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Abstract  In this paper we examine undesired inferences in distributed XML doc-
uments. An undesired inference is a chain of reasoning that leads to
protected data of an organization or an individual, using only intention-
ally disclosed information. We propose a framework, called Ontology
guided XML Security Engine (Oxsegin), to detect and prevent undesired
inference attacks. Oxsegin uses the Correlated Inference Algorithm to
detect sensitive associations that may exist at a lower security levels.
The system operates on the DTD’s of XML documents to identify data
associations and the corresponding security classifications. Oxsegin uses
an ontological class-hierarchy to identify associations with two or more
conflicting classifications. A Security Violation Pointer (SVP) is as-
signed to a set of tags that contribute to the conflicting classification.
The likelihood of a detected security violation is measured by a confi-
dence level coefficient attached to the SVPs.
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1. INTRODUCTION

Information systems have become a fundamental part of our everyday
life. During the last few years the number of distributed applications
using eXtensible Markup Language (XML) increased and the concept of
Semantic Web emerged [15]. XML query languages [1, 17], supported by
ontologies [11, 9, 8, 16, 2], enable semantic-based information processing
without human assistance.

Unfortunately, techniques that support interoperation may also lead
to unintended data disclosures. While individual data units are usually
carefully analyzed not to disclose any confidential information, corre-
lated data may allow unintended disclosure of confidential information.
Current research in XML security follows two main trends: (i) Document
Instance Security for digital signatures [5] and encryption [18] and (ii)
Access Control Models for multi-level XML documents [3, 10, 4, 6, 14].
These techniques, however, do not consider the security implications of
automated correlation of large amount of machine-understandable data
that may lead to undesired inferences.

Intuitively, an undesired inference occurs when a user is able to infer
non-permitted information from intentionally disclosed data and avail-
able metadata, such as ontologies. This inference threat is similar to
the inference problem in traditional databases, where the ontology cor-
responds to the external domain knowledge. However, traditional in-
ference control techniques are insufficient to provide protection against
undesired inferences due to (i) the dynamic nature of the Web, (ii) the
large amount of information to be processed, and (iii) the fact that the
owner of the sensitive information does not have control over all publicly
available data that may lead to undesired inferences. Up to date, small-
scale data availability and the lack of automated data correlation tools
limited the threat of unwanted inferences via external domain knowl-
edge. The impact of automated XML document correlations from large
distributed databases using ontologies has not been yet fully addressed
from the information security point of view.

Our research targets the security impact of the ontology enhanced
XML processing tools over large, distributed XML databases. We show
that it is possible to use ontologies to mount specific data inference
attacks on XML data. We develop techniques to detect and prevent
attacks due to coexistence of sensitive association at a lower security
level. To prevent these attacks, we propose the Ontology guided XML
Security Engine (Oxsegin). Oxsegin is a probabilistic engine that com-
putes security violation pointers over those tags that lead to low-level
duplicates of sensitive associations.
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The rest of the paper is organized as follows: Section 2 presents an
example of ontology-guided attack using public domain data. Section
3 describes the architecture and functionality of Oxsegin. Section 4
gives the technical details for the correlated data inference process in
the security engine. Finally we conclude and propose future research in
Section 5.

2. ONTOLOGY-BASED ATTACKS IN XML
DATABASES

Undesired inferences in multilevel secure databases have been studied
extensively (see [12] for an overview). The inference problem is to detect
and remove inference channels that lead to disclosure of unauthorized
data by combining authorized data and metadata. In Web environment,
where correlated data may come from several, independent sources, only
a small portion of publicly available data is under the control of the
owner of the sensitive information. This work focuses on detecting repli-
cated data associations with different security requirements.

We assume that organizational data repositories contain both pub-
lic (e.g., available from the Web) and confidential (e.g., available only
to some of the users) data . To prevent undesired data disclosure, it
is required that the security consequences of the release of new public
data are evaluated before the release. That is, to determine whether
unauthorized users will be able to combine the new information with
other publicly available data to gain access to confidential data. Ontolo-
gies support semantic-based data integration, thus extend upon purely
syntax-based data integration.

To illustrate a possible inference attack, consider the document frag-
ment (Table 1.a) part of a database carrying information for upcom-
ing air-shows. This document provides information such as the address
and driving directions to military bases (Base_X) where an air-show is
held. The second document fragment (Table 1.b), extracted from a local
State Division for Health Administration, shows a map of drinking wa-
ter basins within a given state. Finally, the third fragment (Table 1.c),
is part of a sensitive document, containing data about the locations
of the water sources for several military bases, including Base_X. The
security requirement of the military is that the information about the
water reservoirs of military bases should only be accessible by autho-
rized users. The air-show information (fragment 1) is available on-line
and the drinking water basins information (fragment 2) is outside of the
military protection domain and publicly available. Indeed, our example
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is based on data available on existing Web site but we replaced the real
data with fictional values.

a. Air-show information

b. Drinking water basins

c. Critical Infrastructure

<7xml version="1.0"7>

<show> ... P
<fort>Base_X
</fort> ... P
<address>District_.Y

<7xml version="1.0"7>

<waterMap> ... P
<district>District_Y
</district> ... P
<basin>Basin Z

<?xml version="1.0"7>

<infrastructure> ... S
<base>Base X
</base> ... S
<waterSource>Basin_Z

< /waterSource> ... 8§
< /infrastructure>

</basin> ... P
< /watermap>

</address> ... P
< /show>

Table 1. Undesired Inference from Public Data

A possible ontology for this attack unifies the <waterSource> with
<basin>, <fort> with <base> and <address> with <district> tags.
Using this correlation, the attackers gain access to secret information
(association between the Base_X and its water source in Basin_Z), with-
out any access to the critical infrastructure database. Note, that the
complexity of this attack is reduced by the simplicity of the ontology
and the uniform access to online resources.

3. ONTOLOGY GUIDED XML SECURITY
ENGINE

The motivation for the design of Oxsegin was to assist security offi-
cers and database administrators to securely update XML databases by
identifying possible security violations from illegal inferences. Oxsegin
uses a probabilistic inference engine with varying precision levels. Oxse-
gin indicates the possibility of unwanted inferences where the correlated
data from the test files (publicly available data) matches the reference
file (protected, confidential data). If unwanted inference is detected ap-
propriate countermeasures must be performed, e.g., withhold some of
the test files or execute non-IT measures.

The security engine has four main components: the Probabilistic In-
ference Module - PIM, the User Defined Inference Parameters Module
- UDIPM, the Ontology Module and the XML Database Access Mod-
ule. The Input and Feedback Module - IFM is not incorporated in the
Oxsegin architecture. The IFM functionality is to supply the reference
and test XML set, the inference parameters and to decide the appropri-
ate actions if a security violation is detected. The response policy on
detected security violations is outside of the scope of this paper.

PIM computes possible security violation pointers between the ref-
erence document and the set of test documents. Intuitively, a security
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violation pointer indicates tags from the corresponding reference and test
DTD files that might constitute unwanted inferences. For each security
violation pointer, PIM computes an associated confidence level coeffi-
cient that reflects the likelihood of security violation involving the set
of tags. UDIPM allows the security officer to define different inference
processing parameters that will control the complexity of inference anal-
ysis. The inference uses the semantic formalism and concept hierarchy
supplied by the Ontology module.

User Defined

> Inference Parameters [P
reference file Probablﬁsﬁc —_— XML
- Inference Module <= Database Access

security violation
select test files

U Input and Feedback Module
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1
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Figure 1.  Replicated Information under Different Classification

The XML Database Access module represents a gateway to a collec-
tion of XML documents. The XML database can be the local, public
document repository or files accessed via HTTP within a given web do-
main. As a result, Oxsegin can be used to securely publish documents
over the web. In this case the reference DTD is the protected document
and the test DTD is the set of all documents from the public domain.

3.1. Probabilistic Inference

PIM uses a set of procedures to identify security violations employing
the ontology module to guide the inference process. Section 4 describes
in full details the Correlated Inference Algorithm. The The input from
the ontology module is used to abstract the concepts represented by the
tags within the DTD files. A security violation pointer SVP is assigned
to every unwanted inference. The confidence level coefficient CLC is
computed for each SVP, based on the weights of the concepts in the
ontology, the relative position of the tags in the DTD files, and the
relative position of the concepts in the ontology class hierarchy.
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Definition 1 (Security Violation Pointer) Security Violation Pointer
(SVP) is a set of tags T ={t1, ..., tn} that represent a possible security
violation via unwanted inference.

Definition 2 (Confidence Level Coefficient) The Confidence Level Co-
efficient (CLC) of an SVP is the likelihood of the inference involving the
tags of the SVP.

Within a DTD, we distinguish between syntactically identical tags at
structurally different locations. We define all tags as a pairs, containing
the tag’s name and the tag’s path information from the root node of the
DTD. For clarity, in the following we omit the path information unless
it is needed to differentiate between the tags.

To formalize ontologies we adapt the use of Frame Logic [13] as the
conceptual modeling language. We assume that the security officer as-
signs a weight to each concept in the ontology class hierarchy to differ-
entiate between less and more specific concepts from the perspective of
the protected sensitive information. The more specific a concept is, the
larger the weight assigned to it. The root of the ontology class-hierarchy
has a minimal weight since it is the least specific concept. Concepts
that are relevant to the given knowledge domain and the specific secu-
rity requirements usually carry larger weights. After the security officer
assigns the weights for each concept, the system computes the normal-
ized weights for each concept. Normalized weights reflect the likelihood
of the same syntactic forms to represent the same semantic concepts.

Definition 3 (Ontological Abstraction Level) Given the concept Cfrom
ontology O, the Ontological Abstraction Level of C, denoted as OAL(C),
is nif Cis located at depth n in the corresponding ontology class hier-
archy. The root concept Cr of the class-hierarchy has OAL(Cgr)=0.

Definition 4 (Base Ontological Abstraction Level) The Base Ontologi-
cal Abstraction Level of a tag t, denoted as BOAL(t), is the OAL of the
concept C contained within the tag t.

Definition 5 (Abstracting a concept N steps) A concept C from an on-
tology O is abstracted N steps when it is replaced N times by its imme-
diate parents in the corresponding ontology class-hierarchy.

Definition 6 (Container and Data Tags) A container tag is an XML
tag that holds only structural information in the form of other XML tags
and has no tag attributes. A data tags is an XML tag that contains at
least one unit of information. A data tag may contain data and container
tags.
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4. CORRELATED INFERENCE

In this section we propose an inference procedure that detects unde-
sired inference attacks within a particular knowledge or semantic do-
main. The Correlated Inference Algorithm detects ontology-based at-
tacks similar to the one described in Section 2. The procedure checks
a reference DTD structure (corresponding to the classified information)
against a set of test DTD structures (corresponding to the publicly avail-
able information) by abstracting tags using the ontology.

The main data structure used by the Correlated Inference Algorithm
is an Inference Association Graph (IAG). Intuitively, IAG represents the
associations among tags of an XML DTD structure. The nodes of an
IAG correspond to the XML data tags and the edges represent associ-
ations between the tags. Figure 2 represents the IAG corresponding to
the XML files in Table 1.

P, AP(Q=0.25 P, APC|=0.25

kS "

test set IAGs reference IAG

S, APC H0.25

Figure 2. Inference Association Graphs IAGs

Each association has an attached Association Probability Coefficient
(APC) that reflects the likelihood the corresponding nodes represent
related concepts. In addition, associations can be classified according
to the security policy of the organization. A security violation pointer
identifies associations of different IAGs where two or more associations
exist among the same tags but they have different security classifications.
Such associations represent cases where users can derive information
in one set of documents while they are disallowed to access the same
information in a different set of documents.

Definition 7 (XML Association) For any two nodes n1 and ng in the
DTD and their immediate parent P with security label Lp , P defines an
XML association between ny and ny. The association has a correspond-
ing security label Lp and P represents the association source.

Definition 8 (Association Probability Coefficient) Association Proba-
bility Coefficient, denoted as APC, corresponding to an association be-
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tween tags my and ng with an association source P, represents the prob-
ability that P is used to semantically correlate tags m1 and mny.

Definition 9 (Inference Association Graph) The Inference Association
Graph of an XML DTD structure, denoted by IAG=(V, E), is a graph
with nodes V (data tags of the XML) and edges E (associations among
the tags). Each edge is labeled with a pair (Lp, APCp), representing the
security label and probability coefficient of the association source tag.

Definition 10 (Document Structure Level DSL(t)) Given a tag T from
a DTD tree D, the document structure level of T in D, denoted as
DSL(T), is the maximum depth of the sub-tree rooted at T. All the leaves
i, b, ..., Iy in the DTD have DSL(l;) = 0.

Algorithm 1: Build TAG
Input: DTD
Output: IAG
BEGIN
FOR ALL data tags Ti in DTD DO
Create a corresponding node V,
FOR ALL tags T; in DTD DO
FOR ALL Vj, Vi such that T; is the nearest parent of both tags
T;, Tk, corresponding to nodes V; and Vy, respectively AND
Depth(T;)-Dept(T;)<MaxDepth, Depth(Tx)-Dept(T;)<MaxDepth DO
Create the edge e between (V;, Vi)
Label e with (Lt,, APC;jk)
END

Note, that it is always possible to find an XML association between
any two tags in a DTD structure since the root tag is the parent for all
tags in the DTD tree. However, this type of remote association is rarely
relevant. In general, it is reasonable to assume that APCs decrease with
the distance between the associated elements and the source. Algorithm
1. gives the procedure to build the IAG. To reduce the complexity of
the inference process, the algorithm limits the number of tags considered
for XML associations. Associations are considered only if the relative
difference between the tags and the association source in the DTD tree is
less than MaxDepth (set accordingly to the specifics of the XML data).

1 1
APCi = 13 Depth(T;) — Depth(Ty) © 1+ Depth(Ti) — Depth(T;)
1 1 1

1+ Depth(T;) — Depth(Ty)| = DSL(T;) +1 = DSL(Tk) + 1
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1 1 . . . .

T+ Depth(T;)=~Depth(T)) and j T Depth(T, )= Depth(T}) coefficients in the defi-
nition of APC;jx quantify the relative depth difference in the DTD tree
between the associated tags and the source of the association. APC de-
creases with the distance between the tags and the association source.
5D epth(T,;— Depth(Te)] coefficient quantifies the relative depth difference

between the associated tags. Tags at the same depth have a correspond-

ing APC larger than tags at different depth in the DTD tree. Fsr(lr—jm

and Dmlﬁ)'ﬁ coefficients quantify the structural complexity of the as-
sociated tags. Tags that represent the root of larger sub-trees are more
likely to be container tags, and this reduces the relevance of any associ-
ation involving them.

Object ). OAL=0 WGT=1 P=1/50

waterSource :: Object OAL=1 WGT=15 P=15/50
basin :: waterSource OAL=2 WGT=1 P=1/50

place :: Object OAL=1 WGT=15 P=15/50
district :: place OAL=2 WGT=1 P=1/50
address :: place OAL=2 WGT=1 P=1/50

base :: Object OAL=1 WGT=15 P=15/50
fort :: base OAL=2 WGT=1 P=1/50

Table 2. Ontology represented with Frame Logic statements

After building the IAG for each XML DTD structure in the test set,
the ontology is used to integrate them into a single structure - the test
set IAG. The Frame Logic statements in Table 2. represent the ontology
associated with the knowledge domain of the XML DTD structure in Ta-
ble 1. Each concept is shown with the associated ontology abstraction
level OAL, weight WGT, and normalized weight P. If the DTD struc-
tures in the test set belong to the same knowledge domain, abstracting
the tag names may create pairs of duplicated nodes among different
IAGs. Merging the duplicated nodes connects the test set IAGs. Each
node in the IAG has an attached Concept Abstraction Level coefficient
(CAL). Intuitively, CAL reflects the likelihood that the new concept is
an abstract representation of the tag that is replaced. For the initial con-
cepts in the DTD structure, CAL=1. Then for each abstraction, CAL
is modified using the probability of the new concept in the ontology.

Definition 11 (Concept Abstraction Level) Concept abstraction level
(CAL) is the likelihood that the concept from the ontology hierarchy is
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an abstract representation of the initial XML tag name. For repeated
replacements, CAL is the probability the present concept is an abstract
representation of the original tag name.

Given the tree structure of the XML documents as well as the on-
tology hierarchy, all tags would eventually collapse into a single node if
abstracted to the root of the ontology. To prevent this from happen-
ing, the Correlated Inference Algorithm has a set of restrictions on the
abstraction process and the tags that it uses. The concepts are only
abstracted within two predefined OAL limits: MaxOAL and MinOAL.
MaxOAL is usually set to the depth of the ontology hierarchy tree while
the MinOAL is set according to the specifics of the ontology. Usually,
MinOAL is the average ontology depth of the concepts targeted by the
inference attacks and is set by the security officer based on a particular
knowledge domain. The second restriction on the abstraction process is
based on the targeted tags. Tags located towards the root of the XML
document are usually container tags, mostly used for structuring the
document and rarely involved in semantic correlations. The security of-
ficer assigns a maximum level MaxDSL in the XML structure to consider
tags in the abstraction process (DSL the document structure level).

Integrating the test set IAGs simulate the natural human brain infer-
ence process in three distinct stages. In the first stage the concepts as-
sociated with XML tags are abstracted, unifying same notions originally
under different syntactic forms. In the second stage, by eliminating the
duplicated nodes and collapsing the multi-structure IAGs, the system
simulates the inference link between multiple files with related data. In
the third stage the system performs a transitive correlation to simulate
linking XML tags through similar abstract concepts. The transitive cor-
relation relates two tags through an XML association (IAG edge) with
a common third tag. Since the targeted inference is usually between
multiple DTD structures, it follows naturally to perform the transitive
correlation after duplicated node reduction. Algorithm 2. gives the for-
mal description of the Correlated Inference Algorithm.

Each edge added in the transitive correlation of the test set IAG rep-
resents a possible illegal inference. The Correlated Inference Algorithm
checks all these edges against the reference IAG to identify security vi-
olation pointers. The test for security violation pointers is performed
on edges, since the edges represent valid XML associations. Each edge
added to the test set IAG by the transitive correlation is compared to
all edges in the reference IAG. The system places a security violation
pointer (SVP) on pairs of edges between similar nodes if the reference
edge security label dominates the test set edge security label. Intu-
itively this means that an association from the reference DTD structure
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Algorithm 2: Correlated Inference
Input: Test set IAGs and Reference 1AGs
Output: Security Violation Pointers (SVP)

MAIN
Check security violation for all existing edges of test and reference IAGs
FOR all edges use Procedure 2 to identify SVPs

Abstract tags in test IAGSs to create new associations
Let S be the set of all tag pairs (T, T;)€ test set IAGs
FOR ALL pairs (T, T;) in S
Use Procedure 1 to abstract 7; and Tj to the nearest
concept ¢ such that ¢ = T} = Ty
IF T{ = T} THEN
Merge nodes T; and Tj:
Remove Tj; direct all edges to Ti, CALt, =min[CALr;;CALT,]
Create edges through transitive correlation:
FOR ALL tags T, and T with an edge to T: DO
Let security label L=max([L.(z, 1, );Le (1, 70)]
Let APC=APC,(T|.,Th)*APCeI(Tth)
Connect Ty and Tk by e, with label (L,APC)
Check security violations due to newly created edges
FOR all new edges use Procedure 2 to identify SVPs
Check data-level matches of SVPs
FOR V SVP; such that CLC;>DSTcoef DO
Perform data search on associated tags
IF data-level match found THEN
CLC;=1
END(MAIN)

Procedure 1: Abstract tag T
Input: Ontology class hierarchy H, tag T
Output: (Abtracted T)=T"
Let ¢,c1,...,¢n concepts€e H, c =T, ¢; immediate parent of c;_1
T°=T, n < MinOAL
FOR i=1 TO n DO
Ti =Ci
CALT( =CALT:'—1 *P(C.’ )
END(Procedure 1)

Procedure 2: Edge test for SVP
Input: edges e = (n1,n2), € = (n},ny) with security classifications Le, L,
Output: SVP and CLC or nothing

Abstract tags of nodes n, and nz of e and nj and nj of ¢’

IF e =y €' (nf =nf AND n§ = n¥¥) and L.#L./, say L. >L. THEN
CALaurg,CALmaz,CALmin=(average,max,min) CAL for e, e’ nodes
CLC=CALayrg*APC.*APCo*(1-|CALunaz-CALmin])

Place SVP on e and e’ nodes with CLC
END(Procedure 2)
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is classified at a higher security level than an association among the test
DTD structures discovered by the transitive correlation procedure. The
edges are matched for a security violation employing again the ontol-
ogy hierarchy to abstract concepts for each tested edge. Each SVP has
a confidence level coefficient CLC computed based on the APC of the
edge and the CAL of the nodes. The last coefficient in computing CLC,
1 — |CALpaz — CALp,s| quantifies the relative difference between the
maximum and minimum level of abstraction for the concepts in the XML
associations. Concepts on the same level of abstraction in the ontology
hierarchy have a higher associated CLC.

Figure 3 shows the reference IAG and the integrated test set IAG
corresponding to the IAGs in Figure 2 and the XML files in Table 1.
The tag <fort> was abstracted to <base> and the tag <basin> was
abstracted to <waterSource>. Both tags <address> and <district>
were abstracted to <base> inducing a transitive correlation between
<base> and <water Source>. The new XML transitive association be-
tween <base> and <waterSource> is classified public according to the
Correlated Inference Algorithm. This triggers a security violation be-
tween the test set and the reference IAG where the same association is
classified secret.

Figure 3.  Unified Inference Association Graph

If the CLC corresponding to a particular SVP is above the Data
Search Threshold coefficient (DSTcoef), the system provides low-level
data granularity search. If data items associated with the reference and
test set XML DTD structures match, the associated CLC is set to 1,
the maximum confidence level. The low-level data search provides max-
imum security but also maximum processing complexity. High-level de-
tection may produce false positive security violation pointers with high
confidence coefficients. Data granularity search decreases the amount
of false positives but does not guaranty to eliminate all of them. The
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Correlated Inference Algorithm runs the analysis for security violation
pointers on the DTD structure level. This represents an advantage for
large XML documents databases where usually more than one docu-
ment corresponds to any given DTD file. Operating at the DTD level is
similar to high-level security detection with reasonable accuracy under
reasonable computational complexity. For more accurate detection the
procedure uses specialized data granularity search to identify security
violations with maximum confidence level.

5. CONCLUSION

This paper presents a new method to prevent inference attacks in
large XML databases. We show how ontologies can be used to imple-
ment automated attacks on large XML databases and develop methods
and techniques to detect such attacks. Although ontological inferences
have been studied from the perspective of providing interoperation, the
security impacts of these new technologies have not been investigated
and there are no tools to prevent these threats.

To the authors’best knowledge, Oxsegin is the first proposal to pro-
vide a semantically enhanced XML security framework. This paper adds
a new component to the security engine to prevent inference attacks
based on correlated data. The Correlated Inference Algorithm com-
putes security violation pointers and their associated confidence level
probability. The procedure can be tuned to run at different complexity
levels to enhance the efficiency of the model. The main contribution of
our model is to be able to handle large amount of semi-structured data
that is infeasible by using human experts only.
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