A LEARNING-BASED APPROACH TO
INFORMATION RELEASE CONTROL

Claudio Bettini

DICO, University of Milan, Italy, and

Center for Secure Information Systems, George Mason University, Virginia
bettini@dico.unimi.it

X. Sean Wang

Department of Computer Science, University of Vermont, Vermont, and
Center for Secure Information Systems, George Mason University, Virginia
xywang @ cs.uvm.edu

Sushil Jajodia
Center for Secure Information Systems, George Mason University, Viginia
Jjajodia@ gmu.edu

Abstract:

Controlled release of information from an organization is becoming important
from various considerations: privacy, competitive information protection,
strategic data control, and more. In most organizations, data protection is
afforded only by using access control. However, it can be argued that access
control suffers from at least two problems. First, effective access control
assumes a perfect categorization of information (“who can access what”),
which is increasingly difficult in a complex information system. Second,
access control is not effective against insider attacks, where users with
legitimate access rights send out sensitive information, either with malicious
intent or by accident. Information release control is viewed as complementary
to access control, and aims at restricting the outgoing information flow at the
boundary of information systems. This paper presents an architectural view of
a release control system. The system emphasizes the role of automated

84 Integrity and Internal Control in Information Systems

learning for release control constraints. This has resulted from the realization
that the most difficult task of effective release control is how the release
control constraints are specified. In a learning-based system, data mining and
machine learning techniques are employed to generate release control
constraints from samples provided by the security officer. The system applies
continuous learning to adjust the release control constraints to reduce both
mistakenly released and mistakenly restricted documents. This paper also
provides a specific example on how to learn keyword-based release control

constraints.
Keywords: Data protection, Release control
1. INTRODUCTION

Release control refers to the process of checking the output data
generated upon a user request to determine if the information is appropriate
for release across a security boundary. Nowadays, organizations have vast
amounts of information that is shared with other organizations or even the
general public. Such sharing takes the form of public web pages, financial
reports, technical white papers, biographies of personnel, etc. Furthermore,
the knowledge workers of the organizations send out messages for
collaboration purposes. Such information sharing needs to be done in a
controlled fashion, taking into account security and other considerations.

For information security, a number of aspects have been considered in
the literature. These aspects include (1) secure communication, (2) perimeter
control, (3) reliable authentication, (4) authorization to information cells
(such as files, relational tables, columns in tables, and XML nodes), and (5)
partitioning of the information into cells. According to Wiederhold [Wie00],
aspect (5) is often under-emphasized and requires a highly reliable
categorization of all information to those cells. It is in the management of
that categorization where many failures occur. In other words, if some
information is miss-categorized, which is highly likely in a complex
organization, it is possible for the sensitive information to be released to
unauthorized users.

A more serious threat to sensitive information comes from careless or
malicious insiders, individuals or organizational entities with authorized
access to the system. This type of threats are potentially very damaging since
the access control rules (on which organizations rely heavily) are not
effective. Insider threats need to be countered using several different
methods, from intrusion analysis to information forensics. An important tool
to counter such threats is release control, which blocks the information at the
gate from “inside” to “out side.”

A Learning-Based Approach to Information Release Control 85

In addition to the aforementioned security considerations, some legal
concerns of information release need to be addressed. Depending on the
category of information, an organization may wish to append disclaimers,
copyright and other legal notices, and even watermarks. Release control can
be used to address this problem.

Release control thus needs to become an important component for
securing and managing information of an organization. From a technical
perspective, the release control system is best done by separating “release
control constraints”, which state what need be controlled, from “checking
algorithms”, which monitor the outgoing data against these constraints. This
separation allows more convenient management of the release control
system to fit the ever-changing organizational security and legal needs, and
allows more opportunities for the introduction of new checking algorithms.

In view of the aforementioned technical considerations, for an effective
and efficient release control system, at least two issues need to be considered
carefully. The first is how the release constraints are established and refined,
and the second is how the checking of the outgoing information can be done
efficiently and in a meaningful way.

In this paper, we present an architectural view of the release control
system and then focus on the first issue. One relevant source for coming up
with release constraints is clearly the data store. Indeed, in addition to the
ability of simply adding release constraints derived from experience or high-
level requirements, security officers may query the data store to determine
what needs to be controlled at the release point. We call this the “manual”
method. For example, access control rules are usually adopted to restrict the
access to the data store [JSSSO1]. When some data have restricted access, it
is likely that the release of such data should be checked. In addition,
information that might be inferred through integrity constraints from
restricted data should also be automatically added to the release constraints
store. Furthermore, data that are similar to such restricted data may also need
to be checked at the release point. Due to the involved complexity of these
tasks, “automated tools” are necessary.

We introduce an automated learning approach to help acquire release
control constraints. In a learning-based approach, the security office can give
an initial sample set of documents, including both “cleared for release”
documents and “restricted” documents. The system will try to learn an initial
set of release control constraints from the given sample set. As the time goes
by, when more and more documents are released and restricted (some of the
releasing and restricting are certified by the security officer), the learning
process will periodically adjust the release control constraints to do a better
job: reducing the mistakenly released documents as well as the mistakenly
restricted documents. In this paper, we outline such a learning based system

86 Integrity and Internal Control in Information Systems

architecture, and provide a specific example for learning release control
constraints.

The remainder of the paper is organized as follows. In Section 2, we give
a formal foundation for specifying release control constraints. We also give a
language that can be used to represent release control constraints on XML
documents. In Section 3, we outline an architecture for release control and
emphasize the role of learning in the whole architecture. In Section 4, we
give a specific example of learning keyword-based release control
constraints. We discuss related work in Section 5 and conclude the paper in
Section 6.

2. FORMAL FRAMEWORK

For a uniform treatment, we assume the data to be checked before release
is in XML format (the underlying data may be a table resulting from a
database query, semistructured data or a full text document). The data are
checked against a number of release constraints.

2.1 Release Constraints

A release constraint (RC) is a pair (R, CI), where R is a matching rule
and CI a set of controlled items.

Each RC is evaluated against the data being released and it prevents its
release if satisfied. Formally, each RC gives a mapping that assigns each
document with a label in {Restrict, Release}. A document Doc can be
released if for each release constraint RC, RC(Doc)=Release, i.c., in the data,
the controlled items do not appear in the way given by the corresponding
matching rules.

The set CI of controlled items is a set of tuples of the form (A,:a,, As:a,,
..., An:@y), where A; are variable symbols and g; their values. Values can
range over several simple domains (including integer, string, Boolean, etc.)
or even complex domains (admitting single-valued, multi-valued, or possibly
structured attribute values). Variable symbols may actually denote attribute
names as well as paths in the document structure. In the simplest case,
variable symbols are omitted and each tuple is a list of keywords.

Syntactically, the attribute part A of each pair can be specified by an
XPath expression, while the value part a can be specified by a regular
expression if it is a string (e.g., to denote any word starting with a certain
prefix) or, in the case it is a numerical value, it can be specified by a simple
condition (op k) with ope{<, =, >, <, 2} and k being a number (e.g., to
denote all values greater than or equal to a certain constant).

A Learning-Based Approach to Information elease Control 87

The matching rule R specifies how a document should be checked against
the controlled items. As an example, when the data to be checked are
answers from a database query, they can be represented as a sequence of
tuples. Then, a simple matching rule may check if one of these tuples
contains the attribute values specified in one of the tuples in the set of
controlled items. In the case of data containing unstructured text, the rule
may specify, for example, that the words in each tuple of the set of
controlled items should not appear together in any k-words portion of the
text, where k is a parameter defined by the specific rule. In other words, the
set of controlled items essentially lists the pairs attribute-value involved in a
release constraint, while the matching rule specifies their relationships.

Example 1. Consider a corporate database that includes data about
Employee’s salaries and assume an internal policy prohibits the release of
the salary of Mr. Woo. The administrator will set up a RC with CI =
{(Employee:Woo, Salary:75,000)} and R equal to the simple rule on
relational query results checking all the query results being released for
tuples containing the attribute values specified in CI. In this case, the system
will check each tuple returned, as part of a database query result, making
sure the values Woo and 75,000 do not appear in it.

Note that this is a conceptual model of RCs. In practice, controlled items
will have compact representations, in the form of SQL queries, general
XQuery expressions including predicates, strings with metacharacters or
other representations.

The above formal model can be easily extended to represent overriding
constraints by allowing negative terms in control items (in the form —A:a).
For example, in protection software, among all documents rejected because
containing the word ‘chip’, those in which the occurrence of ‘chip’ is always
part of the sequence ‘chocolate chip’ should be released. This can be
modeled by the above extension.

2.2 A language for matching rules on XML documents

In this subsection, we focus on the problem of representing matching rule
when the data to be checked in contained in XML documents. We design a
language that has the following expressiveness properties, which we
consider necessary for our task.

o The language should be able to express the maximum distance between
all pairs of values as a pre-determined upper bound. In terms of XML

88 Integrity and Internal Control in Information Systems

this may be the number of edges in the XML tree that separate the nodes

storing the values.

o The language should be able to express the presence of certain nodes
(with particular labels, semantic tagging, degree, type, e.g., leaf, root,
etc.) in the path between the pair of nodes for which we consider the
distance in the XML structure.

¢ The language should be able to express relationships between nodes.
Example of relationships include the difference in depth in the XML
tree, the difference in the semantic tagging possibly attached to the
nodes, the presence of a common ancestor with a specific tag,
relationships between node attributes, etc.

e The language should be able to discriminate the order of the values in
the XML structure. The order may be particularly relevant in overriding.
In our chocolate-chip example above, the word ‘chocolate’ must appear
before the word ‘chip’.

Following the above requirements, we represent each matching rule as a
conjunction of a cardinality rule and one or more node-relation rules."

A cardinality rule has the form NumVar 2 k where k is a positive integer
and NumVal is a language keyword denoting the number of different values
specified in the controlled items that should be observed in the document.
Hence, a cardinality rule specifies that the number of these values must be at
least k, not considering negative terms in the controlled items representing
overriding conditions. If no cardinality rule is given, a default cardinality
rule is assumed with k=1 this is the most conservative choice.

Example 2. Given a set of controlled items (A;:a;, —Az:as Aszaq Agay), a
cardinality rule NumVar & 2 would restrict any document that would contain
at least 2 of the positive controlled items; i.e., either A;:a; and Aj:a;, or A, a;
and Ay a4 or As:as and Asas, but not containing Az:a,. In the case of XML
documents by containment of A:a we mean the presence of a node/attribute
identified by A and having text/value a.

A node-relation rule NR(A;:a,, ..., Ay:ay) is represented by a Boolean
node formula. A node formula is recursively defined from a set of atomic
distance formulas and atomic node formulas by applying the standard
conjunction and negation operators as well as quantification on nodes.
Existential quantification has the form: INeP:F(N), where N is a node
appearing in the path P of the XML tree and F(N) is a node formula. Paths
can be defined as explained below for atomic distance formulas. Since

! Alternative matching rules (disjunctive behavior) can be established by adding more release
control rules with the same controlled items.

A Learning-Based Approach to Information Release Control 89

negation is allowed, universal quantification and disjunction are implicitly
part of the language.

An atomic distance formula has the form:

o IPJIB1opl P, where B,P,are paths in the XML document tree
and opisin {<,=>,2,<},
e |Plopk, where P is a path in the XML document tree, and k is a
non-negative integer.
The notation | Plstands for the length of path P in the XML tree of the
document. For example, the root node of an XML document is easily
characterized by having a path of length ‘0".

Paths P are either among #(&,),..., (@,), which denote the paths from
the root of the XML tree to the nodes associated with a subset of values
a,,...,a, among the controlled items, or they can be paths obtained from
them by applying the following operators:

e B NP, (Path Intersection)

e B — P, (Path Difference)

e Prefix,(P) (Path Prefix of length k)

® Suffix,(P) (Path Suffix of length k)

Each atomic node formula compares a node property with a constant value
or with the property of a different node. The set of atomic node formulas
includes the following:

e Comparison of attribute values

o AutrValue(NjattrName) op AttrValue(N,attrName), where op is
in {<,=><,2,#} (applies only if the attribute has a numeric
value).

o AttrValue(N,attrName) op k, where k is an integer and op is in
{<,=>,%,2,#} (applies only if the attribute has a numeric
value).

o AnrValue(N,attrName) rel AttrValue(N, attrName), where rel is
in {=,#,substr,...} (applies only if the attribute has a string
value).

o AttrValue(N,attrName) rel string, where string is any string and
rel is in {=,#,substr,...} (applies only if the attribute has a string
value). For example, using conjunction, this can be used to check
if a set of nodes has the same attribute value.

e Comparison of node meta properties

o Order(N;) op Order(N,;), where op is in{<,=>,<,2} and
Order() is not an attribute, but a function assigning a unique
value to each node in the XML tree, according to a specific order
(e.g., preorder). This may be used to check if a certain word
appears before or after another one in the document.

90 Integrity and Internal Control in Information Systems

o Tag(N) rel string, where string is any string and rel is in
{=, #,substr,...}. For example, using conjunction, this can also
check if a set of nodes has the same tag <Table>.

o Degree(N) op k, where Degree(N) denotes the number of children
of N in the tree, k is a non-negative integer and op is in
{<,=>, £,2,#}. As an example, a leaf node can be characterized

by having degree ‘0.

Example 3. The following matching rule

AN e Suffix,(P(N,)) :AttrValue(N, “attrName”) superstring “relString”
is satisfied if either the parent node or the parent of the parent node of N,
has a value for the attribute “attrName” which contains the string
“relString”. Note that N, is identified by testing whether it contains one of
the values in the controlled items.

Note that paths in atomic distance formulas can be considered constants
when a specific XML document is considered. This is different from nodes
in atomic node formulas that can be both constants and variables. Indeed,
they are constants if the nodes are among the ones corresponding to the
values @,...,a,in the controlled items, and variables otherwise. If they are
variables they will appear in the node formula under quantification.

‘——l_*— DDDDUD‘"WQGB OOxOOC00)3312:’;1;
cuments

Internet Query.
Retrieval

Ac
A
Data Store

Access Control
Rules

% 5 /(\
General a'abas)e(ML
Documents Documents

Figure 1. General architecture for release control.

A Learning-Based Approach to Information Release Control 91
3. RELEASE CONTROL ARCHITECTURE

The architecture we are proposing is based on three basic component: (i) the
flow of documents that are going to be released, (ii) a Data Store from which
the documents are extracted/derived, and (iii) a Release Control System
monitored by a security officer. Figure 1 illustrates these components and
their internal structure, ignoring at this level the machinery needed for the
learning process.

3.1 The Basic Components

The Data Store can include different types of data sources like standard
relational databases, XML or other document type repositories. Documents
to be released may be obtained through queries on different data sources in
the Data Store as well as through access to internet/intranet services.
Databases in the Data Store as well as other sources can be assumed to be
protected by usual access control systems.

The main modules in the Release Control System are the Release
Constraints Store and the Matching Module. The first module is the
repository of release constraints and includes constraints explicitly inserted
by the security officer, constraints derived from the data store with processes
guided by the security officer, and constraints derived from examples of
restricted and released documents by a learning process, which will be
explained later in this section. An example of derivation of constraints from
the data store is using the information about access control rules in order to
derive sensible associations of terms directly or indirectly bounded to items
whose access is forbidden by those rules. Ontologies and thesauri can also be
used to derive new release constraints by identifying “semantic” similarities
to the given ones. Optimization modules (not depicted in the figure) will also
operate on the Release Constraints Store. For example, the set of Release
Constraints can be reduced considering the subsumption relationships along
the hierarchies of matching rules and controlled items. As an example if RC;
says that each tuple in the outgoing data should not contain the strings Woo
and 75k, and RC; says that the string Woo should not appear anywhere in the
outgoing data, RC; can be disregarded.

Given a set of release constraints in the Release Constraints Store, the
Matching Module is responsible for checking each one of them against the
outgoing documents, and for blocking the release of those for which any of
the constraints is satisfied. Since we assume documents in XML form, the
module must contain a matching algorithm with a XML parsing component.
A basic version of the algorithm may consider an explicit listing of
controlled items in each release constraint, and hence, it will perform

92 Integrity and Internal Control in Information Systems

keyword-based matching. Clearly, appropriate indexing on the keywords
appearing in the release constraints will be necessary, so that all applicable
release constraints are efficiently selected upon reading one of the sensitive
keyword in the outgoing data. Efficient techniques should also be devised in
order to keep track of the current position within the list of controlled items
in each release constraint. More sophisticated versions of the algorithm will
consider working with compact representations of the controlled items
(possibly in the form of queries).

3.2 Integration of a Learning Module

While the security officer in some cases may be able to explicitly provide
both controlled items and associated matching rules, we believe there are a
large number of documents to be restricted for which only more vague
criteria are available. For this reason, our framework proposes the
integration in the above architecture of a Learning Module that has the main
goal of learning release constraints. In particular, in this paper we will show
how the learning component can generate specific matching rules starting
from controlled items, some domain knowledge, and a training set
containing documents already marked as restricted or released.

In principle, given a sufficiently large training set of positive and
negative examples we may ask a learning algorithm to derive controlled
items and matching rules accordingly to the syntax described above. In
practice, this is not a realistic requirement: the learning process, and, in
particular, the extraction of features from the examples must be guided by
some knowledge about the specific domain. One possibility is to start with a
possible set of “critical” correlated keywords from the security officer and
with a set of parameterized matching rules. For example, the security officer
may consider the distance of two keywords in a document to be a relevant
criterion, while the number of occurrences of keywords not to be a relevant
one. In this case, the upper bound on the “distance” becomes a parameter to
be tuned by the learning process.

The main issue is how to choose appropriate parameterized rules so that
the algorithm may minimize the rate of mistakenly released and mistakenly
restricted documents by tuning the parameters. In order to illustrate the
general idea in the specific context of our matching rules, we give an
example, by considering only cardinality rules. As we have observed in
Section 2.2, the default and most conservative cardinality rule
NumVal 2 k is obtained by using k=1. The value of k may actually be used
as a parameter in the learning process. For example, from the training set it
may be observed that all correctly restricted documents contain at least 2
terms of the controlled items, while many mistakenly restricted ones contain

A Learning-Based Approach to Information Release Control 93

only one. The value of kK may then be raised to 2. Of course, there are several
hypotheses on the document corpus and on the learning algorithm (including
the size of the training set) that should hold to preserve a correct behavior of
the system while reducing its mistakes.

In the context of security, it may be desirable to implement a learning
process that preserves the following “conservativeness” property:

All documents that have been certified as restricted by the security
officer will be restricted by the system.

Preserving this property implies that any derivation of new rules or
refinement of existing rules must lead to a global set of release constraints
that is still able to correctly classify documents that are known to be
restricted.

Figure 2 depicts the Learning Module and its integration in the overall
architecture, including a Monitoring Tool that will be discussed below..

31::.1;
Thesauri|
by ozl
Learning Module
2]
Relense C
Store

Figure 2. The Learning Module and the Monitoring Tool

33 The Learning Module

The learning module has two main functionalities:
® [t derives release constraints for the initial set-up of the system. As
mentioned above, performing this task requires a training set of
documents marked to be restricted or released, approved by the
security officer; it also requires some domain knowledge, possibly
in the form of controlled items and/or parametric rules. We impose
that the rules obtained by the learning algorithm will preserve the
conservativeness property, i.e., the system using these rules would
correctly restrict at least all documents marked to be restricted in

94 Integrity and Internal Control in Information Systems

the training set. The algorithms and strategies involved in this task
under specific assumptions are described in Section 4.

o [t helps refining the system behavior upon the identification during
system operation of mistakenly released and mistakenly restricted
documents. This task is based on the assumption that the security
officer monitors the system behavior and provides feedback to the
learning module by dividing samples of the processed documents
in four categories: correctly restricted (CRes), correctly released
(CRel), mistakenly restricted (MRes), and mistakenly released
(MRel). It can be considered a form of online learning since the
process may automatically start once a large enough set of these
samples becomes available.” There are essentially two approaches
to perform this task: (i) Re-applying the learning process used in
the initial set-up considering as the training set the new samples as
well as all documents whose classification has been verified in the
past by the security officer. When the set becomes too large, many
strategies are possible, including, for example, the use of a sliding
time window for the past, or of a “least recently used” strategy. The
rules obtained through this process replace the previous ones. (ii)
Refining the current rules using only the new set of CRes, CRel,
MRes, and MRel documents. This is potentially a more efficient
approach, but details on how it can be done are very dependent on
the learning algorithm.

34 The Monitoring Tool

A critical system will have a huge number of documents flowing through
it, and specific strategies must be devised to monitor its behavior in order to
provide feedback to the learning module. The most trivial strategy consists
of periodically extracting samples and forwarding them to the security
officer, but it is likely to be unsatisfactory, since any significant frequency of
sampling involves an unsustainable amount of work for the security officer.

In our architecture we propose to introduce a monitoring tool that filters
the documents based on a “similarity” metric so to drastically reduce the
number of documents to be examined by the security officer. Note that in
principle the tool should be applied both to restricted documents to identify
potentially mistakenly restricted ones, and to released documents to identify
potentially mistakenly released ones. However, while mistakenly restricted
documents may have other ways to be recognized (e.g. feedback from users
whose requests have been refused) and are less critical, the problem is

% Actually, considering the conservativeness property, even a single example of mistakenly
released document can be useful to refine the rules.

A Learning-Based Approach to Information Release Control 95

serious for released ones. Also, each restricted document is associated with
the release constraint (controlled items and matching rules) that has
prevented its release. When the security officer examines the document this
association can help recognizing the reason for the sensitivity and, in case of
a mistaken restriction may lead to drop or explicitly modify a rule. Released
documents on the other side have no attached information. Our focus is on
tools to detect potentially mistakenly released documents.

The monitoring tool considers ‘“similarity” of released documents to
restricted ones based on the closeness of the document to the classification
threshold. This technique is still based on learning and details really depend
on the specific learning algorithm, but, intuitively, it works as follows:
essential features of documents to be restricted and to be released can be
represented by numerical values, and an n-dimensional boundary that
separates the two types of documents can be found. Then, a document being
examined has the same features computed and the closeness to this boundary
can be evaluated. Intuitively, documents that are close to the boundary are
similar both to restricted and released ones. The monitoring tool should rank
the documents according to their closeness to the boundaries, so that the
security officer can dynamically and asynchronously examine them.

The monitoring tool also uses other techniques to identify potential MRel
documents:

e The use of ontologies and thesauri to substitute words or structures
with those appear in controlled items.

¢ The explicit relaxation of some of the rules. For example, increase
distance (for distance based condition), decrease cardinality, allow
regular expression in the string literals, dropping rules by making
them always satisfied (e.g., indefinite order, infinite distance).

Intuitively, the application of these techniques, as well as of the learning
based one, should be guided by the goal of identifying a very small fraction
of the released documents. This is both required due to the limited resources
and, more importantly, by the implicit assumption that security officer
policies are quite conservative: it is more likely that few restricted
documents have been incorrectly released.

These components of the architecture operate asynchronously with
respect to the main Release Constraint System.

4. LEARNING FOR KEYWORD-BASED RELEASE
CONTROL CONSTRAINTS

As we mentioned in our discussion of the release control system
architecture (Section 3), learning for the purpose of obtaining specific

96 Integrity and Internal Control in Information Systems

release control constraints plays an essential role. We also mentioned that
domain experts or security officers should guide the learning by giving
relevant features that the learning process should focus on. In this section,
we study, in more detail, such a feature-based learning when keywords-
based release control constraints are considered.

In general, a feature-based learning requires that domain experts provide
certain domain knowledge to the task of learning. The domain knowledge
specifies what types of features are important for the task at hand. A learning
mechanism is to identify the specific features, within the given types, that
can be used to distinguish between different sets of documents.

We believe this approach is rather useful in practice. Indeed, in
information retrieval techniques, features of texts are routinely used in
deciding the relevance of documents. For example, text appearing in subject
line, or title, or abstract, may be more important than that appearing in the
body of a document. However, the features used in information retrieval are
usually “hard coded” into the information retrieval systems. This may be
reasonable for documents that do not have much of structure. When a
document is represented in XML, features of various types need to be
considered.

Often, specific domains of applications determine the features that are
important in XML documents. For example, in applications where
documents are structured as a hierarchical tree (e.g., parts contain chapters,
chapters contain sections, and section contain paragraphs), it is important to
talk about contents belonging to a particular level of the hierarchy (e.g., two
sections of the same chapter). Hence, it is important for the domain experts
to specify certain ‘generic’ types of features that are important for the
domain.

For release control, the above discussion about domain-specific feature
implies the following strategy for generating release control rules. Step 1, the
domain experts specify certain type of features that are important. Step 2, the
learning system discovers the conditions on the features for the release
control purpose. In the following, we illustrate this approach on keyword-
based release control.

4.1 Keyword-based features

In this approach, we assume the controlled items are simply keywords,
and a feature specifies the particular relationship based on particular ways of
appearance of these keywords in a document. The “particular ways” of
appearance is a type of feature given by a domain expert. We codify such
features by using the notion of a feature function.

A Learning-Based Approach to Information Release Control 97

Formally, we define a feature function as a function f such that, given an
XML document Doc and m nodes of Doc, it returns a tuple of n values, i.e.,
J(Doc,N,,...,N,)=(a,,..,a,).

Note that the functions we define are on the nodes of XML documents.
We still call them keyword-based since we will use the appearance of
keywords to determine which nodes in the XML document to consider, as
we will show later.

Example 4. The following are three example features:

o Distance feature: dist(Doc, N;,N,)=D, where D is an integer
parameter, and dist(Doc, N|,N,) is defined as
[P(N)I+1P(N,)I-2*I P(N,)NP(N,)| and P(N) means the
path from the root of the XML document Doc to node N,. This feature
extracts the distance between the two nodes when the document tree
is viewed as a graph.

e Least common ancestor feature: Ica(Doc, Nj, N3)=T, where T is the
tag of the node defined by Suffix,(P(N,)NP(N,)). Here T is a
string and P(N;) is the path from the root of Doc to node N, This
feature extracts the tag value of the lowest (in terms of the node level)
common ancestor of the two given nodes.

® Ordering: ocd(Doc, N;, N2)=R, where Order(N;) R Order(N,). Here,
R is one of the relational comparison symbols. This feature gives the
order relationship between two nodes.

In the above examples, each feature function only returns one value (more
specifically, a tuple with one value in it).

The above feature functions can naturally be used for specifying
conditions on the appearance of keywords in XML documents. For example,
given two keywords K; and K;, we want to talk about the appearance of
them within certain distance in an XML document. To do this, we only need
to specify a condition involving the distance of the nodes that “contain” K,
and K,, respectively.

More formally, we define the notion of occurrences of keywords in an
XML document as follows: Given a set of keywords K ={K,,...,K,} and a
document Doc, an m-occurrence of K in Doc, where m is an integer no
greater than the number of elements in K, is a partial mapping occ from
K to the nodes of Doc such that occ(K;) contains K; for each i=1,..., n if
occ(K)) is defined, and the number of K; with occ(K;) defined is exactly m.
Here, “contains” means either an attribute of occ(K;) has the value K; or the
value of occ(Kj) is exactly K;. To simplify the presentation, in the following,
we use “contains” to mean that the value of the node is exactly the keyword.

98 Integrity and Internal Control in Information Systems

Example 5. In the XML document in Figure 3, there are seven 2-
occurrences of {“A”, “B”, “K;”}. Note that in the tree representation of the
XML document in Figure 3, we only show the node values in the XML tree.
Other information of the XML documents is omitted. The labels within the
nodes (within the circle) are meant to identify the nodes for presentation
purpose, and are not part of the XML documents.

Pl

(no) R

_/‘,"*3“

N T
{ m ns) H | n8
S il N A J
s ‘/_\ A K\ \‘\f'
‘\ \‘\‘ \ \
D \\iii \ A\
N { Jr-::;‘v (;,r\ .-f/h \ K3 K4 (” B
nz) A /) By,

Figure 3. An XML document.

A partial occurrence occ of K in Doc is said to be a maximum one if occ
is defined on the maximum number of keywords in K among all such partial
occurrences.

\ C
nO— b
AN
/ | 4 -\-H—“‘-\‘__
&
iy Rphe K -
(m) {5} () e
-\; : - \T \\“-T\’/I
s e \ 1Y
A / \\ \\‘x \\)

K1 _. K2\ K> 3
1< ~ ~ K1 K2
(n2) () (M) (w) (s
., _— — il ‘\“'J

Figure 4. Another XML document.

Now we are ready to extract keyword-based features from XML
documents. Assume the feature function takes the form f(Doc, N,, ...,
N.)=(ay, ..., a,). Then the features extracted from the document via function
f is the set of n-tuples given as follows: (ay, ..., a,) is one such n-tuple if and
only if there exists an m-occurrence occ of X in Doc such that fiDoc,
occ(K)), ..., occ(K)Y=(ay, ..., a,).

A Learning-Based Approach to Information Release Control 99

Example 6. Given the distance feature function and the set of keywords
{“K;”, “K;”}, the set of features extracted from the XML document in
Figure 3 is {(2)}. The distance feature of the same keywords extracted from
the XML document in Figure 4 is {(2), (4)/.

Together with a set of keywords (used as controlled items), a Boolean
condition based on the features extracted via feature functions can be used as
a release control constraint. More specifically, given a document, we extract
the features using the feature functions, and then test the Boolean condition
on the features. If anyone of the specific features satisfies the condition, we
should block the release of the document.

Example 7. Suppose a release control constraint specifies the distance
between keywords “K;” and “K,” to be less than 3. Then, none of the
documents in Figures 3&4 can be released since each one contains at least
one occurrence with distance 2. Suppose another release control constraint
specifies the lowest common ancestor of keywords “K,” and “K” to have
value “B”. Then the document in Figure 3 cannot be released while that in
Figure 4 can be.

4.2 Learning for keyword-based release control
constraints

A security officer can certainly set up a set of release control constraints
by giving a set of keywords and a condition on the keyword-based features
(extracted from a set of feature functions). In a practical system, however, it
is more likely that system need to learn from a set of examples to establish
the specific release control constraints. In this subsection, we will show how
this may be done for keyword-based release control constraints.

As mentioned earlier, we assume that (1) a set of feature extraction
functions are set up by domain experts as the likely types of features to be
concerned by the release control constraints; (2) the security officer gives a
collection of keyword sets to be controlled, and (3) a set of documents is
provided as learning samples (i.e., the documents either cleared for release
or restricted by the security officer). Given (1), (2) and (3) above, the task of
learning is to give a set of release control constraints by specifying
conditions on the feature values extracted by the feature functions. We now
outline a method to do this. The key issue is to convert this learning problem
to one where traditional learning algorithms can apply.

Assume X is the set of keywords we are concerned with. For each feature
function fiDoc, Ny, ..., Nw)=(ay ..., a,), we create the following attributes (as
in a relational database schema): For each i, i=1, ..., n, and each subset {K,

100 Integrity and Internal Control in Information Systems

.oy K} (Of size m) of K, we get an attribute name f{a; K, ..., Kn]. We use a
relational schema of all such attributes. Furthermore, we add a document ID
as an extra attribute to the relational schema.

Example 8. Consider the keyword set {K,, K, Kj} and the three features
given in Example 4. Then we have the following 18 attributes (in addition to
the document ID attribute):

dist[D, K,, K;]

ECG[T, K;, Kz]

ocd[R, K;, K]

deI[D, Kg, K;]

lca[T, K, K]

OCd[R, Kz, Kj]

dist[D, K, Ky]

lea[T, K,, K5]

OCd[R, Kb KJ]

dist[D, K;, K;]

lea|T, K;, K;]

ocd[R, K;, K;]

dist[D, K;, K;]

lea[T, K, K]

ocd[R, K>, K;]

dl'Sf[D, Kj, Kz]

lca[T, K;, K]

OCd[R, KS! KZ]

Of course, certain relationships between the parameters may lead to a
reduction of the number of attributes. For example, since the value for
dist[D, K,, K,] is the same as dist/D, K, K;], we can omit one if we already
have the other. Another example is that if we know ocd[R, K, K,], then we
implicitly know ocd[R, K, ,K,], and we can omit one of these two attributes.
From this reasoning, we can reduce the number of attributes in the example
to nine (in addition to the document ID attribute).

By using the training samples, we set up feature tuples in the above
relational schema as follows. Given an XML document Doc and a maximum
occurrence occ of K in Doc, we generate a tuple as follows: For attribute
alK,, ..., Kn], it gets a null value if the number of keywords that occ is
defined on is less than m; otherwise, the attribute gets the corresponding
value from floce(K)), ..., occ(Kpy)).

Example 9. Consider keyword set K =(K;, K, Kj} and the XML document
in Figure 3. Consider the occurrence K in the document such that K, is
mapped to 1z, K, to n; and Kj to ny. Then the value for dist/D, K;, K] is 2,
while the value forocd[R, K, Kj3] is “<”.

In the above method, each occurrence of a set of keywords in an XML
document sets up a feature tuple in the given relational schema.

Given a set of documents and a set of keywords, we can set up a set of
feature tuples for each occurrence of keywords in each document. When we
have a set of documents that need to be restricted (determined by the security
officer), then the tuples obtained by that document form a set of “restricted”
feature tuples. When we have a set of documents that can be released, the
tuples obtained by that document form a set of “releasing” feature tuples.
Note, however, that there is an apparent difference in the semantics of the

A Learning-Based Approach to Information Release Control 101

feature tuples in the above two sets. In the “restricted” set of feature tuples, a
document needs to be restricted even if only one tuple (among all those that
belong to the same document) is “dangerous”.

Example 10. Suppose we want to restrict a document from being released
when the keywords “K,” and “K,” appear within distance 3. In this case,
both XML documents in Figures 3&4 should be restricted. However, not all
the distance features of “K;” and “K,” in Figure 4, namely 2 and 4, satisfy
the restricting constraint.

By reducing the learning task to two sets of feature tuples as given above,
we can now apply any traditional learning algorithm [Mit97, Qui96]. In
general, the learning algorithm will produce a classification condition on the
parameter values. That is, given a feature tuple in the given relational
schema, the classification condition gives either restrict or release. For each
document, if any of its feature tuple results in the value restrict, then the
document should be restricted from release. This classification condition will
be used as the matching rule in a release control constraint and the
corresponding keywords will be the controlled items.

S. RELATED WORK

The concept of information release control has been explicitly introduced
recently in [Wie0O, Mon01, RWO1], but a general formal framework does
not currently exist.

Some form of control over outgoing data has been performed since a long
time in different contexts, but it has been mostly based on basic filtering
tools, and heuristics have been directly coded into programs. An attempt to
specify rules in a high level language is represented by Felt [Swa94] which,
among its features, provides language statements to identify words, or parts
of words in documents and to drop or substitute these words. Restricting
rules are then compiled into a program for automatic matching. Despite we
are not aware of any structured formal framework for release control as the
one we are proposing, we should mention the very active research field of
information filtering which also includes publication/subscription systems.

An information filtering system is an information system designed for
unstructured or semistructured data [BC92], as opposed to typical database
applications that work with highly structured data. With respect to the
general information retrieval paradigm, in which a large body of data has to
be searched against a specific user search criteria, in information filtering it
is usually the case that there are a large number of specifications about

102 Integrity and Internal Control in Information Systems

information needs of a large number of people and/or tasks, and they all
have to be matched against the same text data, in most cases dynamically
produced and distributed by some data sources. Publication/subscription
systems (see, e.g., [FIL+01] and [ASS+99]) are an instance of information
filtering applications. For example, consider the task of sending to each user
subscribing to a news service the subset of the daily news specified in his/her
profile. The analogy with our work is quite clear: the set of release
constraints can be considered a set of subscriptions, and any matching
against the outgoing data leads to a specific action, which usually is
preventing the release of the data. Despite this analogy, our goal is to deal
with a more heterogeneous set of data that includes also structured data
resulting from database queries.

Some work has been done specifically on XML documents filtering for
publication/subscription systems [AF00, DFFI02, PFJ+01]. We are
considering the algorithms and techniques proposed in this area for their
adaptation to implement the matching module of our architecture. However,
it is still not clear if the algorithms can be adapted to our language for
matching rules and if they are compatible with the specific requirements that
a security application imposes.

Alternative approaches for the matching module are represented by
continuous query techniques [CCC+02, CDTW00, MSHRO02].

Our work is also related to what is commonly known as Internet filtering
software. Filtering or blocking software restricts access to Internet content
through a variety of means. It may scan a Web site’s content based on
keywords, phrases or strings of text. It may also restrict access based on the
source of the information or through a subjective ratings system assigned by
an anonymous third party. Mostly, this software has been focused on
blocking pornographic content, and it has not been considered very
successful until now, either for under-blocking or over-blocking Internet
content. This is partly due to the way blocking criteria have been devised
and partly from the inherent complexity of the task. Despite some aspects are
very related, we are considering several issues about the treatment of
structured and semi-structured data while the data considered by these
systems is usually unstructured, or the structure it has it is totally unknown.
Regarding our learning-based approach, the general techniques to learn the
release constraints from a training set of positive and negative examples are
well known [Qui96, Mit97]. Learning has been extensively applied in text
categorization and text filtering [Seb02], but efforts to study and apply
learning techniques for the categorization and filtering of XML documents
have just recently started and pose many open questions. We plan to
investigate further the problem of learning release constraints and of refining

A Learning-Based Approach to Information Release Control 103

the constraints considering, in particular, recent statistical learning
approaches [CST00].

Regarding our intention of integrating keyword-based techniques with
text categorization algorithms, we will take into account the results of the
Genoa Technology Integration Experiment [Mon0O1] performed as part of a
DARPA project on boundary control. In the experiment keyword-based and
NLP (Natural Language Processing) techniques were compared in their
accuracy on a concrete experimental scenario; the experiment involved a
corpus of heterogeneous documents that had to be controlled for the release
of potentially sensitive information for terrorist attacks. (The scenario
referred in particular to the Aum Shinrikyo Japanese cult that bombed the
Japanese metro system with an anthrax pathogen.)

Finally, a large amount of work has been done in the past decade on word
sense disambiguation (see, e.g., [Les86]), and ontology-based reasoning
(see, e.g., [GLO2]) which are important issues for any content-based
document management application and, in particular, for a more accurate
release control. An example of use of word sense disambiguation and natural
language processing in boundary control, limited to text documents, is the
Genoa Technology Integration Experiment [Mon0O1] performed as part of a
DARPA project on boundary control. In our case ontology-based reasoning
is used to add relevant rules and/or feature functions over XML documents.

6. CONCLUSION

In this paper, we presented an architecture for controlled information
release. We emphasized on the automated learning (for release control
constraints) in the whole infrastructure for release control. We formalized
the release control constraints and presented a learning strategy for keyword-
based release control constraints.

The above release control system can be useful in a traditional data
system, such as database system, FTP directories, and web sites. More recent
applications, such as web services, can also benefit from release control.
Web services [New(02] are an emerging paradigm for internet computing
heavily based on XML and on the SOAP protocol. Web services present to
the network a standard way of interfacing with back-end software systems,
such as DBMS, .NET, J2EE, CORBA objects, adapters to ERP packages,
and others. While standards are currently under definition for authentication
and authorization, as well as for encryption, controlling the information that
is released through a web service to the general internet or to a restricted
subset of cooperating processes will be one of the major issues that will also
probably affect the success of the new paradigm. While the major objectives

14 Integrity and Internal Control in Information Systems

of the proposed project are not to develop a specific technology for web
services, we envision a very interesting integration of the technologies that
may emerge from our results into a web service architecture.

Content-based firewall is another interesting application of our release
control system. Current firewall systems are mostly based on selecting
incoming and outgoing packets based on source/destination IP and port
numbers. Filtering software based on dirty-word checking or virus
identification in some cases have been integrated. The content analysis is
however quite primitive both in the definition of the filtering criteria and in
the matching algorithms. We advocate an approach that incorporates the
release control into firewall systems to allow more advanced monitoring on
the contents that are released through the firewall.

ACKNOWLEDGEMENTS

This work was supported by the NSF under grant 1IS-0242237. The
work of Bettini was also partly supported by Italian MIUR (FIRB “Web-
Minds” project). The work of Wang was also partly supported by NSF
Career Award 9875114. The authors would like to thank Nicold Cesa-
Bianchi of the University of Milan for insightful discussions on
computational learning techniques.

REFERENCES

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In Proceedings of 26th International Conference
on Very Large Data Bases, pages 53—64, USA, 2000.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar
D. Chandra. Matching events in a content-based subscription system. In Proceedings of
the Eighteenth Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 53—62, May 1999.

[BC92] N. J. Belkin and W. B. Croft. Information Filtering and Information Retrieval: Two
Sides of the Same Coin? Communications of the ACM, 35(12):29—38, December 1992.
[CCC+02] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
streams — A new class of data management applications. In Proceedings of the 28th

International Conference on Very Large DataBases (VLDB), pages 215—226, 2002.

[CDTWO00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a
scalable continuous query system for Internet databases. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data: May 16—18, 2000, Dallas,
Texas, pages 379—390, 2000.

[CSTO0] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Machines (and
other kernel-based learning methods), Cambridge University Press, UK, 2000.

A Learning-Based Approach to Information Release Control 105

[DFFT02] Yanlei Diao, Peter Fischer, Michael Franklin, and Raymond To. Yfilter: Efficient
and scalable filtering of xml documents. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 341—342, 2002.

[FJL+01] Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth A.
Ross, and Dennis Shasha. Filtering algorithms and implementation for very fast
Publish/Subscribe systems. In Proceedings of ACM International Conference on
Management of Data (SIGMOD), pages 115—126, 2001.

[GL02] Michael Gruninger and Jintae Lee. Ontology: applications and design.
Communications of the ACM, 45(2):39—41, February 2002.

[JSSSO01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.
Flexible support for multiple access control policies. ACM Transactions on Database
Systems, 26(2):214—260, June 2001.

[Les86] Michael E. Lesk. Automated sense disambiguation using machine-readable
dictionaries: How to tell a pinecone from an ice cream cone. In Proceedings of the
SIGDOC Conference, 1986.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[MonO1] Eric Monteith. Genoa TIE, advanced boundary controller experiment. In [7th
Annual Computer Security Applications Conference. ACM, 2001.

[MSHRO2] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.
Continuously adaptive continuous queries over streams. In Proceedings ofthe 2002 ACM
SIGMOD international conference on Management of data (SIGMOD), pages 49—60,
2002.

[New02] Eric Newcomer. Understanding Web Services. Addison Wesley, 2002.

[PFJ+01] Joao Pereira, Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, and Dennis
Shasha. Webfilter: A high-throughput XML-based publish and subscribe system. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB),
pages 723—725, September 2001.

[Qui%] J. R. Quinlan. Learning decision tree classifiers. ACM Computing Surveys,
28(1):71—72, March 1996.

[RWO1] Arnon Rosenthal and Gio Wiederhold. Document release versus data access
controls: Two sides of a coin? In Proceedings of the Tenth International Conference on
Information and Knowledge Management (CIKM), pages 544—546, November 5—10,
2001.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1—47, 2002.

[Swa%94] V. Swarup. Automatic generation of high assurance security guard filters. In Proc.
17" NIST-NCSC National Computer Security Conference, pages 123—141, 1994.

[Wie00] Gio Wiederhold. Protecting information when access is granted for collaboration. In
Proc. of Data and Application Security, Development and Directions, IFIP TC11/ WGI11.3
Fourteenth Annual Working Conference on Database Security, pages 1—14, 2000,

