Skip to main content

A VHDL-AMS Library of Hierarchical Optoelectronic Device Models

  • Chapter
Book cover Languages for System Specification

Abstract

Internet success and ever-improving microprocessor performance have brought a need for new short range optical communications. The challenge is to integrate electronics, optoelectronic components and optical components on the same chip. Such assembly creates new constraints due to the interactions between different aspects (electronic, optical, thermal, mechanical) that designers have to deal with. Although specific tools have been used to design each module separately, there is no multi-domain simulator or design framework that can meet with such constraints. This paper describes how we can use VHDL-AMS to create a library of hierarchical models and to simulate optoelectronic devices and systems. These models can then be used to propagate specifications from the system down to the physical layer in a top-down approach and to predict the influence of physical parameters on the global performance in a bottom-up approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.J. Zhou, V. Morozov, J. Neff., and A. Fedor, “Analysis of a vertical-cavity surface-emitting laser-based bidirectionnal free-space optical interconnect,” Appl. Opt., vol. 36, no. 17, pp. 3835–3853, June 1997.

    Google Scholar 

  2. Semiconductor Industry Association: SIA, “International technology roadmap for semiconductors 2000 update,” 2000.

    Google Scholar 

  3. J.A. Davis et al., “Interconnect limits on gigascale integration (GSI) in the 21st century,” in Proc. IEEE, Mar. 2001, vol. 89, pp. 305–324.

    Google Scholar 

  4. A.F.J. Levi, “Optical interconnects in systems,” in Proc. of the IEEE, 2000, vol. 88, pp. 750–757.

    Google Scholar 

  5. T.H. Szymanski et al., “Terabit optical local area network for multiprocessing systems,” Appl. Opt., vol. 37, no. 2, pp. 264–275, Jan. 1998.

    Google Scholar 

  6. E. Christen and K. Bakalar, “VHDL-AMS: a hardware description language for analog and mixed-signal applications,” IEEE Trans. Circuits and Systems II, vol. 46, no. 10, pp. 1263–1272, Oct. 1999.

    Google Scholar 

  7. F. Gaffiot, K. Vuorinen, F. Mieyeville, I. O’Connor, and G. Jacquemod, “Behavioral modeling for hierarchical simulation of optronic systems,” IEEE Trans. Circuits and Systems II, vol. 46, no. 10, pp. 1316–1322, Oct. 1999.

    Google Scholar 

  8. P. Bontoux, I. O’Connor, F. Gaffiot, X. Letartre, and G. Jacquemod, “Behavioral modeling and simulation of optical integrated devices,” in Analog integrated circuits and signal processing, vol. 29(1), pp. 37–47. Kluwer Academic Publishers, Oct. 2001.

    Article  Google Scholar 

  9. F. Tissafi-Drissi, I. O’Connor, F. Mieveville, and F. Gaffiot, “Hierarchical synthesis of high-speed cmos photoreceiver front-ends using a multi-domain behavioral description language,” in Forum on Specifications & and Design Languages, September 2003, pp. 151–162.

    Google Scholar 

  10. G. P. Agrawal, Fiber-optic communication system, Wiley Interscience, 1992.

    Google Scholar 

  11. P.V. Mena, S.-M. Kang, and T.A. DeTemple, “Rate-equation-based laser models with a single solution regime,” J. Lightwave Technol., vol. 15, no. 4, pp. 717–730, Apr. 1997.

    Article  Google Scholar 

  12. S.A. Javro and S.-M. Kang, “Transforming Tucker’s linearized laser rate equations to a form that has a single solution regime,” J. Lightwave Technol., vol. 13, no. 9, pp. 1899–1904, Sept. 1995.

    Article  Google Scholar 

  13. L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightwave Technol., vol. 14, no. 5, pp. 839–850, May 1996.

    Article  Google Scholar 

  14. S.F. Yu, “Dynamic behavior of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1168–1179, July 1996.

    Article  Google Scholar 

  15. S.F. Yu, W.N. Wong, P. Shum, and E.H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 32, no. 12, pp. 2139–2147, Dec. 1996.

    Article  Google Scholar 

  16. L. Georjon, Conception et caractérisation de lasers à cavité verticale, Ph.D. thesis, Commissariat à l’Energie Atomique-Laboratoire d’Electronique de Technologie et d’Instrumentation, Oct. 1997.

    Google Scholar 

  17. F. Mieyeville, G. Jacquemod, F. Gaffiot, and M. Belleville, “A behavioural opto-electro-thermal vcsel model for simulation of optical links,” Sensors and Actuators A, vol. 88, no. 3, pp. 209–219, Mar. 2001.

    Article  Google Scholar 

  18. K. Vuorinen, F. Gaffiot, and G. Jacquemod, “Modeling single-mode lasers and standard single-mode fibers using a hardware description language,” IEEE Photon. Technol. Lett., vol. 9, no. 6, pp. 824–826, June 1997.

    Article  Google Scholar 

  19. G. Massobrio and P. Antognetti, Semiconductor device modeling using Spice, McGraw-Hill, 1993.

    Google Scholar 

  20. J. Graeme, Photodiode amplifiers: Op Amp solutions, McGraw-Hill, 1996.

    Google Scholar 

  21. G.N. Lu, G. Sou, F. Devigny, and G. Guillaud, “Design and testing of a CMOS BDJ detector for integrated micro-analysis systems,” Microelectronics Journal, vol. 32, pp. 227–234, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Mieyeville, F., Brière, M., O’Connor, I., Gaffiot, F., Jacquemod, G. (2004). A VHDL-AMS Library of Hierarchical Optoelectronic Device Models. In: Grimm, C. (eds) Languages for System Specification. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7991-5_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7991-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7990-0

  • Online ISBN: 978-1-4020-7991-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics