). We cannot remove N8 during the
information flow graph analysis. After this step, only node N8 is left in
Sector 3. N8 (and its incoming edge from N5) should be forwarded for
analysis by other means such as using information flow based on data items
instead of SGs.

From the above example, we can deduce that for any “information flow
chain”,
N1’ N2’ ... Nk’ in the information flow graph, if
N1’ can be removed, then N2’, ..., Nk’ can also be removed (such as N5,
N7, N15 in Figure 7 as discussed above). The algorithm to analyze an
information flow graph is given below.

A Service Oriented System Based Information Flow Model For Damage Assessment 191

Algorithm 2
CNS’: a set of all ordered critical nodes in G’ based on their distance

values
iNode’ = CNS’[0]; //assigns the first node in CNS’ to the initial critical

node to be analyzed
ESet’={}; //ESet holds the critical nodes already evaluated. Initially it

is empty
FreeSet’={}; //FreeSet holds all of the nodes which are determined free

of damage
G’: the information flow graph for an evaluation period t
(All of the above variables have global scopes for the algorithm)

Eval_IF_Graph(G’, iNode’)
{

1 If iNode == Null then exit //no critical node
2 Add iNode into ESet’
3 Obtain sector if iNode is removed from G’
4 Let = DS and DS is the dirty sector (1<= n <=k)
5 For each in

5.1 If (E(in, iNode’, DS) > L (out, iNode’,))
5.1.1 Add all nodes of to FreeSet’
5.1.2 Add all critical nodes of to ESet’

5.2 Else
5.2.1 For any node where N has only one incoming

edge in G’, which is from iNode’

192 Integrity and Internal Control in Information Systems

5.2.1.1 If (E(in, iNode’, DS) > L(out, iNode’, N))
5.2.1.1.1 Add N to FreeSet’

5.2.1.1.2 If there is a chain in with nodes N, N1,..., Nt
and information only flows from N to N1, N1 to
N2, ... and Nt-1 to Nt

5.2.1.1.2.1 Add N1, N2 …, Nt to FreeSet’
5.2.1.1.2.2 = – {N, N1, N2 …, Nt}
5.2.1.1.2.3 If any element N’ in (N1, N2, ..., Nt} is a

critical node
5.2.1.1.2.3.1 Add N’to ESet’

5.2.1.1.3 else = – {N}
5.3 G’ = G’ –

6 For any critical node Node in CNS’ but not in Eset’ (if no such
node, set Node = NULL)

6.1 iNnode’ = Node
6.2 Call Eval_IF_Graph(G’, iNode’)

} //end of Eval_Graph(G’, iNode’)

3. USING THE MODEL

The goal of this model is to reduce the “denial of service” and free as
many data items as possible in a timely manner. The general guideline to
use this model is described below.

3.1 Preconditions

(a) Probability graphs for time periods where
are continuous in time line, i.e., without any time gap between

two time periods. Usually, ends at the time when the spread of damage is
stopped.

(b) An evaluation time period and t has the same
beginning time as and the same ending time as

(c) The damaged data items are identified in a node, such as N1 (SG).
(d) Each critical node (SG) keeps an update and a release log for a time

period covering t.

3.2 The Procedure to Use this Model

(a) Identify the type of service that the damaged data item is involved in.
All the data items in SGs that are involved in other types of services are put
into set FreeSet1. If the damaged data item is in a PG, then multiple
probability graphs might be needed to make accurate assessment.

Any data items in a node of FreeSet1, FreeSet2, or FreeSet3 are
guaranteed to be free of damage and then can be available to users
immediately. Evaluating the set T is beyond the scope of this model and
other methods should be used to analyze it.

The effects of this model are largely dependent on the structure of a
domain. If there are some “central points” in the probability (and/or
information flow) graph and information flow tends to be in one direction,
then the model has a good chance to eliminate large sets of data items, which
are free of damages, at the earliest. In many cases, organizations have such
structures with a central point, which acts as a critical node. Evaluating this
central point often can release sets of nodes that are damage free.

This model requires that there is no information flow across the boundary
of multiple service groups (SGs) of the same domain. If several SGs must
share information, we can either fuse them together into a bigger SG, or put
the shared data items in the public group kept in one area of that domain.

We are thankful to Dr. Robert L. Herklotz for his support, which made
this work possible. This work was supported in part by US AFOSR under
grant F49620-01-10346.

A Service Oriented System Based Information Flow Model For Damage Assessment 193

(b) For the service type that the damaged data item is related to, build the
cumulative probability graph G for the time period t based on

Call Eval_Prob_Graph() algorithm to generate FreeSet2.
(c) Nodes in G – {all nodes of FreeSet2} are used to generate an

information flow graph G’ based on actual information flow information.
Call Eval_IF_Graph() algorithm to generate FreeSet3. A set T = G’ –

{all nodes of FreeSet3} is left.

3.3 Post Conditions

4. CONCLUSIONS

ACKNOWLEDGEMENTS

P. Amman, S. Jajodia, C. D. McCollum, and B. Blaustein, “Surviving
Information Warfare Attacks on Databases”, In Proceedings of the
1997 IEEE Symposium on Security and Privacy, May 1997.
D. Brewer and M. Nash, “The Chinese Wall Security Policy”, In
Proceedings of the 1989 IEEE Symposium on Security and Privacy, pp.
206-214, May 1989.
C.A, Carver, J. M. D. Hill, and U. W. Pooch, “Limiting Uncertainty in
Intrusion Response”, in Proceedings of the 2001 IEEE Workshop on
Information Assurance and Security, United States Military Academy,
West Point, June 2001.
R. Graubart, L. Schlipper, and C. McCollum, “Defending Database
Management Systems Against Information Warfare Attacks”,
Technical report, The MITRE Corporation, 1996.
E. Horowitz, S. Sahni, S. Rajasekaran, “Computer Algorithms/C++”,
Computer Science Press, pp. 329-336, 1998.
S. Jajodia, C. D. McCollum, and P. Amman, “Trusted Recovery”,
Communications of the ACM, 42(7), pp. 71-75, July 1999.
P. Liu and X. Hao, “Efficient Damage Assessment and Repair in
Resilient Distributed Database Systems”, In Proceedings of the 15th
Annual IFIP WG 11.3 Working Conference on Database and
Application Security, July 2001.
P. Liu, P. Ammann, and S. Jajodia, “Rewriting Histories: Recovering
from Malicious Transactions”, Distributed and Parallel Databases, 8(1),
pp. 7-40, January 2000.
B. Panda, S. Tripathy, “Data Dependency Based Logging for Defensive
Information Warfare”, Proceedings of the 2000 ACM Symposium on
Applied Computing.
B. Panda and J. Giordano, “Reconstructing the Database After
Electronic Attacks”, Database Security XII: Status and Prospects, S.
Jajodia (editor), Kluwer Academic Publishers, 1999.
P. Ragothaman, and B. Panda, “Modeling and Analyzing Transaction
Logging Protocols for Effective Damage Assessment”, In Proceedings
of the Annual IFIP WG 11.3 Working Conference on Data and
Application Security, King’s College, University of Cambridge, UK,
July 2002.
R. Sedgewick, “Algorithms”, Addison Wesley, pp. 324-330.
R. Sobhan and B. Panda, “Reorganization of Database Log for
Information Warfare Data Recovery”, In Proceedings of the
Annual IFIP WG 11.3 Working Conference on Database and
Application Security, Niagara on the Lake, Ontario, Canada, July 15-
18, 2001.

194 Integrity and Internal Control in Information Systems

REFERENCES

[12]
[13]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

