A SECURE MULTI-SITED VERSION CONTROL
SYSTEM

Indrajit Ray and Junxing Zhang

Computer Science Department, Colorado State University

Abstract: The software development process is increasingly taking the form of a
collaborative effort among several teams which are hosted at widely dispersed
sites networked over the Internet. In this model of software development,
multi-sited version control systems play a very important role to maintain the
revision history of software and facilitate software evolution. In this paper we
look into the security requirements of such multi-sited version control systems.
We identify the security deficiencies in current systems and propose a new
framework for secure multi-sited version control.

Key words: revision control, versions, software development, collaboration, integrity

1. INTRODUCTION

A version control system is used to maintain the revision history of
software and facilitate software evolution. When software evolves it
produces many revisions. A version control system stores these revisions,
organizes them into meaningful structures that conform to software
development principles, and provide operations to work with the different
versions so that the integrity of the different versions of the software is
independently ensured. A multi-sited version control (MVC) system is a
version control system that operates at multiple sites to coordinate the
software development effort of several teams that are collaborating with
each other to develop a single piece of software. Even at the same
geographical location such a system is useful to allow independent groups to
work with the same development data, to enable interoperation in a
heterogeneous environment, or to be a backup mechanism.

126 Integrity and Internal Control in Information Systems

Version control systems were being used even when software
development was primarily an individual effort. During that time the security
of such systems was not of a major concern. This was because the data in the
system was not shared. Later when version control systems became “team-
ware” to share data among team members, security became somewhat more
important. Still it was not considerably so; teams were located at the same
site and the data sharing happened over a company’s proprietary network.
Since multi-sited version control system appeared, security concerns have
become critical. This is because the data in the system now needs to be
shared among multiple sites that are connected by open networks.
Development teams may want to protect proprietary technologies from
competitors. More important perhaps, is the need to ensure the integrity of
the different revisions submitted over the Internet by different teams and the
non-repudiation of their origin. This is particularly true about in the Open
Source community. The various teams within this community generally do
not care about the confidentiality of their software due to their commitment
to the open source model; however they do need to ensure the integrity and
non-repudiation of their code, and their developers do submit the contributed
code via Internet.

In this work we propose a new secure multi-sited version control (MVC)
system that can be easily implemented using COTS components. We utilize
the Directory Information Tree (DIT) structure of X.500 directories [1, 2] to
represent the MVC data model, network model and user account
management model. Next we propose a novel authorization scheme for the
MVC system that is based on integrating the access control list model [13]
with the role-based access control model [12]. To support this new access
model we propose to extend the Lightweight Directory Access Protocol
(LDAP) [8, 9, 10, 15]. Finally we utilize the Simple Authentication and
Security Layer (SASL) protocol [7] to solve the authentication problem and
protect data confidentiality and integrity in the MVC system.

The rest of the paper is organized as follows. In section 2 we discuss
some of the more well-known multi-sited version control systems to identify
their security deficiencies. Section 3 develops the model for our multi-sited
version control system. Section 4 describes our MVC framework. Finally we
conclude in section 5.

2. RELATED WORK

There are a number of version control systems available today both
commercial as well as open-source. The most widely used among them are
ClearCase [14] (by the erstwhile Rational Software Corporation now owned

A secure multi-sited version control system 127

by IBM), the UNIX Source Code Control System (SCCS) [16], the GNU
Revision Control System (RCS) [17] and the Open Group’s Concurrent
Versions Systems (CVS) [11]. These differ from in each other mostly in
terms of functionality and convenience. However, none of these systems
were explicitly designed with security in mind. Consequently each of them
have at least one of the following security deficiencies — (i) authentication
deficiencies, (ii) authorization flaws, (iii) confidentiality and integrity
problems and (iv) user account management problems — and cannot be used,
without consequences, as multi-sited version control systems. In the
following we discuss these deficiencies in more details.

Authentication Deficiencies - Most MVC systems use the native
operating systems’ authentication mechanisms for local access. This causes a
dependency on the operating systems. Also remote access authentication
varies among different systems. ClearCase doesn’t have any support for
remote access authentication, so do not SCCS and RCS. CVS supports
several remote authentication mechanisms. Some of them are rather weak for
authentication over open networks — such as connecting with rsh (which
requires a machine at one site completely trust other machines at other sites)
and simple password based authentication. Other remote authentication
mechanisms that CVS supports, like authentication with GSSAPI [5] and
Kerberos [6], are considerably stronger but are more suitable for
authentication within a single administrative domain than over the Internet.

Authorization Flaws — We categorize authorization flaws into (a)
missing dimensions, (b) encapsulation failures, (c) inconsistent controls, (d)
write and checkout problems and (e) authorization coordination failure.

e Missing Dimensions — The most common authorization flaw is the
authorization granularity is not as fine as the granularity of
accessible objects. For example, CVS doesn’t have access control at
the version tree layer at all although it does support branches.
ClearCase has controls at all three layers, but it doesn’t control
access at the version level.

¢ Encapsulation Failure — Many systems require users to check the
permissions of the internal devices. SCCS, RCS, CVS users need to
check the permission of data repository directories and even their
subdirectories. ClearCase users need to check the permission of
virtual workspace devices; in many cases these devices are not on
the same machines where workspaces are used. Because these
systems take internal attributes as the external attributes, users have
to understand their internal mechanisms. This often confuses them
and makes systems hard to use.

o Inconsistent Controls — Some systems are inconsistent in controlling
different permissions. ClearCase doesn’t control read and execute

128 Integrity and Internal Control in Information Systems

access at branch level, but it does control the write access (checkout,
checkin, and uncheckout) at the branch level.

e Write and Checkout Problems — Some systems (ClearCase, for
example) do not treat the write permission in the same way as the
checkout permission; instead they use the checkout permission to
replace the write permission. The problem with this approach is that
users cannot determine from the access control lists of files in the
virtual workspace, who can change the content of the files or
directories (elements). This is against the design purpose of using
the virtual workspace to simulate the work environment in a file
system.

e Authorization Coordination Failure — Some systems (CVS, for
example) do not have an authorization coordination mechanism; so
they use one central data repository to represent the whole repository
family. This approach can’t support local access model. Since every
operation has to be done remotely, it incurs lots of resource
overhead. ClearCase has the coordination scheme, but because it
doesn’t support remote access model it can only use the passive
access mode of the scheme. More details will be discussed in the
proposed framework.

Confidentiality and Integrity Problems — None of the four systems
encrypt the messages exchanged in any manner by default for remote access.
CVS has the provision for encrypting messages but does not do this without
special configuration. This is a serious security problem; not only is the data
in the messages endangered, attackers can also plant malicious code or data
in the packets to damage the confidentiality and integrity of the importing
data repositories.

User Account Management Concern — All current systems rely on the
operating system to provide the network-wide database of user and group
names. This causes a dependency on the operating system and undermines
interoperability if the system needs to run in a heterogeneous environment.

3. MODELS OF THE MVC SYSTEM

The proposed MVC system is defined in terms of four different
parameters (i) the data model, (ii) the network model, (iii) the access model
and (iv) the user management model. We discuss each in details beginning
with the data model.

The Data Model — The MVC system data model defines how the data is
stored in the system. The data model defines four components — (i) data
elements, (ii) data repository, (iii) data repository family and (iv) virtual
workspace. We use the X.500 directories [1] to represent the data model.

A secure multi-sited version control system 129

A data element is a unit of data that is stored in the system. It can have
different granularities. The smallest data element in the version control
system is a version. A version is a particular revision of a file or directory.
Versions of one line of development form a linear sequence called a branch.
Branches are used to separate different development efforts and allow
parallel development. For example, one branch may contain all the versions
used to add a new feature to the software; another branch may be composed
of the versions contributing to a software bug fixing. Branches of the same
file or directory are organized into a version tree. Every tree has one main
branch (called main), which represents the principal line of development.
Files and directories are called elements. Unlike in a file system file and
directory elements in a version control system are not flat. They have the
version tree structure. Like in a file system, however, file and directory
elements are also located somewhere in a directory tree.

A data repository is used to store different versions of files and
directories. It also holds the derived data and meta-data associated with
them. Data repositories at multiple sites form a data repository family. The
data repository family stores data relevant to a single project — that is, the
data elements in the repository family are all semantically related.

A virtual workspace is an environment where users can have access to a
set of versions selected from the data repository. The versions are selected
via a user-defined filter, which is a part of the environment. Most virtual
workspace is used by one user for individual development. Some are shared
by several users for integration or integration testing.

The data model is illustrated by an example in figure 1. In this figure, the
directory element “/home/junxing” has one branch and two versions on this
branch, 0 and 1. Version 1 contains a file element named “Hello.c”. This
element has four branches: main, bugl02, feature23 and Linux_port. Each of
its branches has several versions to store the revision history of a separate
development line. As the diagram shows in the MVC system each element is
represented as a version tree no matter it is a directory or file. The contents
of directory versions indicate the sub directory and file elements they
include. The directory tree is organized in this way just as it is designed in a
file system.

130 Integrity and Internal Control in Information Systems

Linux_
port

e ———
e
-
e

p——,
-

Figure 1. Data Model for the MYC System

The Network Model — The MVC system network model defines who
accesses and/or manages the different versions of the data that are stored in
the entire system. It comprises of servers and clients connected over a local
area network at local sites, a number of which participate in the same MVC
system.

We define a local site to be one that is responsible for one and only one
data repository. The MVC system comprises of a number of such local
sights. From the point of view of a local site, other local sites are called
remote sites. Each local site consists of one server machine and several
client machines that are connected in a local area network. A local site is
under a single administrative control. The server at the local site maintains
the data repository. The clients manage the virtual workspaces and accept
and respond to users’ requests. The clients also communicate with local or

remote servers to retrieve, add, delete or update versions, meta-data and/or
derived data.

A secure multi-sited version control system 131

A specific data repository at a server holds only one copy of the data.
This copy has the latest local revision changes. However, it may not have the
latest, up-to-date revision changes from other sites. In order to get the latest
changes, repositories must be synchronized with each other. To synchronize
the data at the local site with data at remote sites, each server communicates
periodically with servers at remote sites. We adopt a peer-to-peer model for
such server-server communication.

The network model for the MVC system is shown in figure 2.

Data
Reposiporvd

Viriual Workspca2 1

server? client2i

Figure 2. Network Model for the MVC System

The Access Model — The access model defines how the MVC system
controls access to different versions in the data repository family. The access
is of two types — local access and remote access. If a client contacts a local
server, then this is a local access. For a local access a user must access the
versions in a data repository via a virtual workspace. She needs to specify
which versions of the files she wants to access. This is done by defining
rules in the filter of a virtual workspace. We use a SQL like syntax for
defining such rules. An example of such a rule on the data model shown in
figure 1 is as follows.

132 Integrity and Internal Control in Information Systems

SELECT Hello.c /main/LATEST

This rule will select the version numbered 4 (the latest version) on the
main branch of Hello.c.

We define a well-formed rule to be one that retrieves only one version of
any element. The virtual workspace is usable only after such well-formed
rules are defined. When the user requests an operation on a file or directory
element, the client that manages the workspace contacts a server to apply the
operation to the version of the element selected by the filter. If the user
wants to operate on a different version or on more than one version, she
explicitly gives the version name in the request.

Sometimes the local server does not have the permissions to execute
certain operations on the specified version. In this case a remote server has
to be contacted; either the client can directly contact the remote server that
has the permission to complete this request, or the client can request the
local server to contact the relevant remote server. Now a server typically has
to handle multiple client requests. So it is more efficient for a local server to
gather together multiple client requests to access a remote server, and
schedule it in a batch mode than to handle each client request as it comes.
One the other hand, if we allow a client to directly access the relevant remote
server then the client will be serviced promptly. For this reason we choose to
have the client contact the remote server directly in the MVC system. This is
termed as remote client-server access. The only time a local server needs to
communicate with remote servers is to synchronize data in the containing
repositories. This is called remote server-server access.

Access to different versions is achieved by executing a set of atomic
operations. These are (i) get, (ii) checkout, (iii) check-in, and (iv) un-
checkout.

e Get — Get is the action of getting the copy of a version from the data

repository to a virtual workspace.

¢ Checkout — Checkout is the action of locking a branch in the data

repository for adding a new version. This prevents other users from
checking the same branch out, though they are not restricted from
getting versions in the branch.

* Check-in — Check-in is the action of adding a new version to the

branch locked by a checkout and then releasing the lock.

* Un-checkout — Un-checkout is the action of releasing the lock

created by a checkout without adding a new version.

Check-in, checkout and un-checkout all are essentially write transactions.
Checkout starts the transaction, check-in commits it, and un-checkout rolls
back the transaction. The definition of checkout operation implies that a
branch cannot be checked out by a user if it has already been checked out by

A secure multi-sited version control system 133

another one. However, the data model of the repository family indicates that
the local repository may not know if a branch has been checked out at other
sites because it does not have the latest revision changes at other sites. This
means the authorization need be coordinated among sites. A check-in or un-
checkout operation is based on a previous checkout operation. The user who
can check in or un-checkout a branch must be the one who checked it out.
Optionally the system may allow others who are in charge of the branch or
its contents, to execute the operation when the user is unavailable.

Checkin, checkout and un-checkout all require permissions similar to
write permissions. The execute permission has additional connotation when
it is applied to the objects in a MVC system. The execute permission of
directory elements, file elements and branches is the permission to list or
search their included objects, while the execute permission of versions is to
run operations defined in owners’ data. This is because owners’ data is
contained in files in a file system, but it is kept in versions in a MVC system.

A user is authorized at three layers in order to access a particular version.
The first layer consists of virtual workspaces. Here the user needs
permissions to operate on the temporary copies of versions she selected from
the data repository. The second layer is the directory tree. Here she needs the
permission to operation on the directory structure. The third layer is the
version tree. Here she needs the permission to access a particular version on
a specific branch, which presents a development line.

The authorization granularity is decided by the granularity of accessible
objects. In the workspace layer the accessible objects are just virtual
workspaces. In the directory tree layer the accessible objects are the data
repository and elements (directories and files). In the version tree layer the
accessible objects are branches and versions.

Finally, although in the local access model the MVC system may not
need strong encryption mechanisms to ensure data confidentiality, they are
needed for integrity and non-repudiation of data origin; strong cryptographic
techniques are indispensable in the remote access model.

The User Account Management Model — This model defines how user
account information is maintained across the entire MVC system. Every user
in the system belongs to a primary site. All changes to user account
information are made at the server at the primary site. To meet the
requirements of parallel development at multiple sites, the account
information at the primary site must be available at all sites and be
consistent. This is achieved by a remote server-server access.

134 Integrity and Internal Control in Information Systems
4. THE PROPOSED MVC SYSTEM

The proposed MVC system is developed by adopting and/or extending
widely industry standards and COTS components.
We use X.500 directories [1] to represent the data model, network model
and user account management model of the MVC system.

2. We extend the Lightweight Directory Access Protocol (LDAP) [8,
9, 10] to support the access model of the MVC system. In
particular, we develop the get, checkin, checkout and un-checkout
operations as extensions to LDAP.

3. We develop a novel authorization scheme for the MVC system by
borrowing from and integrating the concepts of access control lists,
role-based access control and the concept of mastership.

4. We adopt the Simple Authentication and Security Layer (SASL)
[7] protocol to address the authentication problems in the MVC
system. This protocol also helps to protect data confidentiality and
integrity in the MVC system by virtue of its built in strong
cryptographic techniques.

In the following we briefly discuss how we implement each of the above
modules of the MVC system.

4.1 X.500 schemas for Data, Network and User Account
Management Models

The MVC system stores information about version trees; thus it is natural
to use another tree structure to implement the system. We use the Directory
Information Tree (DIT) of X.500 directories to represent the system tree
structure. The structure is defined X.500 schemas according to RFC 2252
specifications, which is based on BNF (Backus-Naur Form meta-language).
For lack of space we show the declarations for only the security related
elements. Since X.500 is used, each schema element for a project must have
a globally unique Object Identifier (OID)'. For this discussion, the OIDs
under 1.1 are used. This is in keeping with the conventions of ASN.1. Each
element has at least one textual name. To reduce the potential for name
clashes, the name prefix “mvc” is used in the convention. The following is
an example of these definitions for a project eduColostate.

objectldentifier eduColostateOID 1.1 ; Organization OID

! OIDs are basically strings of numbers. They are commonly found in protocols described by
ASN.1. The formal definitions of OIDs come from ITU-T Rec. X.208 (ASN.1). OIDs are
allocated in a hierarchical manner and managed by the IANA. For private experiments and
research purposes the OIDs under the 1.1 branch are typically used.

A secure multi-sited version control system 135

objectIdentifier mvc eduColostateOID: 1 ; Name prefix and Application OID
objectIdentifier mvcObjClass mvc: 1 ; MVC object class

The Data Model — The data elements, data repository, data repository
family and virtual workspace are all defined as object classes in X.500
directories. The type definition of the data element version is given in the
following schema. Its object Id is derived by appending 1 to the object Id of
“mvcObjClass”. Its name is “mvcVersion”. It has a text description and
inherited from the superior object class “top”. Each instance of this class
must have five attributes: “mvcUserld”, “mvcGroupld”, “mvcUserPermission”,
“mvcGroupPermission” and “mvcOtherPermission”. These attributes are
introduced in the authorization scheme section. Other data model
components can be defined similarly. For lack of space we omit them from
here.

objectclass
(
mvcObjClass:1
NAME ‘mvcVersion’
DESC ‘Data Version Type’

SUP top

MUST (
mvcUserld $
mvcGroupld $
mvcUserPermission $
mvcGroupPermission $
mvcOtherPermission

)

); Version Class

The Network Model — To conform to the MVC network model, each
MVC site should have one server sub tree and multiple client sub trees. The
server sub tree is composed of data model components: version, branch,
element, data repository and data repository family. The client sub tree
consists of one root element and several workspace elements. The root
element is used to organize workspace elements and identify the client. Its
type doesn’t concern the MVC security, so the definition is not given here.

The User Account Management Model — User account management
service required by MVC systems are represented using user schemas
defined in RFC 2256. Since these are very well defined and standardized we
do not discuss them here.

136 Integrity and Internal Control in Information Systems

4.2 LDAP Extensions to Support the Access Model

The MVC framework uses X.500 directories to represent the MVC
system structures. LDAP is the access protocol to X.500 directories. Thus it
is reasonable to support the access model of the MVC system by extending
LDAP in the secure framework. Another advantage gained by extending
LDAP is the convenient access to SASL. Since SASL is the association
security services of LDAP, the framework can use it directly instead of
building a new one from scratch.

The MVC framework uses a special operation in LDAPv3 support the
extension. This operation is defined in order to allow additional operations to
be defined for services not available elsewhere in LDAP protocol. It is
described in ASN.1 (Abstracted Syntax Notation 1) [3, 4], and is typically
transferred using a subset of ASN.1 Basic Encoding Roles. The special
operation that we use is as follows.

ExtendedRequest ::= [APPLICATION 23]
SEQUENCE

{
requestName [0] LDAPOID,

requestValue [1] OCTET STRING OPTIONAL
}

ExtendedResponse ::= [APPLICATION 24]
SEQUENCE

{
COMPONENTS OF LDAPResult,

responseName [10] LDAPOID OPTIONAL,
response [11] OCTET STRING OPTIONAL

}

The MVC access model operations get, checkout, check-in and un-
checkout, are implemented using the above LDAP extended operation
definition.

4.3 Authorization Scheme for the MVC System

Problems with authorization are often caused by the intention to reuse the
authorization scheme of a native operating system. To avoid them, we
provide the MVC system with its own authorization scheme. Due to the
system’s special requirements, this scheme combines three authorization

A secure multi-sited version control system 137

mechanisms: ACL (Access Control List), RBAC (Role Based Access
Control) and mastership.

Access Control List — ACL is used as the basic authorization
mechanism. There are two reasons to use ACL. Firstly, MVC systems are
object centralized and subject distributed systems. Secondly,it makes
simulating file systems easier. Most file systems use ACL, so if the MVC
system also uses ACL it will be easier for it to translate the permissions of a
specific version in the data repository into the permissions of the
corresponding file in the virtual workspace. ACL is defined as attribute types
in the following LDAP/X.500 schema. In the first line of the schema the
object Id of “mvcAttType” is created by appending 2 to the object Id of
“mvc”. There are two attribute types. One is used to represent the user Id,
and another is for the user permission. Their object Ids are created by
extending the Id of “mvcAttType”. They use the matching rule of numeric
strings. They have the syntax of integers. And they may only hold one single
value. Similarly the group Id, group permission and other’s permission can
be defined. These definitions consist of an ACL implementation in X.500
directories.

objectldentifier mvcAttType mvc:2 ; MVC attribute type
attributetype
(
mvcAttType: 1
NAME ‘mvcUid’
DESC ‘User Id’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
) ; User Id Type

attributetype

(
mvcAttType:2
NAME ‘mvcUperm’
DESC ‘User Permission’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE

) ; User Permission Type

In the data model design, every object class has mandatory attributes of
ACL attribute types. This means that every object in the MVC system is in

138 Integrity and Internal Control in Information Systems

ACL control, so the system’s access control granularity is as fine as the
accessible objects.

Role Based Access Control — ACL is not enough to meet the MVC
system’s authorization requirements. Operations such as checkin and un-
checkout require the system to check if the requestor has certain relationship
with the user who executed the corresponding checkout operation. This kind
of requirements calls for Role Based Access Control. This mechanism
makes use of the attribute types and object classes defined in the schema
below.

attributetype attributetype

((
mvcAttType:6 mvcAttType:7
NAME ‘mvcOperationld’ NAME ‘mvcUids’
DESC ‘Operation Id’ DESC ‘User Id List’
EQUALITY numericStringMatch EQUALITY numericStringMatch
SYNTAX SYNTAX

1.3.6.1.4.1.1466.115.121.1.27 1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE); User Id List Type

); Operation Id Type

objectclass objectclass
((
mvcObjClass:6 mvcObjClass:7
NAME ‘mvcOperationRoles’ NAME ‘mvcRoleUsers’
DESC ‘Roles can execute the DESC ‘Users in the Role’
Operation’ SUP top
SUP top MUST mvcUids
MUST mvcOperationld); User Ids in a role

); Roles allowed for an operation

The above types and classes are used to build RBAC trees. A RBAC tree
is a directory information sub tree that has only a root and leaves. The root is
an entry of “ mvcOperationRoles” type. It has an “mvcOperationld” attribute
that identifies the operation. The leaves are entries of “mvcRoleUsers " type.
Each of them has an “mvcUids” attribute that includes all user Ids in the
role. RBAC trees are used to implement RBAC. One operation such as
checkout creates and inserts a RBAC tree to the checked out branch. Another
operation such as checkin or un-checkout examines the RBAC tree in the
target branch. If there is no such tree or the requestor Id can’t be found in the

A secure multi-sited version control system 139

tree, the operation fails; otherwise the operation is executed and the RBAC
tree is deleted.

Mastership — is introduced in the MVC system to coordinate the
authorization among multiple sites. This is needed because changes made at
different sites can potentially conflict when they are imported into one data
repository; the authorization must be coordinated to prevent conflicts from
happening. Mastership is “site based access control”. It ensures that only one
site in a repository family has the permission to change a controlled object
(e.g. branch) at any given time. This exclusive permission to modify ensures
that no parallel changes can be made to controlled objects; thus conflicts are
avoided. Users at sites that do not have mastership-permission of an object
have two access modes to make changes. The active mode allows one to
modify the object using remote access model at the site that has the
permission. The passive mode allows one to request the mastership-
permission to be transferred to the local site. This scheme is made possible
by the following attribute types and object classes:

attributetype

(
mvcAttType:8
NAME ‘MVC Mastership’
DESC ‘Master Site Id’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE

); A type used to define attributes that identify the sites that have the

mastership-permissions of the controlled objects

objectclass

(
mvcObjClass:8
NAME ‘MVC MastershipObject’
DESC ‘Mastership Container’
SUP top
MUST MVCMastership

); A class used to define entries that hold the attribute of the previous type.

140 Integrity and Internal Control in Information Systems

4.4 Authentication, Confidentiality and Integrity
Measures

Simple Authentication and Security Layer protocol is used to provide
both strong authentication mechanisms needed in the remote access model
and regular mechanisms required in the local access model of the MVC
system. To ensure secure remote access, the MVC system imposes the
following requirements to LDAP configuration: Remote MVC operations
are allowed only when SASL mechanisms whose Security Strength Factor
(SSF) are greater than 1, are in effect. Remote MVC operations are allowed
only when mechanisms that are able to negotiate a security layer are in force.
To ensure secure remote access, the mechanisms that support the security
layer negotiates a privacy protection layer after the successful authentication
for remote MVC operations. There are no mandatory configuration
requirements for the local access model.

S. CONCLUSION

In this paper we look into multi-sited version control systems. Such
systems are very important in distributed collaborative environments where
many development teams work together on a large software system and the
system goes over several versions before being finally available. We identify
the security requirements of multi-sited version control systems in general.
We observe that it is more important that such systems ensure the integrity
of the software versions rather than their confidentiality. We then identify
the security deficiencies in current implementations of multi-sited version
control systems. We propose a new framework for secure multi-sited version
control. The specific contributions include:

— Using X.500 directories and extending LDAP v3 to provide version
control service at multiple sites.

— The application of SASL to improve the security of MVC systems.

— The application of the concept of mastership in the remote access model
so that conflicts due to concurrent access is eliminated.

— An authorization scheme combining ACL, RBAC and mastership.

The paper also uses the LDAP extension for Internet Domain Name
service as the reference for extending the protocol.

A secure multi-sited version control system 141

REFERENCE:

[1]
2]
[3]

9]

[10]

[11]
[12]

[13]

[14]

[15]

ISOMEC 9594-1, “X.500 The Directory: Overview of Concepts,
Models and Services”, International Standards Organization, 1993.
ISOAEC 9594-2, “X.501 The Directory: Models”, International
Standards Organization, 1993.

ITU-T Rec. X.680, “Abstract Syntax Notation One (ASN.I):
Specification of Basic Notation”, International Telecommunication
Union, 1994.

ITU-T Rec. X.690, “Specification of ASN.1 Encoding Rules: Basic,
Canonical and Distinguished Encoding Rules”, International
Telecommunication Union, 1994.

J. G. Meyers, “Simple Authentication and Security Layer (SASL)”,
RFC 2222, Network Working Group, The Internet Society, October
1997.

M. Wahl, “A Summary of the X.500(96) User Schema for Use with
LDAPv3”, RFC 2256, Network Working Group, The Internet
Society, December 1997.

M. Wahl, A. Coulbeck, T. Howes and S. Kille, “Lightweight
Directory Access Protocol (V3): Attribute Syntax Definitions”, RFC
2252, Network Working Group, The Internet Society, December
1997.

M. Wahl, T. Howes and S. Kille, “Lightweight Directory Access
Protocol (v3)”, RFC 2251, Network Working Group, The Internet
Society, December 1997.

P. Cederqvist, et al. “Version Management with CVS”, The Open
Group, Available from http://www.cvshome.org/docs/manual/cvs-
1.11.6/cvs.html

R. Sandhu, “Role-Based Access Control”, in Advances in
Computers, volume 48, M. Zerkowitz editor, Academic Press, 1998.
R. Sandhu and P. Samarati, “Access Control: Principles and
Practice”, IEEE Communications, 32(9), 1994.

Rational Software Corporation, “Rational® ClearCase Multisite®
Documentation”, October 2001.

S. Kille, M. Wahl, A. Grimstad, R. Huber and S. Sataluri, “Using
Domains in LDAP/X.500 Distinguished Names”, RFC 2247,
Network Working Group, The Internet Society, January 1998.

Unix SCCS, “Source Code Control System”, The Regents of the
University of California, 1986.

W. F. Tichy, “RCS — A System for Version Control”, Software —
Practice and Experience, 15(7), 1985.

