FLEXFLOW: A FLEXIBLE FLOW CONTROL
POLICY SPECIFICATION FRAMEWORK

Shiping Chen, Duminda Wijesekera and Sushil Jajodia
Center for Secure Information Systems,
George Mason University, Fairfax, VA 22030

Abstract We propose FlexFlow, a logic based flexible flow control framework to specify
data-flow, work-flow and transaction systems policies that go beyond point-to-
point flows. Both permissions and prohibitions are specifiable in FlexFlow and
meta-policies such as permissions take precedence themselves can be specified
over the meta-policy neutral policy specification environment of FlexFlow. We
show the expressibility of FlexFlow by expressing three existing flow control
models which were proposed for different applications and used different mech-
anisms.

Keywords: Flow control policy, Data flow, Security policy

1. Introduction

Information flow policies govern the exchange of information at various
levels in systems. At the lowest levels, information is copied in and out of reg-
isters and memory locations inside processors. At a higher level, information
is exchanged among variables in programs, methods in object oriented sys-
tems and transactions in database systems. In networked systems, messages
are copied across system boundaries in order to exchange information. In all
of these examples the levels at which information flows, the units of trans-
fer and the number of destinations vary, but the central issue of information
flow remains the same. Thus, it is interesting to investigate the commonalities
among policies that govern information flow at an abstract level. This paper
proposes FlexFlow, a framework to do so.

Being designed to capture properties common across flows, FlexFlow is for-
mulated using abstractions of nodes and trees of flows among them. Because
of this abstractness, FlexFlow has two advantages. Firstly, FlexFlow is not
limited to high or low level information exchange policies. Thereby it can be
used to reason about and derive consequence of mixing flow control polices at
different levels. For example, higher level information exchange policies may

FlexFlow: A Flexible Flow Control Policy Specification Framework 359

govern flows between method calls, and lower level policies may govern data
flows inside method calls. Because our framework can model information flow
at both levels, it is able to combine policies across both of them.

The second advantage is that our policy specification framework does not
depend on any meta policies. Therefore, policies using different meta policies
can be modelled and their total effect can be compared using our framework.
This is similar to the advantage gained by the Flexible Authorization Frame-
work (FAF) of Jajodia et al. [9] over its predecessors in specifying access con-
trol policies.

FlexFlow specifies flow control policies as a set of stratified Horn clauses,
which is sound and complete, in the sense that every requested flow is either
granted or denied, but not both. FlexFlow is based on unique stable model
semantics, and therefore FlexFlow rules can be interpreted unambiguously.

The rest of the paper is organized as follows. Section 2 informally intro-
duces abstract concepts of nodes, flow trees and their representations. Section
3 formally describes the FlexFlow framework. Section 4 shows that FlexFlow
can be used to express various existing flow control models. Section 5 de-
scribes related work and Section 6 concludes the paper.

2. An Informal Description of FlexFlow

This section informally describes the FlexFlow framework and the reasons
that went into making our design choices. FlexFlow has trees referred to as
flow trees build up from nodes and branches. Nodes represent sources and
sinks of information and branches represent pathways taken by information
flowing between nodes. Thus, information flows from the leaves of a tree
via intermediate nodes to its root. Given that the same node can either send
information or refuse to do so under different circumstances, FlexFlow uses
node environments to capture sufficient data to enforce such local decisions.
Similarly, a flow tree itself may be acceptable or rejectable due to policies
under different global circumstances, despite the nodes enforcing their local
policies. Such circumstances are captured by tree environments of flow trees.
The exact relationship between the environment of a flow tree and those of its
nodes is not rigidly fixed by FlexFlow and is therefore application specifiable.
Consequently, the flow trees with their environments, consisting of nodes and
node environments constitute the basic entities of focus in FlexFlow. In order
to specify how to construct acceptable or rejectable flow trees, FlexFlow has
rules written in the form of Horn clauses about trees and their structural prop-
erties. Our position - one that we put forth in this paper - is that such rules
suffice to enforce existing flow control policies in a uniform and meta-policy
independent manner.

360 DATA AND APPLICATIONS SECURITY XVII

As an example, consider an abstract syntax tree of the expression z+ (y+z).
As shown in the left hand side of Figure 1 (the right hand side is its Prolog
representation - to be explained shortly), it consists of three leaves with vari-
ables (variables are considered named locations that can hold values) z, ¥ and
2, one intermediate node Remp and a root node Rying. Assume that each
variable in this example is accessible by a specified set of subjects. For ex-
ample, z is accessible by Alice and Bob, y accessible by Bob and Cindy, and
2 accessible by Alice, Bob and Cindy. We model this situation by making
the environment of each node be the access control list. We view each binary
addition operation as a computation tree in which the root stores the sum of
the values stored in the leaves. Thus, as shown in Figure 1 there is an infer-
mediate node Riemp holding the value of + y and the root Rfinqr holding
z + (y + 2). As itis shown in Figure 1, R ing holds the value of & + Riemp.
The tree rooted at Riemp is said to resemble a one step flow, as it has depth
one. By piecing together two trees with depth one, (namely the depth-one bi-
nary tree rooted at Ryfinq; and the one rooted at Riemp) we get a depth-two
flow tree, namely the tree rooted at R ginq with , y and z as leaves. Having

A Flow Tree List Representation

[Alice])(x,[Alice,Bob
= [(R“m,mhméu\m‘m&?.:‘e ‘nldﬂ.ﬁz &IEx Bob,Cindy])])

A flow tree
defined using
other flow

(§44 [AIlo: Cindyi]

Emp t‘
Env={ Alice,Bob] nv=| Alice,Cindy) @ L e Bobichmiy)]

={ Alice, E
One step \ e B g /
Mode == I o il s e msi s el R st e S
{y.[Alice,Cindy]} (z,[Alice, Bok \Cindy])
1)

Env={Alice,Cindy] Env'= [Alice,Bob,Cindy

(x.[Alice, Bob])

Figure 1. An Example Flow Tree

to reason with tree structures and lists in Horn clauses, FlexFlow uses Pro-
log’s list notation to represent trees, and uses ordered pairs of (node names,
environments) as our nodes. For example, (2, [Alice, Bob, Cindy]) repre-
sents the rightmost bottom (i.e. the last in the in-order representation of the
tree) node in Figure 1. And, [(Rtemp, [Alice, Cindy]), [(y, [Alice,Cindy]),
(2, [Alice, Bob, Cindy])]] represents the subtree rooted at Riemp With an ac-
cess control list [Alice, Cindy] and two children y and z.

FlexFlow states flow control policies as Horn clauses using flow trees as
individual elements. In order to create these rules we used some predicates.
Both rules and predicates used in FlexFlow belong to a five level stratification.
FlexFlow use these stratified rules to specify flows that are permitted or pro-
hibited without assuming any meta policies such as the open or closed policy.
Formal details are given in Section 3.

FlexFlow: A Flexible Flow Control Policy Specification Framework 361

2.1. Architecture of FlexFlow

As shown in Figure 2, FlexFlow rules have five stages, numbered zero
through four in the figure. The first of them is the structural module (stage 0)
containing data structures and functions needed to define flows. These include
subject and object hierarchies, predicates necessary to model the environments
and list manipulation operations such as adding or removing elements, taking
the union of two lists etc.

X

Propagacion Palicies
Stage 0 [Suge1 Stage 3 Stage 4 G
| = Conflict Resolution iy
sreObj, o e m _mﬂ" I Madule AR
] dstObj
sreObj O

Figure 2. FlexFlow System Architecture

Stage 1 is used to specify one-step flows that are permitted or prohibited
based on the structural properties specified at the previous stage. Stage 2 is
used to build permitted or prohibited flow trees that may use already defined
one-step flows. Recursion is allowed in this step. For example if flows are
transitive, they can be specified at this stage, as transitive closure can be defined
recursively. Similarly, permissions can be propagated up and down subject,
object and role hierarchies using recursive rules.

Although propagation policies are flexible and expressive, they may result
in over specification. That is, rules could be used to derive both negative and
positive flows that may be contradictory. This possible conflict is due to the
fact that positive and negative permissions is an application level inconsis-
tency. This kind of inconsistency is not recognized by the underlying stable
model semantics of locally stratified logic programs. Similar encodings have
been used in the Flexible Authorization Framework by Jajodia et al. [9]. In or-
der to weed out contradictive specifications, FlexFlow uses conflict resolution
policies. They are stated in stage 3.

At stage 4, decision policies are applied in order to ensure the completeness
of flow specification. That is because every flow request made to FlexFlow
must be either granted or denied. This is necessary because, as otherwise the
framework makes no assumption about flows that are not derivable only using
stated rules.

362 DATA AND APPLICATIONS SECURITY XVII

3. Syntax and Semantics of FlexFlow

3.1. The Language of FlexFlow

Terms of the language: The language of FlexFlow consists of terms that are
made up from constants and variables for nodes, environments and actions. It
also has constants and variables over lists of (node, environment) pairs. Such
lists are considered as flow trees, where the first element is the root and the
rest are the children. In addition, FlexFlow allows environments to have appli-
cation defined structures and predicates. An example of such a structure is an
access control list, as used in Figure 1.

Predicates of the language: Predicates in FlexFlow belong to five strata, as
summarized in Table 1 and explained below.

Stratum 0: Consists of list manipulation and application-specific predicates.
An example of an application specific predicate is role(zs, z,) stating
that subject zs plays role z,. An example list manipulation predicate
is isMember((z,, z.), X1) stating that the (node, environment) pair
(@n, Te) is in the list X1,. More examples are given in section 4.

Stratum 1: Consists of a four-ary predicate safeFlow. The formal param-
eters Tp, Tey Xz, and Taction Of Saf@FlOW(z,, Ze, X1, T gction) are
respectively the destination node, destination environment, a finite list
of source (node, environment) pairs and a name for the one step flow.
safeFlow(z,, z¢, X1, £Zqction) holds if the one step flow consisting of
the source list Xy, and the destination (Zn,Ze) named Zgetion iS €ither
permitted or prohibited depending upon the sign (+ or -) appearing in
front of Zaction-

Stratum 2: Consists of a ternary predicate safe Flow”. The formal parameters
Z flowTs ZflowE and Taction N SafeFlow*(xflowT: Z flowE» T action) are
respectively a flow tree, its environment & fjowg and its name Tqction.
safeFlow™(z f1owT T flowEs £ Zqction) Tepresents a permitted or prohib-
ited flow tree depending upon the sign (+ or -) appearing in front of

Zaction.

Strata 3 and 4: Consist of a ternary predicate finalsafeFlow, with the same
arguments as safeFlow*, representing the flow control decisions finally
made by FlexFlow. It is used to express conflict resolution policies.
finalSafeFlow(z 10w, T fiow £, +Taction) holds when FlexFlow permits
the flow tree Z fiou and is included in stratum 3. finalSateFlow(z fiow,
Z flowE> —Zaction) holds when FlexFlow prohibits the flow tree & fiowT
and is included in stratum 4.

FlexFlow: A Flexible Flow Control Policy Specification Framework 363

Table 1. Stratification of FlexFlow and Predicates

Rules defining predicate

| Stratum | Predicate

0 application-specific predicat base appl pecific relations.
List ipulation predi recursive list p ing rules.
1 safeFlow Body may contain literals from SHop.
2 safeFlows Body may contain safeFlow*and other literals

from SRp and SR,;.

Occurrences of safeFlows+ literal must be positive.
3 finalSafeFlow The head is of the form finalSaleFlow(lowT,.+.),
the body may contain safeFlow, safeFlow*,

and literals from SR,; fori < 2.

4 finalSafeFlow The head is of the form saleFlow’ (flowT,_ —_),
the body contains just one literal ~safeFlow"(flowT,_+.).
3.2 Rules used in FlexFlow

A FlexFlow specification consists of a finite set of Horn clauses (rules) con-
structed using above mentioned predicates. These rules are constructed so that
they form a locally stratified logic program. Obtaining a locally stratified logic
program requires that the predicates used in the rules belong to a finite set of
strata, and the rules follow some syntactic constraints. Generally, predicates
in the body of any Horn clause are from the lower strata than that of the head
of the clause. The only exception to this rule occurs in stratum 2, where safe-
Flow* is allowed to appear in the head and the body of a rule. Rules that
permit the head predicate to appear in the body have to satisfy further syntac-
tic restrictions that they form a local stratification. Namely, the occurrence of
safeFlow* in the body cannot be negative. Logically, this restriction implies
that every instance of the recursive rule can be unravelled in a finite number
of steps, where negation at any such unravelling is interpreted as failure over
previous unravelling. FlexFlow is stratified by assigning levels to predicates as
shown in Table 1, and the level of a rule is the level of its head predicate. Now
we explain rules at each stratum with some examples.

Stratum 0: Rules in this stratum consists of basic facts related to application
specific predicates and list processing functions. Following facts relate
to the syntax tree example in Figure 1.
isEnv(z, [Alice, Bob])
isEnv(y, [Alice, Cindy])
isEnv(z, [Alice, Bob, Cindy])

These rules state that the access control lists of variables x, y and z are
[Alice, Bob], [Alice, Cindy] and [Alice, Bob, Cindy] respectively.

Stratum 1: Rules in this stratum have literals from Stratum 0 in their bodies
and heads that are instances of safeFlow. Example rules for the syntax

tree example of Figure 1 is as follows.

safeFlow(zn, Te, X1, +binaryAdd) «— union(((u, ue)), [(v, ve)], X 1), isEnv(u, u.),
isEnv(v, v.), intersection (ue, Ve, Ze)

364 DATA AND APPLICATIONS SECURITY XVII

The rule says that it is safe for the source list X', to binaryAdd into the
100t (Zy, Te) provided that X has two elements (u, ue) and (v, ve), and
the environment of x, is the intersection of access lists of the sources.
This rule also uses the list processing predicates union(A,B,C), inter-
section(A,B,C) that hold when C is the union/intersection of lists A and
B respectively.

Stratum 2:; Rules in this stratum have literals from Strata 0 and 1 in their
bodies and heads that are instances of safeFlow*. Example rules for the

syntax tree of Figure 1 are as follows.

safeFlows(z¢, ze, +bTree) «— safeFlow(zn, Te, [(4, ue), (v, ve)l, +binaryAdd),
append ((zn, ze), [(u, ue), (v, ve)), Tt),
union(ue, Ve, Te)

safeFlowx(z¢, e, +bTree) «— safeFlowx(z1, ze,, +bTree), mkBinTree(z), z2, €1},
safeFlowx(z2, ey, +bT'ree), union(ze; , Teg, Te)

The first rule says that a one step flow tree is a safe flow tree. The second
rule constructs larger flow trees from smaller ones. The larger tree is
made by using the predicate mkBinTree. mkBinTree(x;, 2, x;) makes
a binary tree z; with first and second children x; and z2 respectively. In
addition, the environment of the new tree is the union of environments
of the two trees used to make up the larger tree.

Stratum 3: Rules in this stratum may contain literals from stratum O through 2
in their bodies but only finalsafeFlow heads that have (+) action terms.

They are used to specify conflicts that are resolved in favor of permis-
sions. Example rules for the syntax tree of Figure 1 is as follows.

finalSafeFlow(z¢, ze, +bTree) « isMember(Alice, z.),isMember(Bob, z.),
safeFlow*(z¢, z¢, +bTree)

The rule says that a flow tree is safe provided that Alice and Bob are
included in its environment.

Stratum 4: This stratum has one rule only. It is inserted by the FlexFlow
system automatically to ensure the completeness . It reads as follows.

finalSafeFlow(zt, Te, —Tqction) «— —finalSafeFlow(xy, Te, +Taction)

This rule says that permissions not derivable using given rules are pro-
hibited by the system.

3.3. Semantics of FlexFlow

The semantics of FlexFlow is given by the well known stable model seman-
tics [8] and well founded model semantics [7] of logic programs. In fact, as
we showed in Section 3.2, FlexFlow specifications are locally stratified. This
property guarantees that their stable model semantics is equivalent to their well
founded semantics, thus ensuring that they have exactly one stable model (this
follows from a result of Baral and Subrahmanian [1]).

FlexFlow: A Flexible Flow Control Policy Specification Framework 365

4. Using FlexFlow to Express Existing Flow
Control Models

This section shows how FlexFlow can express existing flow control models
and their flow control policies. We choose three different models from previous
literatures. We refer the reader to [3] for the reasons of our choice and the
difference between the models and FlexFlow.

4.1. The Lattice Based Flow Control Model of
Denning [4]

In [4], an information flow model FM is defined as < N, P, SC, &, —>,
where N is a set of objects, P is a set of processes and SC is a set of disjoint
security classes. @ is a binary operator on SC and — specifies permissible
flows among security classes. That is, for security classes A and B, A — B iff
information in class A is permitted to flow into class B. Under some assump-
tions, referred to as Denning’s Axioms, < SC,—,® > form a universally
bounded lattice where < SC, —> forms a partially ordered set.

Suppose f is an n-ary computable function, and a; are object belonging to
security classes a; forall ¢ < n. Then the flow control policy enforced by FM
is as follows. If a value f(ay,...,a,) flows to an object b that is bound to a
security class b, then a3 @ ... ® an, — b musthold.

To specify this flow control policy, we use the following sets. C is a set of
classes, Obj is a set of objects, P is a set of processes. In this example, we
use objects as nodes and classes as environments of nodes and the root’s envi-
ronment as the tree’s environment. In addition, we define application specific
predicates shown in Table 2. For instance, dominate(c, ¢’) says that the class
? ifllominates class ¢’ in the class set C. The FM policy is now formulated as

ollows.

Table 2. Predicates used to express Lattice Based Flow Control Model

| Predicate [Arg Types [Intended Meaning |
dominate(c, ¢’) (class, class) Class ¢ dominate class ¢’ in the class set C.
class(o, c) (object,class) Object o belongs to class c.
leastUB(cList, ¢) (class list,class) The_lea.‘st upper bound of the elements in the class list
setClass(X,Y) ((object,class) pair list, class list) '{I:‘Ih::lta:s:s of objects in X constitute class list Y.
class(o1,c1)
class(oz,c2) +~
dominate(c1,c2)
dominate(xc, 2c) <« dominate(zc, yc), dominate(yc, zc)
safeFlow(zo, Zc, X, +Taction) +— class(zo, zc), setClass(X,Y), leastUB(Y, z),
dominate(xc, =)
safeFlow*([(zo0,Zc) | X), Zey +Taction) + safeFlow(zo, Zc, X, +Taction)

366 DATA AND APPLICATIONS SECURITY XVII

finalSafeFlow(X, &c, +Taction) <+ safeFlowx(X,zc + Zaction)

The first two rules specify that oy, 02 are associated with ¢; and ¢ respec-
tively. The third rule says that ¢; dominate ¢ in C. The fourth rule is the
transitivity of the dominance relation. The fifth rule says that information from
objects in the list X is allowed to flow into z, iff the least upper bound of the
classes of objects of X is dominated by the class of x,. The sixth rule con-
structs the depth-one permissible flow tree [(zo,Z¢) | X| withenvironment ..
Because the flow control policy in this lattice based flow control model has
only one-step flows, we don’t need to construct flow trees of depth greater that
one. Furthermore, the model doesn’t allow negative permission, so the conflict
resolution policy is simple and given by the last rule.

4.2. The Decentralized LL.abel Model of Mayer
and Liskov [11]

The Decentralized Label Model [11] of Mayer and Liskov is applied at the
runtime data flow analysis level. This model has variables storing values and
updating them during a computation. A label contains a list of owners whose
data was observed in order to construct the data value in question. Each owner
declares a set of principals that may read the value, referred to as the reader set
of that owner. Each (owner, reader set) pair is said to constitute a per-principal
flow control policy. When a value is read from a variable or an input channel,
the value acquires the label of the variable or the input channel. When a value
is written to a variable, a new copy of the value is generated with the label of
the variable.

The flow control policy used in this model is that when information flows
from one object (here, object refers variable or channel) to another, the label
of the destination must be more restrictive than the label of the source. A label
Ly is said to be more restrictive than label Lo iff Ly contains all the owners of
label Ly, and the same or fewer readers for each owner.

To express the policies of [11], we define Obj, P and L as the sets of vari-
ables, principals and labels respectively. We use variables (input and output
channels included) as nodes of the flow trees and labels of variables as envi-
ronments of the nodes. Before specifying flow control policies as rules, we
define some application specific predicates as shown in Table 3.

safeFlow(zo, 1, Y, +Zaction) <« label(zo,z;), listOfRdSet(Y, Y'), eRdSet(z;, X),
allintersec(Y’, W), cover(X, W)
safeFlows([(zo, ;) | Y], 21, +Taction) +— safeFlow(zo, zy, Y, +Tqaction)
finalSafeFlow(X, i, +Taction) ¢ safeFlows(X,z;, +Taction)

The first rule says that information can flow from objects in the list ¥ to z,
provided that each of principals in the effective reader set of label x; can act

FlexFlow: A Flexible Flow Control Policy Specification Framework 367

Table 3. Predicates used to express Decentralized Label Model

[Predicate | Parameter Types [I led Meaning]
label(o, I) (object,label) 1 is the label of the object o.
eRdSet(l, X) (label, principal list) The effective reader set of label [is X,
cover(X,Y) (principal list, principal list) Every principal in X _can act for some principals in Y,

[TistOfRdSet(X, Y) | ((obj,label) pair list,RdSet list) | Reader sets of all the labels in X c i the list Y.
alllntersec(X, Y') (list of principal list, principal) | The intersection of all the principal listsin X is Y.

for some principals in the intersections of the effective reader sets of labels in
Y. The second rule constructs the depth one permissible flow tree. The third
rule specifies the conflict resolution policy.

4.3, The Flexible Information Flow Control
Model of Ferrari et al. [5]

This model provides an approach to control information flow in object-
oriented systems that takes into account, beside authorizations on object, also
how the information has been obtained and/or transmitted. They coined a no-
tation of transaction execution tree to represent the invocation relations of the
methods calls initiated by a user. Figure 3 gives an example transaction ex-
ecution tree simplified from the example in [5], where each node is a execu-
tion notated by execution id with the method name and the object on which
it executed on, and each directed branch is caller-callee relation between the
methods.

Based on the transaction execution tree, they define that there is an informa-
tion flow from op, to o, by ey, and ey, written (o, ey, ek, 0k) if the method of ey,
is read, the method of ey, is write, and there is a transmission channel between
ep and eg. For example, there are four information flows in the transaction
execution tree example we given, which are (03, es, €17, 06), (04, €9, €17, 08),
(05, €13, €17, 06), and (05, e16, €17, 06)-

Transaction Execution Tree Flow Tree
ey7imog)
fw
epimy..) /:14:{\71:4.-]
fw
/ \ ep{mg,.) eygdmyg.)
egima..) q n /[,/ bk -
eg-(mg, .
2 Rh Lo e13:rog) e1giros)
egiimg.) eyimy.) sl e tAn egiima,.)
egilnog) eg:ltog) b,/ \Q
e150my5.417:mog) egimeg.)eg:imy.)
bk bk
eygirog) egirog) egitog)

Figure 3. A Transaction Execution Tree and its Flow Tree

368 DATA AND APPLICATIONS SECURITY XVII

In their model, every object has an access control list (ACL) specifying the
users allowed to read and write the object. Some methods are associated with
waivers. Two kinds of waivers are supported: invoke-waiver (IW), specifying
exceptions applicable during a method’s execution, and reply (RW), specifying
exceptions applicable to the information returned by a method.

Based on the concepts of waivers, they consider each flow under the fol-
lowing policy, referred to as flexible policy. A flow (on, e, €k, 0k) is safe iff
the union of the reader list and the waiver lists for ox along the transmission
channel from oy, up to but excluding oy subsume the readers list of ogx. The
execution of a write method is said to be safe iff all flows ending at it are safe.

In order to express the flexible policy using FlexFlow, we first extract all
flow trees from the transaction execution trees using an algorithm called flow
tree generator3]. Figure 3 shows a flow tree extracted from the example trans-
action execution tree. We define four sets, Obj, U, M, E which are sets of
objects, users, methods and executions respectively. We also define some ap-
plication predicates which are shown in Table 4. Some of these are not standard
list manipulation predicates. Due to the space limitation we refer the reader to
[3] for their definitions. Using these predicates some sample rules that fit in
stratum O of FlexFlew are as follows.

Table 4. Predicates used to express the Flexible Flow Control Model

I' Y] H I

[Autribute Types

[Peea

obj(e, o) (exec., object) Execution e is executed on object o.
mtd(e, m) (exec., method) The method of execution e is method m.
rAcl{o, X) (object, list of users) The access control list of object o 1s X
T TW(m, X) (method, waiver list) X is the reply waiver list associated with
method m.
W(m, X) (method, waiver list) X is the invoke waiver list associated with

method m.

releaseBK{ X, m, X)

(flowE, method, flowE)

The result of applying reply waiver of method
i to flow tree envil XuX"

releaseFW(X, m, X')

(flowE, method, lowE)

The result of applying invoke waiver of method
m 1o flow tree envi Xis X'.

unionAdd(X, Z)

(list of flowE, flowE)

The union-add of flow envi in X is Z,

eRdSet(X,Y) (flowE, user list) The effective readers set of flow tree
envi isY,
subset(X,Y) (user list, user list) User list X is subset of user list Y,
[bkFlowCH(e,, ej) (exec., exec.) There is a backward edge from e; 1o e;.
| TwFlowCH{e;, €;) (exec., exec.) There is a forward edge from e; to e;.
[TistOfSaleFlow((x, ¢), Y,a) | ((exec.,env.),list, action) | Forall y, € Y, saleFlow((z,), ¥, +a) holds.

TsOfSaleFlow* (X, Y. E. a)

(list, list, list,action)

Forall (z;,e;) € X,y: € Y,ande; € E,
saleFlow*(y;, ei, +a) and isHead((x;, ei), yi)
hold.

[TISTOIVRA(X, M)

(list, list)

Forallz; € X, m; € M, mtd(z;, m;) holds.

listOfReleaseBK{ X, M,Y)

(list, list, list)

Forallz; € X, m; € M,andy; €Y,
releaseBK(x, mi, y;) holds.

mtd(es,) «—
obj(es,03)

FlexFlow: A Flexible Flow Control Policy Specification Framework 369

rAcl(o3, |[Ann, Bob, Carol, David])
rW(ma, [[o1, Frank}, [o3, Frank]]) «
iW(ma, {[04, David], (05, David]])
fwFlowCH(e14,e5)
The first two rule specify that eg is a read method of 03. The third rule says that
[Ann,Bob,Carol,David] 1s the read access control list of 0g. The fourth and fifth
rules say that mg’s reply and invoke waivers are [[01, Frank], [0, Frank]]
and [[o4, David], |05, David]] respectively. The last rule says that there is a
one-step forward flow channel from eg to e14. One-step information flows are
specified using the following two rules.
safeFlow(ze, v, [(¥e, V)], +bkChannel) « bkFlowCH(z.,ye)
safeFlow(zc, v, [(ye, V)], + fwChannel) « fwFlowCH{z.,y.)
These two rules say that in order to have one-step forward/backward flow,
there must be a one-step forward/backward channel from the source to the
sink. Permissible information flow trees are constructed using the following
recursive rules.
safeFlowx([ze], [0l X], +u) «— obj(ze, %o), mtd(z,,7), rAcl(zo, X)
safeFlow*(X siowT) X flowE, +n) «— listOfSafeFlow((ze, v), Y, +bkChannel),
listOfSafeFlow (Y, YsiowT, Y iowE),
listOfReleaseBK (Y fiow s Ym, Yiiome)
“mtd(zm, w), listOfMtd(Y, Yn),
unionAdd (Y100 £+ X flowE), Mtd(Te, Tm),
append((ze,v), Yfiowr X flowT)
safeFlow*(X si0wr, XflowE, +n) — safeFlow(ze,v, [(ze,v)], + fwChannel),
safeFlow*(Z fiowT, ZflowE, +1),
listOfSafeFlow((ze, v), Y, +bkChannel),
listOfSafeFlowx(Y, YiiowT, YflowE)a

listOfReleaseBK (YyiowE, Ym, lelowE)’
releaseFW(Z 10w g, 2m, Z}lowE)'

[[1
append(Yyiou 11 Zf10wEs X flowE)
unionAdd (X},,,,,,E, XtlowE),

’ #
append((Ze, v)s Z f1ouwrs X flowr)
append (X},o,,,q-, Ytiowt> X flowr)s
mtd(ze, zm), isHead((ze, v), Zf10wT):
listOfMtd (Y, Yom)

safeFlows([ze, [ye|Tail], X,+n) <+ safeFlow(ze, v, [(ve, v)], +fwChannel),
mtd(ze, w), safeFlows([ye|Tail], Y, +n),
mtd(ye, ym), releaseFW(Y, ym, Y'),
eRdSet(Y’, Y"), obj(ze, %o),
rAcl(zo, X), subset(X,Y")
finaISafeFIOW(XﬂowT, Xflowa +zacﬁon) - safeF'OW"‘(xﬂowTy XﬂowE: +zacu’on)

370 DATA AND APPLICATIONS SECURITY XVII

The first rule says that executing a read method m constructs a one node flow
tree that has [o, X] as its environment where X is the ACL of 0. Second and
third rules recursively constructs flow trees that have non-write roots. Note that
for any node in any flow tree extracted from a given transaction execution tree,
there is at most one forward channel feeding into it. The fourth rule constructs
the whole permissible flow tree whose root is a write execution. The last rule
resolves conflicts.

5. Related Work

Flow control is a heavily researched area in the context of multi-level secu-
rity. In the early days, Bell and LaPadula [2] and Denning [4] proposed the
lattice based models of information flow. Some flexibility to Denning’s lattice
based model was later added by Foley [6], where each entity was associated

with a label pair instead of a single label.

McCollum et al. [10] presented an Owner Retained Access Control model
(ORAC) to control information dissemination. Based on the same idea, Myers
and Liskov [11] provided a language-based information flow control model.
Samarati et al. [12] presents an information flow control model for object-
oriented system. Ferrari et al. [5] extend that model by allowing waivers asso-
ciated with methods.

Our work has been influenced by the Flexible Authorization Framework
(FAF) of Jajodia et al. [9]. FAF is proposed for specification of access con-
trol policies, but not flow control policies. To our best knowledge, FlexFlow is
the first flexible logic framework for flow control policies specification.

6. Conclusions

The FlexFlow framework specifies flow control policies as stratified logic
programs consisting of five levels. Both permissions and prohibitions are
specifiable in FlexFlow. By expressing flow control policies at the program-
ming language and transaction specification we have shown the generality of
FlexFlow.

Acknowledgments

This work was partially supported by the National Science Foundation un-
der grant CCR-0113515.

References

[1] C. Baral and V.S. Subrahmanian. Stable and extension class theory for logic programs
and default theories. Journal of Automated Reasoning, 8:345-366, 1992.

FlexFlow: A Flexible Flow Control Policy Specification Framework 371

(2]

(3]

(4]

(5]

(6]

(71

(8]

9l

[10]

[11]

[12]

D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations and
model. Report M74-244, Mitre Corp., Bedford, MA, 1975.

S. Chen, D. Wijesekera, and S. Jajodia. Flexflow: A flexible flow control policy specifica-
tion framework. Report ISE-TR-03-04, Center for Secure Information Systems, Fairfax,
VA, 2003.

D.E. Denning. A lattice model of secure information flow. Communication of ACM,
pages 236-243, May 1976.

E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility in information
flow control for object-oriented systems. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 130-140, Oakland, CA, May 1997. IEEE.

S.N. Foley. A model for secure information flow. In Proceedings of the IEEE symposium
on Security and Privacy, Oakland, CA, May 1989.

A.V. Gelder. The alternating fixpoint of logic programs with negation. In Proc. 8thACM
Symposium on Principles of Database Systems, pages 1-10, 1989.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
Fifth International Conference and Symposium on Logic Programming, pages 1070-
1080,1988.

S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support for mul-
tiple access control policies. ACM Transactions on Database Systems, 26(4): 1-57, June
2001.

C.J. McCollum, J.R. Messing, and L. Notargiacomo. Beyond the pale of mac and dac-
defining new forms of access control. In Proceedings of the IEEE symposium on Security
and Privacy, pages 190-200, Oakland, CA, May 1990.

A.C. Myers and B. Liskov. A decentralized model for information flow control. In
Proceedings of the 16th ACM Symposium on Operating System Principles, pages 129-
142, Saint-Malo, France, October 1997.

P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information flow control
in object-oriented systems. [EEE Transactions on Knowledge and Data Engineering,
9(4):524-538, July-Aug. 1997.

