A FORMAL ANALYSIS OF A DIGITAL
SIGNATURE ARCHITECTURE *

David Basin
ETH Zurich

basin@inf.ethz.ch

Kunihiko Miyazaki
Hitachi Systems Development Laboratory

kunihiko @sdl.hitachi.co.jp

Kazuo Takaragi
Hitachi Systems Development Laboratory
takara@sdl.hitachi.co.jp

Abstract We report on a case study in applying formal methods to model and
validate an architecture for administrating digital signatures. We use
a process-oriented modeling language to model a signature system im-
plemented on top of a secure operating system. Afterwards, we use the
Spin model checker to validate access control and integrity properties.
We describe here our modeling approach and the benefits gained from
our analysis.

Keywords: Formal methods, model checking, data integrity, security architectures.

1. Introduction

We report on a case study in modeling and validating an architec-
ture for administrating digital signatures. The signature architecture is
based on the secure operating system DARMA (Hitachi’s Dependable
Autonomous Realtime Manager), which is used to control the interaction
between different subsystems, running on different operating platforms.
In particular, DARMA is used to ensure data integrity by separating

“This research project is partially sponsored by Telecommunications Advancement Organi-
zation of Japan (TAO).

32 Integrity and Internal Control in Information Systems

user API functions, which run on a potentially open system (e.g., con-
nected to the Internet), from those that actually manipulate signature-
relevant data, which run on a separate, protected system. The overall
architecture should ensure data-integrity, even when the open system is
compromised or attacked. We investigate the use of formal methods to
validate that this is indeed the case.

More abstractly, we investigate how formal methods can be applied
to model and validate the integrity and internal control of an industrial-
scale information system. In our study, the architecture modeled is quite
complex, involving multiple operating systems and processes communi-
cating between them, which carry out security-critical tasks. A full-scale
verification of a particular implementation would not only be imprac-
tical, the results would be too specialized. The key here is to find the
right level of abstraction to create a model suitable for establishing the
security properties of interest.

In our case, which is typical for many data-integrity problems, the rel-
evant security properties concern restricting access to data (e.g., pass-
words and signatures), where a user’s ability to carry out operations
depends on past actions, for example, whether the user has been au-
thenticated. Abstractly, these properties correspond to predicates on
traces (i.e. sequences) of system events, which suggests building an event-
oriented system model that focuses on processes, relevant aspects of their
internal computation, and their communication.

Concretely, we model the signature architecture as a system of com-
municating processes, abstracting away the operational details of the
different operating systems as well as functional details like the exact
computations performed by different cryptographic primitives. The re-
sulting model describes how processes can interact and semantically de-
fines a set of event traces. We formalize security properties as (temporal)
properties of these traces and verify them using the SPIN model checker
[4].

Our application of model checking to validate data integrity properties
of a security architecture is, to our knowledge, new. Of course, model
checking is the standard technique used to verify control-oriented sys-
tems [3, 9] and is widely used in hardware and protocol verification. Our
work shares with security protocol verification approaches like [10-11] an
explicit model of an attacker, where attacker actions can be interleaved
with those of honest agents. Our work is also related to the use of model
checkers to validate software and architectural specifications [2, 6, 16]
and it shares the same problem: the main challenge is to create good
abstractions during modeling that help overcome the large, or infinite,
state spaces associated with the model.

A Formal Analysis of a Digital Signature Architecture 33

Organization. In Section 1.2 we present the signature architecture
and its requirements. Afterwards, in Sections 1.3 and 1.4, we show how
both the system and its requirements can be formalized and rigorously
analyzed. Finally, in Section 1.5, we draw conclusions and consider
directions for future work.

2. The Signature Architecture

2.1 Overview

The signature architecture is based on two ideas. The first is that of
a hysteresis signature [14], which is a cryptographic approach designed
to overcome the problem that for certain applications digital signatures
should be valid for very long time periods. Hysteresis signatures address
this problem by chaining signatures together in a way that the signature
for each document signed depends on (hash values computed from) all
previously signed documents. These chained signatures constitute a sig-
nature log and to forge even one signature in the log an attacker must
forge (breaking the cryptographic functions behind) a chain of signa-
tures.

The signature system must read the private keys of users from key
stores, and read and update signature logs. Hence, the system’s security
relies on the confidentiality and integrity of this data. The second idea
is to protect these using a secure operating platform. For this purpose,
Hitachi’s DARMA system [1] is used to separate the user’s operating
system (in practice, Windows) from a second operating system used to
manage system data, e.g., Linux. This technology plays a role analogous
to network firewalls, but here the two systems are protected by control-
ling how functions in one system can call functions in the other. In this
way, one can precisely limit how users access the functions and data for
hysteresis signatures that reside in the Linux operating system space.

Our model is based on Hitachi documentation, which describes the
signature architecture using diagrams (like Figures 1 and 2) and natural
language text, as well as discussions with Hitachi engineers.

2.2 Functional Units and Dataflow

The signature architecture is organized into five modules, whose high-
level structure is depicted in Figure 1. The first module contains the
three signature functions that execute in the user operating system
space. We call this the “Windows-side module” to reflect the (likely)
scenario that they are part of an API available to programs running
under the Windows operating system. These functions are essentially

34 Integrity and Internal Control in Information Systems

Windows—side module Linux—side module

|_ AuthenticateUserW \ /f AuthenticateUserL L\
N

= | GenerateSignaturel. |

[GenerateSignatrew |

[LogoutW I/ \1 LogoutL f/

\ /
vinava
Dl it
12[0NU0) $530Y
Ta3eurpy UCISSIg

Figure 1. The Signature Architecture

Access Controller Session Manager

| Access control
list AuthenticateUser |\

g e _ |~~~ RegisiSessioninformation
Private-Key ReadPrivateKey g
ReadSignatureRecord | [~ CheckValidofSession |+—| Session Table I
Signature //;|
Log AppendSignatureRecord ||

/l FreeSessionInformation
L1
Logout |“

Figure 2. The Access Controller and Session Manager Modules

proxies. When called, they forward their parameters over the DARMA
module to the corresponding function in the second, protected, operating
system, which is here called the “Linux-side module”, again reflecting
a likely implementation. There are two additional modules, each also
executing on the second (e.g., Linux) operating system, which package
data and functions for managing access control and sessions.

To create a hysteresis signature, a user application takes the following
steps on the Windows side:

1 The user application calls AuthenticateUserW to authenticate the
user and is assigned a session identifier.

2 The application calls GenerateSignatureW to generate a hysteresis
signature.

3 The application calls LogoutW to logout, ending the session.

A Formal Analysis of a Digital Signature Architecture 35

Parameters
Input:
username: sent by AuthenticateUserW through Darma.
password: sent by AuthenticateUserW through Darma.

Output:
SessionID: If user authentication is successful, then SessionID > 0,
otherwise SessionID < 0.

Details

1 Calculate hash value of password using Keymate/Crypto API. If successful, go
to step 2, otherwise set SessionID to CrypotErr (<0) and return.

2 Authenticate user using the function AuthenticateUser of Access Controller.
3 Output SessionID returned by AuthenticateUser.

Figure 8, Interface Description for AuthenticateUserL

As explained above, each of these functions uses DARMA to call the cor-
responding function on the Linux side. DARMA restricts access from the
Windows side to only these three functions. The Linux functions them-
selves may call any other Linux functions, including those of the Access
Controller, which controls access to data (private keys, signature logs,
and access control lists). The Access Controller in turn uses functions
provided by the Session Manager, which manages session information
(SessionlD, etc.), as depicted in Figure 2.

The Hitachi documentation provides an interface description for each
of these 16 functions. As a representative example, Figure 3 presents
the description of AuthenticateUserL.

2.3 Requirements

The Hitachi documentation states three properties that the signature
architecture should fulfill.

1 The signature architecture must authenticate a user before the user
generates a hysteresis signature.

2 The signature architecture shall generate a hysteresis signature
using the private key of an authenticated user.

3 The signature architecture must generate only one hysteresis sig-
nature per authentication.

In Section 1.4, we will show how to model properties like these in tem-
poral logic.

36 Integrity and Internal Control in Information Systems

3. Modeling the Signature Architecture
3.1 Process Modeling

Abstraction is the key to creating a formal model of the signature
architecture. One possibility is to build a data model by formalizing the
system data and the functions computed. Alternatively, we can focus on
the dynamics of the system and build a process or event-oriented model.

We take the latter approach. One reason is that data and func-
tions play a limited role in the system description. For example, the
architecture description is abstract to the particulars of which crypto-
graphic functions are used to hash or sign messages (i.e., those of the
Keymate/Crypto API referred to in Authenticate User in Figure 3). A
second reason is that the properties to be verified are event oriented and
have a temporal flavor. They formalize that whenever certain events
take place then other events have (or have not) also taken place. This
suggests the use of temporal logic for formalizing properties and model
checking for property verification.

There are two additional design decisions involved in creating our
model, which are representative of the decisions arising in modeling any
security architecture. First, we cannot completely abstract away data
since control depends on data. In particular, the actions processes take
depend on the values of keys, session identifiers, hash values, etc. The
solution is to abstract large (or infinite) data domains into finite sets,
and abstract functions over data to functions over the corresponding
finite sets. The difficult part here is finding an abstraction that respects
the properties of the functions acting on data. We will describe our
approach to this in Section 1.3.3.

Second, to show that the security properties hold when the system is
executed in a hostile environment, we must explicitly model the powers
of an attacker. Here we adapt a common approach used in modeling se-
curity protocols [8, 12]: In addition to formalizing the system itself, we
also formalize how different kinds of users can use the system. That is,
we formalize (in Section 1.3.3) both normal “honest” users, who use the
system as it is intended, and attackers who use the system in perhaps
unintended ways and attempt to exploit and break into the system. The
overall system model is built from submodels that define processes for
each of the different subsystems together with the processes that model
the normal users and the attacker. We then prove that the desired secu-
rity properties hold of the system, even given all the possible malicious
actions that can be taken by the attacker.

We have used the Spin model checker to formalize and check our
model. Spin is a generic model checker that supports the design and

A Formal Analysis of a Digital Signature Architecture 37

‘WindowsSideModule Darma LinuxSideModule AccessController SessionManager
dl_auth la_auth as_regist
al_auth
T _muth |_lareadkey | sa_regist
al_readkey
wd di_gensig as_check}
- al_readsig
For 1d_gensig 1a_appendsi sa_check]
di_logout al_appendsig as_free
la_logout sa_free
1d_logout al_logout

Figure 4. Modules and Channels

verification of distributed systems and algorithms. Spin’s modeling lan-
guage is called PROMELA (PROcess MEtal.Anguage), which provides a
C-like notation for formalizing processes, enriched with process-algebra
like primitives for expressing parallel composition, communication, and
the like. Properties may be expressed in a linear-time temporal logic
(LTL) and Spin implements algorithms for LTL model checking. Due
to space restrictions, we will introduce Spin constructs as needed, on-
the-fly. For a detailed description of Spin, the reader should consult
[4-5].

3.2 Functions and Function Calls

As suggested by Figures 1 and 2, we can model the signature archi-
tecture in terms of five modules that communicate with each other in
restricted ways. We will model each such module as a PROMELA pro-
cess, where each process communicates with other processes over chan-
nels. A PROMELA channel is a buffer of some declared size that holds
data of specified types. For each function in a module, we define two
channels: one for modeling function calls and the other for modeling the
return of computed values. This is depicted in Figure 4, which names
the channels used for passing data between processes. All channels are
declared to have size zero. According to the semantics of PROMELA,
this means that communication on these channels is synchronous: the
process sending data on a channel and the process receiving data from
the channel must rendezvous, i.e., carry out their actions simultaneously.

As the figure shows, between Windows and DARMA we have just one
calling channel wd and one returning channel dw.' This reflects that we
have only one function in the Darma interface. This function is called

'Note that we ignore channels for calling the Windows functions since the functions that
actually call AuthenticateUserW, GenerateSignatureW, and LogoutW fall outside the scope
of our model, i.e., we do not consider who calls them, or how the caller uses the return values.

38 Integrity and Internal Control in Information Systems

by marshaling (i.e., packaging) the function arguments together, includ-
ing the name of the function to be called on the Linux side. We model
this by putting all these arguments on the channel. For example, the
expression wd!AuthUser,username,password (which occurs in our model
of a normal user, given shortly), models that the function Authenti-
cateUserW calls Darma, instructing Darma to call AuthenticateUserL
with the arguments username and password.

33 User Modeling

We now explain our formalization of the powers and actions of both
ordinary users and system attackers.

The description of the signature architecture in Section 1.2 describes
how the system is intended to be used by normal users. As we will see,
it is a simple matter to translate this description into a user model.

The Hitachi documentation, describes, in part, the powers of an at-
tacker, in particular that he cannot access functions on the Linux side.
This is a starting point for our formalization of an attacker model, but it
leaves many aspects open, for example, whether an attacker can operate
“within” the system as a legitimate user with a valid password, or if he
is an outsider, without these abilities. Moreover, it is unspecified what
the attacker knows, or can guess or feasibly compute.

One achieves the strongest security guarantees by proving the safety of
a system in the face of the most general and powerful attacker possible.
Hence, we model an attacker who cannot only function as a legitimate
user of the system, but can also call functions in unintended ways, with
arbitrary parameters. Moreover, he knows, or can guess or compute, the
names of other users, messages, and message hashes, and of course he
knows his own password. However, we assume he can neither guess the
passwords nor the session identifiers of other users. (If either of these
were the case, then forging signatures would be trivial.)

We summarize these assumptions as follows:

1 The attacker can call AuthenticateUserW, GenerateSignatureW,
and LogoutW in any order.

2 The attacker is also a legitimate user with a user name and a
password.

3 The attacker knows the names of all users, and can guess messages
and message hashes.

4 The attacker can only give his (good) password or a bad guessed
password.

A Formal Analysis of a Digital Signature Architecture 39

Password

Bad Password (MAX_Bad_Password (=3)
Attacker can use these passwords

MAX_Good_Password (=2) | /' \IN_Bad_Password = MAX_Good_Password+1

Good Password

MIN_Good_Password (=1)

SessionlD

Bad SessionlD (MAX_Bad_SessionID (=3)) Attacker can guess only bad sessionIDs

MAX_Good_SessionID (=2) MIN_Bad_SessionID = MAX_Good_SessionID+1

Good SessionIlD
MIN_Good_SessionID (=1)

Figure 5. Modeling Passwords and Session Identifiers

5 The attacker cannot guess a good SessionID, i.e., one used by
other users.

6 Generated SessionIDs are always good.

In our model, we define sets of objects, namely finite intervals of nat-
ural numbers, for modeling the different kinds of objects in the problem
domain: names, messages, hash values, and passwords. The key idea is
to partition these sets into those things that are known by the attacker
(or can be guessed or computed) and those that are not. For example,
there is a set of user names, formalized by the set of natural numbers
{MIN_username, ..., MAX_username}. We model that the spy knows,
or can guess, any of these names by allowing him to guess any number in
this set. However, we partition the ranges corresponding to passwords
and session identifiers so that the attacker can only guess “bad” ones,
which are ones that are never assigned to normal users. However, the
attacker also has a “good” password, which allows him to use the system
as a normal user and generate a good session identifier. Figure 5 depicts
this partitioning, with the concrete values that we later use when model
checking. For example, the good passwords are {1, 2}, where 2 repre-
sents the attacker’s password. He can only guess passwords in the range
{2,3}, where 3 models a bad password, i.e., one that does not belong to
any normal user. As he cannot guess the password 1, he cannot use the
system (e.g., to generate a signature) as any user other than himself.

Given this abstraction, it is now a simple matter to model the actions
of normal users and the attacker.

40 Integrity and Internal Control in Information Systems

proctype WindowsSideModule_Normal() {
byte username, password, sessionlD, message, message_hash, signature, result;

1

2

3

4 setrandom(username, MIN_Good_Username, MAX_Good_Username);
6 setrandom(password, MIN_Good_Password, MAX_Good_Password);
6

T

8

do
:: wd!AuthUser,username,password;
9 dw?7AuthUser,sessionlD;
10
11 setrandom(message, MIN_Message, MAX_Message);
12 message_hash = Hash(message);
13
14 wd!GenSig,sessionID,message_hash;
15 dw?GenSig,signature;
16
17 wd!Logout,sessionID,0; /* second argument °0’ is dummy */
18 dw?Logout,result
19 od}

Figure 6. User Model

Normal Users. Figure 6 shows our model® of a normal user, which
directly models the steps that a normal user takes when using the sig-
nature architecture.

In lines 4 and 5 we model different possibilities for who uses the sys-
tem and their messages. The macro setrandom(x,lower,upper) uses non-
deterministic choice to set to a value, lower < z < upper. Hence these
lines set the username and password to those of a normal user, chosen
nondeterministically from the predefined ranges.

Afterwards, the user generates a hysteresis signature. On line 8, the
user calls Darma on the wd channel, specifying the execution of the
Linux-side user authentication function, along with his username and
password. On line 9, the result, a session identifier (whose value is
greater than zero when authentication is successful), is returned on the
dw channel.

On lines 11-12, a message from the space of possible messages is non-
deterministically selected and its message hash is computed. We model
Hash simply as the identity function. Although this does not reflect the
functional requirements of a real hash function, in particular, that it is
a one-way function, it is adequate for establishing the stipulated prop-
erties of our process model, which only rely on passwords and session

*Model excerpts are taken verbatim from our PROMELA model, with the exception of pretty
printing, line numbering, and minor simplifications for expository purposes.

A Formal Analysis of a Digital Signature Architecture 41

proctype WindowsSideModule_Attacker() {
byte username, password, sessionID, signature, dummy, result;
bit message_hash;

1

2

3

4

5 setrandom(username, MIN_username, MAX_username);

6 setrandom(message_hash, MIN_Message_Hash, MAX_Message_Hash);
7 setrandom(password, MAX_Good_Password, MAX_Bad_Password);

8 setrandom(sessionID, MIN_Bad_SessionID, MAX_Bad_SessionID);
9

10 do /* Attacker calls these three functions in any order */

11 :: wd!AuthUser,username,password;

12 dw?AuthUser,sessionlD

13

14 :: wd!GenSig,sessionlD,message_hash;

15 dw?GenSig,signature

16

17 :: wd!Logout,sessionID,dummy;

18 dw?Logout ,result

19

20 /* Or, Attacker guesses the following values */

21 :: setrandom(username, MIN_username, MAX_username)

22 :: setrandom(message_hash, MIN_Message_Hash, MAX_Message_Hash)
23 :: setrandom(password, MAX_Good_Password, MAX_Bad_Password)
24 :: setrandom(sessionID, MIN_Bad_SessionID, MAX_Bad_SessionID)
25 od}

Figure 7. Attacker Model

identifiers being unguessable. On line 14, the user calls Darma on the
wd channel, instructing Darma to generate a signature with the session
identifier returned from the previous round of authentication and a mes-
sage hash. The generated signature is returned on line 15. Note that
the return value can also indicate an error, e.g., if the session identifier
was invalid.

Lines 17-18 model the user logging out, which invalidates his session
identifier.

The Attacker. Figure 7 shows the PROMELA process that formal-
izes our attacker model. Here we see that the attacker can guess an
arbitrary user name and message hash (lines 5-6). However, in accor-
dance with the guessing model depicted in Figure 5, he can only guess
one good password (Max_Good_Password), which allows him to log in as
a normal user, or bad passwords (line 7). Similarly, he can only guess
bad session identifiers (line 8).

Afterwards, we use a do/od loop with nondeterministic choice to
model the attacker repeatedly calling Darma (on the wd channel) with

42 Integrity and Internal Control in Information Systems
1 t: dl_auth?username_LINUX,password

2 -> password_hash = Hash(password);

3 if

4 :: (password_hash <= 0) -> sessionID_LINUX = HashFunctionErr;
B goto DONE_AuthL

6 :: else

T £1i;

8

9 la_auth!username_LINUX,password_hash;

10 al_auth?sessionID_LINUX;

11

12 DONE_AuthL:

13 1ld_auth!sessionID_LINUX

Figure 8. AuthenticateUserL

these guessed values, in any order he likes. Alternatively, as modeled by
the last four actions, he can guess new values at any point in time.

This example again illustrates the power of nondeterminism in a
process-oriented modeling language. As with the user model, we use
it to leave open which values are taken on by variables. This models a
system where these variables can take on any value from the specified
sets at system runtime. In addition, we use nondeterminism to describe
the different possible actions that can be carried out by a user, while
allowing the actions to be ordered in any way. The result is a succinct
description of a general, powerful attacker. Of course, formalizations
like this, which involve substantial nondeterminism, will typically lead
to verification problems with large states spaces. But this can be seen
as a feature, not a bug: model checkers can often search the resulting
state spaces much quicker and more accurately than humans can.

3.4 Function Modeling

The majority of our PROMELA model describes the 16 functions
contained in the system modules. As arepresentative function, we return
to Authenticate UserL, first described in Section 1.2.2.

Figure 8 shows the part of the PROMELA process that models Au-
thenticate UserL (this module also contains definitions for the other Linux-
side functions). This directly models the three steps explained in Sec-
tion 1.2.2: calculate a hash value (lines 2—7), authenticate the user (lines
9-10), and return the session identifier (line 13).

Here we have a simple example of how creating a rigorous specifi-
cation forces us to make all definitions explicit. Step 1 of the textual
explanation states “If [hash value calculation is] successful, go to Step 2
...”. But the Boolean predicate “successful” isn’t defined. Such omis-

A Formal Analysis of a Digital Signature Architecture 43

1 init {

2 run WindowsSideModule_Normal();
3 run WindowsSideModule_Attacker();
4 run Darma();

5 lsm = run LinuxSideModule();

6 run AccessController();

7 run SessionManager()}

Figure 9. Initialization Process

sions arise frequently. In this example, it is easy to determine what is
intended by reading other parts of the specification. Here we formalize
success by stating that a HashFunctionErr is generated when the pass-
word hash is less than or equal to zero, and the operation is successful
otherwise. In general, not all ambiguities are so easily resolved. One of
the benefits of using a formal specification language is that we are forced
to be unambiguous at all times; PROMELA contains a syntax checker
and automatically detects undefined symbols.

3.5 Putting It All Together

We build the overall model by composing in parallel the processes
defined above. Namely, we compose the two processes formalizing the
Windows-side module (as used by normal users and by the attacker) and
the processes for the remaining modules. This is depicted in Figure 9.
Note that we associate an identifier /sm with the process executing the
Linux-side module. This will be used during verification to refer to
particular labels in an invocation of the LinuxSideModule process, as
described in the next section.

4. Verification

We now describe how we use Spin to show that our model has the in-
tended properties. To do this, we formalize “bad” behavior (by formal-
izing and negating “good” behavior) as temporal logic formulae. Spin
converts, on-the-fly, our PROMELA model of the system and the tempo-
ral logic formula to automata (reducing model checking to an automata-
theoretic problem as described in [15]), and then constructs and searches
the resulting product automaton. If Spin finds a trace accepted by this
automaton, the trace explains how the system allows the bad behavior.
Alternatively, if Spin succeeds in showing, by exhaustive analysis of the
state space, that no errors exists, then the model is verified with respect
to the property.

44 Integrity and Internal Control in Information Systems

As an example, we formalize the first of the three properties described
in Section 1.2.3. Our first requirement states that the signature archi-
tecture must authenticate a user before the user generates a signature.
The bad property is therefore the negation of this. Informally:

The signature architecture generates a signature for
an unauthenticated user.

To formalize this as a temporal property, observe that to generate a
signature, we first require a valid session identifier, which is the result of
a successful user authentication. Suppose that UAS(uname,sID) denotes
that the user uname is authenticated with the session identifier s/D and
that GHSS(sID) represents that the signature architecture has generated
a hysteresis signature with the session identifier sID (greater than zero).
This can be formalized in PROMELA as follows.

#define UAS (uname,sID) (LinuxSideModule[lsm]@DONE_AuthlL
&& username LINUX == uname && sessionID_LINUX == sID)

#define GHSS(sID) (LinuxSideModule[lsm]@DONE_GensigL
&& signature_LINUX > 0 && sessionID LINUX == sID)

In these definitions, we reference labels (using @)in our PROMELA
model to formalize that processes have reached certain points in their
execution, and we use predicates on variables to express conditions on
the system state.

We can now express the above informally stated property as

Js : session. GHSS(s) before Ju : user. UAS(u, s). (1)

This is not yet a formula of linear-time temporal logic. First, “before”
is not a standard LTL operator. However it can be expressed using
the LTL operator “until”, written as infix U, by defining A before B as
(—|B) U A, i.e., A occurs before B if and only if =B holds until A. In
our case

ds : session. (—3u : user. UAS(u, s)) U GHSS(s). (2)

Second, we must eliminate the two quantifiers over sets. Since these
sets are finite, we can replace each quantifier by finitely many disjunc-
tions, i.e., the formula 3s : session. P(s) can be expanded to P(s1)V
P(s2)---V P(sn), where 81, ..., sy, are the finitely many model represen-
tatives of session identifiers.

The resulting property is automatically verified by Spin in 2 hours of
computation time on a 450 MHz UltraSparc II workstation. In doing so,

A Formal Analysis of a Digital Signature Architecture 45

it builds a product automaton with over 20 million states and searches
over 70 million transitions. The formalization and verification of the
other two properties is similar.

5. Discussion

It took approximately one man-month to build and analyze the sig-
nature architecture. This included considering alternative designs and
studying different ways of specifying the requirements. The resulting
model is 647 lines of PROMELA.

Although the formal analysis did not expose any design errors, the
process itself was still quite valuable. During the formalization, we un-
covered numerous ambiguities and omissions in the Hitachi documen-
tation, such as missing cases and undefined values. For example, as
described in Section 1.3.3, we needed to explicitly formalize implicit as-
sumptions on the environment. Indeed, one reason why verification was
successful is that, during the modeling process itself, we uncovered and
fixed these oversights and omissions. Moreover, the discipline involved
in creating the formal model improved our understanding of the design
and helped us identify better solutions. This process of sharpening and
improving a design is often one of the major benefits of using formal
methods.

As a concrete result, we have produced a verified model. It serves
as unambiguous documentation, with a well-defined mathematical se-
mantics, for subsequent system development. It also provides a starting
point for formally certifying the signature architecture with respect to
standards like the Common Criteria.

As future work, we would like to explore the possibility of under-
taking a full scale verification, perhaps as part of such a certification.
An important step here would be to formally verify the correctness
of the abstractions used, i.e., that the verification of our small finite
model entails the verification of the corresponding infinite state system
with unbounded numbers of interacting users and infinite data domains.
Techniques based on data-independence, such as those of [7, 13], may
help automate this task. It would also be interesting to supplement our
process model with a data model that formalizes the properties of the
signature architecture functions. Although this is not required for ver-
ifying the three requirements examined here, this would be necessary
to go beyond treating cryptography as a “black box”, e.g., to reason
about the adequacy of different cryptographic mechanisms. This would
also provide a more complete (formal) documentation of the design and
provide a starting point for code verification.

46

Integrity and Internal Control in Information Systems

References

(1]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

Toshiaki Arai, Tomoki Sekiguchi, Masahide Satoh, Taro Inoue, Tomoaki Naka-
mura, and Hideki Iwao. Darma: Using different OSs concurrently based on nano-
kernel technology. In Proc. 59th-Annual Convention of Information Processing
Society of Japan, volume 1, pages 139-140. Information Processing Society of
Japan, 1999. In Japanese.

W. Chan, R. J. Anderson, P. Beanie, S. Burns, F. Modugno, D. Notkin, and
J. D. Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498-520, July 1998.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
1999.

Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279-295, 1997.

G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

Daniel Jackson and Kevin Sullivan. COM revisited: tool-assisted modelling of
an architectural framework. In ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 149-158. ACM Press, 2000.

Gavin Lowe. Towards a completeness result for model checking of security
protocols. In PCSFW: Proceedings of The 11th Computer Security Foundations
Workshop, pages 96-105. IEEE Computer Society Press, 1998.

Gawin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proceedings of TACAS 96, LNCS 1055, pages 147-166. Springer,
Berlin, 1996.

K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.

C. Meadows. The NRL protocol analyzer: an overview. Journal of Logic Pro-
gramming, 26(2):113-131, 1996.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murphi. In Proceedings of IEEE Symposium on Security and
Privacy, pages 141-153, 1997.

A Formal Analysis of a Digital Signature Architecture 47

(12]

(13]

(14]

[15]

[16]

Lawrence C. Paulson. The inductive approach to verifying cryptographic pro-
tocols. Journal of Computer Security, 6:85-128, 1998.

A. W. Roscoe and Philippa J. Broadfoot. Proving security protocols with
model checkers by data independence techniques. Journal of Computer Security,
7(1):147-190, 1999.

Seiichi Susaki and Tsutomu Matsumoto. Alibi establishment for electronic sig-
natures. Information Processing Society of Japan, 43(8):2381-2393, 2002. In
Japanese.

M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. Journal of Computer and System Sciences, 32:183-221, 1986.

Jeannette Wing and Mandana Vaziri-Farahani. A case study in model checking
software systems. Science of Computer Programming, 28:273-299, 1997.

