
Power-Aware Network Swapping for Wireless Palmtop PCs

Andrea Acquaviva Emanuele Lattanzi Alessandro Bogliolo

STI - Università di Urbino
61029 Urbino - Italy

Abstract

Virtual memory is considered to be an unlimited resource
in desktop or notebook computers with high storage mem-
ory capabilities. However, in wireless mobile devices like
palmtops and personal digital assistants (PDA), storage
memory is limited or absent due to weight, size and power
constraints. As a consequence, swapping over remote mem-
ory devices can be considered as a viable alternative. Nev-
ertheless, power hungry wireless network interface cards
(WNIC) may limit the battery lifetime and application per-
formance if not efficiently exploited. In this work we explore
performance and energy of network swapping in compari-
son with swapping on local micro-drives and flash memo-
ries. Our study points out that remote swapping over power-
manageable WNICs can be more efficient than local swap-
ping and that both energy and performance can be opti-
mized through power-aware reshaping of data requests. Ex-
perimental results show that our optimization technique can
save up to 60% of communication energy while improving
performance.

1. Introduction
Mass storage devices provide to desktop and laptop com-

puters the support to implement a virtual memory that can
be viewed as an unlimited resource to be used to extend
the main memory whenever needed. However, in wireless
mobile devices like palmtops and personal digital assistants
(PDAs), storage memory is limited or absent due to weight,
size and power constraints, thus limiting the application
of virtual memory. On the other hand, if a wireless net-
work interface card (WNIC) is available, unlimited swap-
ping space could be found on remote devices made available
by a server and managed by the operating system as either
network file systems (NFS) or network block devices (NBD).
However, swapping over a power hungry WNIC may limit
the battery lifetime and application performance if not effi-
ciently exploited.

Network swapping has been object of research in the past
decade because of its application in wired networked clus-
ters of computers. In this context, remote swapping has been

found to be more efficient than local swapping [7, 5] when
high-bandwidth network links are available. In fact, access-
ing the physical memory of a remote server can be more ef-
ficient than accessing a local disk. These results are not di-
rectly applicable to wireless palmtop PCs, because of band-
width limitations and energy constraints.

Remote swapping for handheld computing systems is a
recent research topic that has not been extensively stud-
ied so far. The problem of energy consumption of network
swapping in mobile devices has been faced by Hom and
Kremer [6]. They propose a compilation framework aimed
at reducing the energy by switching the communication de-
vice on and off by means of specific instructions inserted
at compile time based on a partial knowledge of the mem-
ory footprint of the application. Remote memory resources
have been also exploited in advanced file systems for mul-
timedia devices capable of smart storage in remote servers
with automatic backup [8].

In this paper we report the results of extensive experi-
ments conducted to evaluate and optimize the performance
and power efficiency of different local and remote swap de-
vices for wireless PDAs (namely, a compact flash (CF), a
micro drive (HD) and two different WNICs). The contribu-
tion of the paper is three-fold. First we characterize all swap
devices in terms of time and energy inherently required to
swap a single page. Second, we test the effectiveness of the
dynamic power management (DPM) support made avail-
able by each device. Third, we show that dummy data ac-
cesses can be preemptively inserted in the source code to re-
shape page requests in order to significantly improve the ef-
fectiveness of DPM.

Experimental results show that WNICs are less efficient
than local devices both in terms of energy and time per page.
However, the DPM support provided by WNICs is much
more efficient than that of local micro drives, making net-
work swapping less expensive than local swapping for real-
world applications with non-uniform page requests. Finally,
we show that application-level reshaping of page requests
can be used in conjunction with DPM to save up to 60% of
energy while improving performance.

1530-1591/04 $20.00 (c) 2004 IEEE

2. Swap devices
We refer to the page-based swapping support provided

by the Linux OS. Linux performs a page swap in two sit-
uations: i) when a kernel daemon, activated once per sec-
ond, finds that the number of free pages has fallen below a
given threshold; ii) when a memory request cannot be sat-
isfied. The page to be swapped-out is selected in a global
way, independently from the process that made the request.
The page replacement algorithm is based on an approxima-
tion of least recently used (LRU) policy [3].

Modern operating systems equipping palmtops and
PDAs make possible to define heterogeneous sup-
port for swapping. Swapping can be performed both locally
to the PDA and remotely, by exploiting server storage ca-
pabilities and network connections. More than one swap
units can be enabled at the same time, with assigned prior-
ity. The unit with the highest priority is selected by default
until it becomes insufficient.

2.1. Local devices
On-board non-volatile memory is usually available in

palmtop PCs to store the bootloader and the filesystem.
Magnetic disks can be added to extend file storage capa-
bilities. Swap can be made locally in palmtops as in desk-
top PCs. A dedicated partition can be defined in hard drives
or flash memories, where the filesystem resides. Alterna-
tively, some OSes allow the user to define a swap file that
does not need a dedicated partition. Either way, the swap
area comes at the price of decreasing the space available for
actual storage purposes.

Compact Flash.
Palmtop PCs are equipped with on-board flash memories,
but additional memory chips can be installed as an expan-
sion if an external slot is present. Memory Technology De-
vice (MTD) drivers allow to define swap partitions or swap
files on flash memories. However, being read-most devices,
flash memories are not the ideal support for swapping. Nev-
ertheless, we evaluate their swapping performance since
they are always present in palmtop PCs, being sometimes
the only alternative to network swapping.

Hard Disk.
Today’s technology make available hand-sized magnetic
disks (called mini of micro drives) suitable to be installed
in palmtop computers. Currently they provide a storage ca-
pability up to 5GBytes. Like traditional hard disks (HD),
micro drives provide a seek time much longer than the ac-
cess time to sequential blocks. For this reason, access to
these kinds of devices is usually performed in bursts when-
ever possible by exploiting on-board hardware buffers in or-
der to compensate for the initial transfer delay. The OS tries
to limit the delays by filtering disk accesses using software

caches, whose size is limited by the available space in main
memory. When a micro drive uses as a swap device, this
trade-off is even more critical, since increasing the memory
space allocated for caching increases the number of swap
requests.

2.2. Network Devices
In order to provide the performance required to fully

exploit the channel bandwidth, remote swap files can be
mapped in the main memory of a remote server. This is the
choice we made for our experiments.

Network File System.
NFS (Network File System) is used in a network to enable
file sharing among different machines on a local area. The
communication protocol is based on a UDP stack, while
data transfers between NFS server and clients are based on
Remote Procedure Calls (RPCs). The idea of using NFS to
support network swapping is relatively recent [10]. To this
purpose, a remote file must be configured as a swap area.
This is made possible by modern operating systems that al-
low the user to specify either a device or a file as a swap
unit.

Network Block Device.
A Network Block Device (NBD) [4] offers to the OS and to
the applications running on top of it the illusion of using a
local block device, while data are not stored locally but sent
to a remote server. As in case of NFS, the virtual local de-
vice is mapped in a remote file, but the swap unit is viewed
as a device, rather than as a file.

This is made possible by a kernel level driver (or mod-
ule) that communicates to a remote user-level server. The
first time the network connection is set-up, a NDB user-
level client negotiates with the NBD server the size and the
access granularity of the exported file. After initialization,
the user-level NBD client does not take part to remaining
transactions that directly involve the kernel NBD driver and
the NBD server. No RPCs are required in this case, thus re-
ducing the software overhead. Differently from NFS, the
underlying network stack is TCP instead of UDP. This in-
creases the reliability of network transfers, at the cost of in-
creasing the protocol overhead.

3. Experimental Setup
We performed our experiments on a HP’s IPAQ 3600

handheld PC, equipped with a Strong-ARM-1110 proces-
sor, 32MB SDRAM and 16MB of FLASH. Our benchmarks
were executed on the palmtop on top of the Linux operating
system, Familiar release 6.0. The WNICs used to provide
network connectivity were a COMPAQ WL110 [11] (here-
after denoted by NIC ���������
) and a CISCO AIRONET

/*************** Benchmark 1 ***************/
double A[ROW][COL];
initialize(A,ROW,COL);
t0 = time();
read_by_column(A,ROW,COL);
t1 = time();
/***/

Figure 1. Pseudo-code of the benchmark
used to characterize swap devices.

350 [13] (NIC ��������), while the AP connected to the re-
mote swapping server was a CISCO 350 Series base station
[12]. The remote server was installed on a Athlon 4 Mo-
bile 1.2 GHz notebook. For local swap experiments we used
a 340 MB IBM Microdrive (HD) and a 64 MB Compaq-
Sundisk Compact Flash Memory (CF) [14, 15]. Power con-
sumption of both WNICs and local devices was measured
using a Sycard Card Extender that allowed us to monitor
the time behavior of the supply current drawn by the card.
The current waveforms were then digitized using a National
Instruments Data Acquisition Board connected to a PC. A
Labview software running on the PC was used to coordi-
nate the acquisition and bufferize current samples to com-
pute power and energy consumption.

The remote swap NBD server was instrumented in order
to collect time-stamped traces of swapping activity during
benchmarks execution.

4. Characterization of Swapping Costs
To characterize the inherent cost of a page swap we de-

veloped a suite of benchmarks accessing data structures
much larger than the available main memory, without per-
forming any computation on them. This kind of benchmark
is suitable to characterize swapping cost since the compu-
tation time is negligible with respect of the time spent in
swapping and the devices under characterization are always
busy serving page requests. The pseudo-code of the bench-
mark is shown in Figure 1. A large matrix is allocated and
initialized and then read by column in order to maximize
the number of page faults. Different benchmarks were gen-
erated by changing the number of columns and rows of the
matrix in order to change the number of page faults while
keeping the total size of the matrix unchanged. This allowed
us to cross-validate experimental results and reduce charac-
terization errors.

A second set of benchmarks was obtained by re-
placing the read by column procedure with a
write by column procedure, and used to charac-
terize the swapping cost in case of write-back.

Characterization results.
Experimental results are reported in Table 1 in terms of
time, energy and power required by each local and remote
device to swap a page of 4096 bytes. Both read-only and
write-back results are reported.

In general, write-back doubles the cost (in energy and
time) of a read-only swap, since it involves two data trans-
fers. As expected, local devices are more efficient than
WNICs and CF has an energy-per-page more than 10 times
lower than all other devices.

It is also worth noting that, for a given WNIC, NBD pro-
vides greater performance than NFS, at the cost of slightly
higher power consumption. Since the time reduction over-
comes the additional power consumption, the energy per
page required by NBD is lower than that required by NFS.

5. Power Optimization
In the previous section we have characterized swap de-

vices in terms of time and energy requirements per swap
page. To this purpose we designed a set of benchmarks that
simply accessed data structures much larger than the main
memory without performing any computation on them.

Although useful for characterization purposes, the
benchmarks of Figure 1 are unrealistic for two main rea-
sons. First, computation time is usually non-negligible, so
that page requests are spaced in time according to a dis-
tribution that depends on the workload and on the state of
the main memory. Second, the total size of the data struc-
tures accessed by each application usually does not
exceed the size of the main memory, otherwise the perfor-
mance degradation would not be acceptable.

In most cases of practical interest, swapping is mainly
needed after a context switch to bring in main memory data
structures the first time they are used by the active process.
Moreover, in handheld devices there are often only a few
processes running concurrently, so that both main memory
and peripherals are mainly used by a single process at a
time. In this situation, the usage pattern of swapping de-
vices are significantly different from those used for charac-
terizing swapping costs because of the presence of long idle
periods between page swaps.

Since swapping devices spend power while waiting for
page requests, the effective energy per page is larger than
that reported in Table 1. On the other hand, idleness can
be dynamically exploited to save power by putting the de-
vices in low-power operating modes, or by turning them off.
Dynamic power management (DPM) significantly impacts
the performance and energy trade-off offered by each de-
vice under bursty workloads.

In this section, we first analyze the DPM supports pro-
vided by each swapping device, then we show how to in-
crease their effectiveness by means of software optimiza-

Swap device Read-only Write-back
Type Mode Time Energy Power Time Energy Power

[ms] [mJ] [mW] [ms] [mJ] [mW]
CF local 4.1 0.201 49 8.2 0.402 49
HD local 3.0 1.911 637 6.4 4.061 637

NIC ��������� NBD 7.0 5.934 848 14.0 10.319 735
NIC ��������� NFS 8.5 6.123 720 14.6 10.516 720

NIC ����������� NBD 8.0 5.626 578 15.0 8.599 573
NIC ����������� NFS 10.0 5.243 524 22.0 10.672 485

Table 1. Power consumption and performance of local and remote swap devices.

tion techniques aimed at reshaping the distribution of page
requests.

5.1. Dynamic Power Management

Device State Power Timeout WU-time WU-pow
[mW] [ms] [ms] [mW]

CF Read 107
Write 156
Wait 4.5

HD Read 946
Write 991
Wait 600
Sleep 24 2s � � !#"%$'&� ()#" 1s

NIC RX 755
CISCO TX 1136

Wait 525
Doze 113 15 14 400
Off 0 any 370 451

NIC RX 548
COMP TX 798

Wait 407
Doze 38 100 1 800
Off 0 any 270 357

Table 2. Power states of swapping devices.

The DPM support provided by each swap device is
schematically represented in Table 2. For each device, the
key features of active and inactive operating modes are re-
ported. Active modes are characterized only in terms of
power consumption, while inactive modes are also char-
acterized in terms of timeout to be waited before entering
the inactive state, wake-up time and wake-up power. The
data reported in the Table have been obtained by analyzing
the current profiles provided by the measurement setup de-
scribed in Section 3.

First of all we remark that the average power consump-
tions measured during page swaps (reported in Table 1) are
not equal to the power consumptions measured for the de-
vices during read/receive or write/transmit. In fact, for in-
stance, a page swap across a wireless link entails the trans-
mission of the page request, a waiting time corresponding to
the latency of the remote device, the reception of the page
and, possibly, the write-back of a swapped-out page. The

average swapping power comes from the weighted average
of all these contributions.

The CF has no inactive states. This is because its power
consumption in wait mode is negligible, making inactive
low-power states not necessary. On the contrary, NICs and
HDs consume a large amount of power while waiting for
service requests, so that it is worth switching them to low-
power inactive states during long idle periods.

The sleep state of the HD has the lowest power consump-
tion, but the highest wakeup cost in terms of power (higher
than 1W) and time (in the order of several seconds). More-
over, the wakeup time is highly unpredictable, its measured
standard deviation being almost 2 seconds.

According to the IEEE802.11b standard [1], WNICs pro-
vide MAC-level DPM support that can be enabled via soft-
ware. The actual implementation of the DPM support de-
pends on the WNIC. The protocol policy (PSP) consists in
placing the card in a low-power state called doze mode, in
which it sleeps but wakes-up periodically to keep synchro-
nized with the network and to check the access point (AP)
for outstanding data. A polling frame must be transmitted
by the card for each packet to be retrieved. PSP mode pro-
vides power savings at a cost of a noticeable performance
hit. To increase performance, a variation of this policy is
implemented by CISCO cards. They automatically switch
from PSP to CAM (Constant Awake Mode) when a large
amount of traffic is detected. In this case no polling frame
is needed between packets since the reception and transmis-
sion happen in active mode.

Even if the power consumption in sleep state is low, it
is not negligible. Moreover, the card is sensitive to broad-
cast traffic. A more aggressive policy would require to com-
pletely shut-off the card when no needed by any active ap-
plication in the system. Thus, more power can be saved, at
the price of a larger wake-up delay needed by network re-
association. OS-level policies can be implemented to this
purpose based on a power management infrastructure re-
cently developed for Linux OS [2]. This infrastructure is
composed by a power manager module that handles re-
quests from applications and keeps track of their resource
needs. On the other side, upon a request, the power man-
ager can directly switch off a peripheral (WNIC in our case)
if no other applications are using it. Switch off request may

come from user applications through dedicated APIs or di-
rectly by another kernel module. We exploited this feature
to let the NBD driver module switch on and off the card be-
tween swapping requests.

The features of doze and power-off modes are reported
for both WNICs in Table 2. We observe that the MAC-level
DPM support of NIC ���*�+���
	 is more efficient that that of
NIC ���,����� , but the DPM policy if more conservative (the
timeout being 100ms).

0 5 10 15 20 25 30
Execution time [s]

0

25

50

75

100

N
um

be
r

of
 p

ag
es

0 5 10 15 20 25 30
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

Theoretical needs
Page swapped

Figure 2. Distribution of page requests.

5.2. Re-shaping Swap Requests

The effectiveness of any DPM strategy strongly depends
on workload statistics. Regardless of the DPM policy, the
higher the burstiness of the workload, the higher the power
savings. In fact, long idle periods can be effectively ex-
ploited to switch to the deepest inactive states, while long
activity bursts amortize the cost of wake up.

Although caching and buffering can be performed by the
OS to perform a low-level reshaping of page requests, a typ-
ical trace of swapping traffic shows small bursts of a few
pages followed by short periods of inactivity. Increasing the
granularity of page swaps could increase the burstiness of
the workload, but also increases the risk of preemptively
swapping-in unused pages.

On the other hand, in many cases data pre-fetching could
be deterministically performed at the application-level in or-
der to reshape swapping traffic. This can be done by insert-
ing dummy accesses to the data structures right before they
are used. Dummy accesses generate bursts of page requests
for two main reasons: first, they are not delayed by any com-
putation; second, a single access is sufficient to fetch an en-
tire page.

5.3. Case Study
We use matrix multiplication as a case study to evalu-

ate the effectiveness of the DPM strategies implemented

/*************** Benchmark 2 ***************/
double dummy[2048][2048], C[128][128];
double A[128][128], B[128][128];
initialize(A,128,128);
initialize(B,128,128);
initialize(C,128,128);
initialize(dummy,2048,2048); //swap out
t0 = time();
compute_product(A,B,C);
t1 = time();
/***/

Figure 3. Pseudo-code of the case study.

by the swap devices and to demonstrate the feasibility of
application-level reshaping of swap requests.

The pseudo-code of the case study is reported in Fig-
ure 3: it simply computes the product of two square matri-
ces A and B and puts the result if a third matrix C. The to-
tal size of the three matrices fits in main memory, but we use
a dummy matrix, exceeding the size of the physical mem-
ory, to force swapping activity. Matrices A, B and C are first
allocated and initialized, then the dummy matrix is initial-
ized in order to swap A, B and C out from main memory.
In practice, the initialization of the dummy matrix creates
boundary conditions similar to those possibly caused by the
execution of other applications. Then we monitor the exe-
cution time and the swapping energy caused by the execu-
tion of the compute product procedure.

The distribution of swap requests is shown in Figure 2.
The expected distribution is also plotted for comparison.
The large number of pages requested at the beginning cor-
responds to the upload of the entire matrix B. In fact, the
first column of B has to be read in order to compute the first
entry of C. Since matrices are stored in memory by rows,
reading the first column entails swapping in the entire ma-
trix. Subsequent page requests are spaced in time accord-
ing to the time required to compute -�.0/213.0/54 floating point
products.

Comparing the actual requests with the theoretical needs
we observe that the OS swaps 8 pages at a time, thus in-
creasing the opportunity for DPM. However, the total num-
ber of pages request by the OS is 104, while the three ma-
trices fit into 96 pages.

To reshape swap requests we inserted dummy ac-
cesses to the three matrices between the computation of
initial time t0 and the computation of the matrix prod-
uct. Dummy accesses were performed by a routing, called
access one per page, that reads one matrix entry ev-
ery 512 (i.e., one entry per page).

5.4. Experimental results and conclusions
Experimental results obtained by executing the case

study with and without traffic reshaping are reported in Ta-

Device Exec. time [s] Energy [mJ]
Original Reshaped Ratio Original Reshaped Ratio

Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.
RAM 25 0 25.25 0.5 1.01 - - - - -

CF 25.5 0.57 25.75 0.5 1.01 0.143 0.003 0.161 0.025 1.12
HD 25.312 - 25.812 - 1.01 15.199 - 15.499 - 1.01

(sleep 2000) 37.75 5.91 27.75 0.957 0.73 19.426 5.311 6.207 0.846 0.32
NIC ��687:9:; 26.5 0.58 27 0.82 1.02 15.591 0.32 15.533 1.48 0.996
(doze 15) 27.5 0.58 26.5 0.58 0.96 7.303 0.26 4.692 0.13 0.64
(off 100) 28.75 0.5 26.0 0.82 0.93 2.473 0.09 0.890 0.051 0.36

NIC ��;�<�=?>,@ 30.25 0.5 28.5 1.0 0.94 13.597 0.56 12.701 0.51 0.93
(doze 100) 30.0 0 27.75 0.5 0.92 2.542 0.096 2.187 0.083 0.86
(off 100) 30.0 0 28.25 0.5 0.94 1.760 0.08 0.722 0.045 0.41

Table 3. Execution time and swapping energy required to run the case study of Figure 3.

ble 3. Based on the results reported in Table 1 we decided
to use NBD for remote swapping.

Each device was tested with and without DPM. The two
WNICs were tested with both MAC-level DPM (doze) and
OS-level PDM (power-off). The DPM mode and the cor-
responding timeouts are reported in the first column. The
performance of the CF and the CPU time obtained by run-
ning the application with data available in main memory are
also reported in the first two rows for reference. The DPM
of the HD was enabled by default, so that data reported on
row HD are computed from previous characterization. All
other data were obtained from real measurements, by re-
peating each experiment 4 times.

Interestingly, even without DPM, the HD consumes
more energy than WNICs. This is because of its higher
power consumption when idle. When DPM is enabled,
WNICs become much more convenient than HD. In par-
ticular, the DPM of the HD is counterproductive both
in terms of time and energy under this traffic condi-
tions because of the large wakeup cost. On the contrary,
MAC-level DPM of NIC ��ACBEDGF and NIC �*F�HJILK#M saves re-
spectively more than 50% and more than 80% of the swap-
ping energy. If the power-off state is exploited, power
savings become of 85% and 94%, respectively, with negli-
gible performance loss.

When DPM policies are enabled, traffic reshaping pro-
vides further advantages both in terms of energy and exe-
cution time. For the HD, traffic reshaping makes DPM ef-
fective to save more than 60% of energy consumption. For
WNICs, traffic reshaping provides additional energy sav-
ings while further reducing the performance loss. The ra-
tios between results obtained with and without traffic re-
shaping are reported in the table. In particular, when the
power-off state is exploited, traffic reshaping leads to addi-
tional energy savings around 60%. It is also worth noting
that reshaping provides only a marginal benefit when com-
bined to the MAC-level DPM of NIC �*F�HJILK#M , because of the
highly efficient DPM support provided by that card.

The overall effect of DPM and traffic reshaping makes
network swapping much more energy efficient than local

swapping on a HD (the overall energy being almost 10 times
lower) with a performance penalty of about 5%.

In conclusions, our experiments demonstrate the feasi-
bility and the energy efficiency of network swapping from
wireless palmtop PCs. The effectiveness of the DPM sup-
port provided by WNICs compensate makes them more ef-
ficient than local HDs and open the field to optimization
strategies (like swap reshaping) that may further improve
energy efficiency and performance.

References
[1] LAN/MAN Standards Committee of the IEEE Computer Society.

Part 11: Wireless LAN MAC and PHY Specifications: Higher-Speed
Physical Layer Extension in the 2.4 GHz Band, IEEE, 1999.

[2] A. Acquaviva, T. Simunic, V. Deolalikar, S. Roy, ”Remote Power
Control of Wireless Network Interfaces,” Proceedings of PATMOS,
Turin, Italy, Sept. 2003.

[3] D. Bovet, M. Cesati, ”Understanding the Linux Kernel,” OŔeally &
Associates, Sebastopol, CA, Jan. 2001.

[4] P. T. Breuer, A. Marin Lopez, A. Garcia Ares, ”The Network Block
Device,” Linux Journal, Issue 73, May 2000.

[5] M. D. Flouris, E. P. Markatos, ”The Network RamDisk: Using
Remote Memory on Heterogeneous NOWs,” Cluster Computing,
pp. 281-293, 1999, Baltzer Science Publishers.

[6] J. Hom, U. Kremer, ”Energy Management of Virtual Memory
on Diskless Devices,” Proceedings of COLP, Barcelona, Spain,
Sept. 2001.

[7] T. Newhall, S. Finney, K. Ganchev, M. Spiegel, ”Nswap: A Net-
work Swapping Module for Linux Clusters,” Proceedings of Euro-
Par, Klagenfurt, Austria, August 2003.

[8] M. Satyanarayanan, ”The Evolution of Coda,” ACM TOCS, Vol. 20,
Issue 2, Pages: 85–124, May 2002.

[9] A. Silbershatz, P. Galvin, G. Gagne, ”Operating System Concepts,
6th Edition,” Addison-Wesley, 2002.

[10] ”Swapping via NFS for Linux,” http://www.nfs-swap.dot-heine.de
[11] HP, WL110, http://h18004.www1.hp.com/products/wireless/wlan/

wl110.html, 2003.
[12] Cisco System, Cisco Aironet 350 Series Access Points,

http://www.cisco.com/univercd/cc/td/doc/product/wireless/airo 350/
accsspts/index.htm, 2003.

[13] Cisco System, Cisco Aironet 350 Series Wireless LAN Adapters,
http://www.cisco.com/univercd/cc/td/doc/product/wireless/airo 350/
350cards/index.htm, 2003.

[14] IBM, 340MB Microdrive Hard Drive, http://www.storage.ibm.com/
hddredirect.html?/micro/index.html, 2003.

[15] Compaq, compact flash cards, http://www.hp.com/products1/storage/
products/storagemedia/flash cards/index.html, 2003.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

