IMPLEMENTING REAL-TIME UPDATE OF
ACCESS CONTROL POLICIES

Indrakshi Ray and Tai Xin *

Abstract Real-time update of access control policies, that is, updating policies while they
are in effect and enforcing the changes immediately, is necessary for many
security-critical applications. In this paper, we consider real-time update of ac-
cess control policies that arise in a database system. Updating policy while they
are in-effect can lead to potential security problems. In an earlier work, we
presented an algorithm that not only prevents such security problems but also
ensures correct execution of transactions. In the current work we extend that
algorithm to handle addition and deletion of access control policies and provide
the implementation details of the algorithm. We also describe properties of his-
tories generated by this algorithm.

1. INTRODUCTION

Since security policies are extremely critical for an enterprise, it is important
to control the manner in which policies are updated. Updating policy in an ad-
hoc manner may result in inconsistencies and problems with the policy spec-
ification; this, in turn, may create other problems, such as, security breaches,
unavailability of resources, etc. In other words, policy updates should not
be through ad-hoc operations but done through well-defined transactions that
have been previously analyzed.

An important issue that must be kept in mind about policy update transac-
tions is that some policies may require real-time updates. We use the term
real-time update of a policy to mean that the policy will be changed while it is
in effect and this change will be enforced immediately. An example will help
motivate the need for real-time updates of policies. Suppose the user John, by
virtue of some policy P, has the privilege to execute a long-duration transac-
tion that prints a large volume of sensitive financial information kept in file /.
While John is executing this transaction, an insider threat is suspected and the
policy P is changed such that John no longer has the privilege of executing this

*This work was partially funded by the US AFOSR under contract number FA9550-04-1-0102. The opin-
ions expressed are those of the authors and do not necessarily reflect those of the AFOSR.



66 DATA AND APPLICATIONS SECURITY XVIII

transaction. Since existing access control mechanisms check John’s privileges
before John initiates the transaction and not during the execution of the transac-
tion, the updated policy P will not be correctly enforced causing financial loss
to the company. In this case, the policy was updated correctly but not enforced
immediately resulting in a security breach. Real-time update of policies is also
important for environments that are responding to international crisis, such as
relief or war efforts. Often times in such scenarios, system resources need re-
configuration or operational modes require change; this, in turn, necessitates
policy updates.

In this paper we consider real-time policy updates in the context of a
database system. A database consists of a set of objects that are accessed
and modified through transactions. Transactions performing operations on
database objects must have the privilege to execute those operations. Such
privileges are specified by access control policies; access control policies are
stored in the form of policy objects. Transactions executing by virtue of the
privileges given by a policy object is said to deploy the policy object. In ad-
dition to being deployed, a policy object can also be accessed and modified
by transactions. We are considering an environment in which different kinds
of transactions execute concurrently some of which are policy update transac-
tions. In other words, a policy may be updated while transactions are executing
by virtue of this policy.

To prevent security breaches caused by real-time update of access control
policies, a simple solution is to abort all transactions that are executing by
virtue of the policy that is being updated. Unfortunately, this results in unnec-
essary transaction aborts. This is because not all updates to a policy object
are problematic. For instance if a policy object is updated such that the rights
given by the policy are increased, then the transactions executing by virtue of
the policy need not be aborted.

In an earlier work [14] we described a syntactic approach for classifying
policy update transactions and proposed a concurrency control mechanism sup-
porting this approach. In this paper, we analyze the characteristics of histories
produced by the concurrency control mechanism and provide implementation
details ofthis mechanism. We extend our approach to handle real-time creation
and deletion of access control policies as well.

The rest of the paper is organized as follows. Section 2 gives our definition
of policy updates and shows how we can classify a policy update as a relax-
ation or restriction. Section 3 proposes our transaction processing model for
policy updates. Section 4 illustrates how the semantics of the policy update
operation can be exploited to increase concurrency. Section 5 describes the
implementation details of the policy update algorithm. Section 6 highlights
the related work. Section 7 concludes our paper with some pointers to future
directions.



Ray & Xin 67

2. DEFINING POLICY UPDATES

We consider policy updates in the context of a database system. A database
is specified as a collection of objects together with a set of integrity constraints
defined on these objects. At any given time, the state of the database is deter-
mined by the values of the objects in the database. A change in the value of a
database object changes the state. A database state is said to be consistent if
the values of the objects satisfy the given integrity constraints.

A transaction is an operation that transforms the database from one con-
sistent state to another. To prevent the database from becoming inconsistent,
transactions are the only means by which data objects are accessed and mod-
ified. A transaction can be initiated by a user, a group, or another process. A
transaction inherits the access privileges of the entity initiating it. A transac-
tion can execute an operation on a database object only if it has the privilege
to perform it. Such privileges are specified by access control policies.

In this paper, we consider only one kind of access control policies: autho-
rization policies. Henceforth, we use the term policy or access control policy to
mean authorization policy. An authorization policy specifies what operations
an entity can perform on another entity. We focus our attention to systems
that support positive authorization policies only. This means that the policies
only specify what operations an entity is allowed to perform on another entity.
There is no explicit policy that specifies what operations an entity is not al-
lowed to perform on another entity. The absence of an explicit authorization
policy authorizing an entity A to perform some operation O on another entity
B is interpreted as A not being allowed to perform operation O on entity B. We
also assume that there is at most one policy specified over any given subject
and object pair.

We consider simple kinds of authorization policies that are specified by sub-

Jject, object, and rights. A subject can be a user, a group of users or a process
[12]. An object, in our model, is a data object, a group of data objects, or an
object class. A subject can perform only those operations on the object that are
specified in the rights. A policy is a function that maps a subject and a object
to a set of access rights. We formally denote this as follows: P: S x O — P(R)
where P represents the policy function, S, represents the set of subjects, O rep-
resents the set of objects, P(R) represents the power set of access rights. In
a database, policies are stored in the form of policy objects. A policy object
P; consists of the triple < &, Oy, R; > where 8;, Oy, R; denote the subject, the
object, and the access rights of the policy respectively. Subject § can perform
only those operations on the object G; that are specified in R;. For example the
policy object P =< John,FileF, {r,w,x} > gives subject John the privilege to
Read, Write, and Execute FileF.



68 DATA AND APPLICATIONS SECURITY XVIII

Before proceeding further, we discuss how to represent the access rights.
The motivation for this representation will be clear in Section 4. Let OF, =
{01,02, ... 0p} be the set of all the possible operations that are specified on
Object O;. The set of operations in OP; are ordered in the form of a sequence
< 01, 02, ..., 05 >. We represent any access right on the object G as an n-
element vector [ijiy...iy). Ifix =0 in some access right R;, then R; does not
allow the operation o to be performed on the object O;. i, =1 signifies that
the access right R; allows operation o to be performed on the object O;. The
total number of access rights that can be associated with object G equals 2".
For example, let < r,w,x > be the operations allowed on a file F. The access
right R, = [001] signifies that r, w operations are not allowed on the file F but
the operation x is permitted on File F. The access right R = [101] allows r and
x operations on the file F but does not allow the w operation.

The set of all access rights associated with a object G having n operations
forms a partial order with the ordering relation 2p,. The ordering relation is
defined as follows: Let Rj[ix] denote the i-th element of access right R;. Then
Ry 20, Ry, ifRplix] = Rylix] or Ry[i] > Rglix), for all k = 1...n. Given two
access rights R, and R, associated with an object O; having n operations, the
least upper bound of R, and Ry, denoted as lub(Ry,, R;) is computed as follows.
Fork = 1 ...n, we compute the i-th element of the least upper bound of R, and
Ryt lub(Ry, Ry)ix] = Rplix] V Rylix]. The n-bit vector obtained from the above
computation will give us the least upper bound of R, and Ry. Given two access
rights R, and Ry associated with an object O; having n operations, the greatest
lower bound of R, and Ry, denoted as glb(Ry,R,) is computed as follows. For
k = 1...n, we compute the i-th element of the greatest lower bound of R,
and Ry glb(Ry,Ry)lix] = Rplix) A Rglix]. The n-bit vector obtained from the
above computation will give the greatest lower bound of B, and R,. Since
each pair of access rights associated with an object have a unique least upper
bound and a unique greatest lower bound, the access rights of an object can be
represented as a lattice. The set of all possible access rights on a object O; can
be represented as a lattice which we term the access rights lattice of object Q.
The notation ARL(O;) denotes the set of all nodes in the access rights lattice of
object O;. All possible access control privileges pertaining to a object can be
represented as the nodes on the access rights lattice of the object. Each node
in the lattice represents a specific access control privilege. The lower bound
on this lattice (labeled as Node 0) denotes the absence of any access rights on
this object. The upper bound denotes the presence of all the rights; any subject
having these rights can perform all the operations on the object. The other
points in the lattice denote the intermediate states.

Figure 1(a) shows the possible access rights associated with a file having
only two operations: Read and Write. The most significant bit denotes the
Read operation and the least significant bit denotes the Write operation. The



Ray & Xin 69

[111]
[11]
[01K [110]
[0 [10] }
[00K [100]
194) [000]

(@) ()

Figure 1.  Representing Possible Access Control Rights of Objects

lower bound labeled as Node 00 signifies the absence of Read and Write priv-
ilege. The Node 01 signifies that the subject has Write privilege but does not
have Read privileges. The Node 10 signifies that the subject has Read privilege
but no Write privilege. The Node 11 indicates that the subject has both Read
and Write privileges. Figure 1(b) shows the possible access rights associated
with a object having three operations.

With this background, we are now ready to define a policy and policy up-
dates in terms of the access rights lattice. A policy P; maps a subject S;’s access
privilege to some Node in the access rights lattice of the object Q. This is
formally stated asfollows: P: S — (ARL(O)). A policy update is an operation
that changes some policy object P, =< 8§;, 04, R; > to P, =< S;,0;, R} > where
P; is obtained by transforming R; to Rﬁ. Let R;, R;’ be mapped to Node j, Node
k of ARL(O;) respectively. The update of policy object P; changes the mapping
of the subject S;’s access privilege from Node j to Node & in the access rights
lattice of object O;.

A policy relaxation operation is a policy update that increases the access
rights of the subject. Let the policy object P =< §;,0;,R; > be changed
to P; =< 8;,0:,R; >. Let Let Ry, R; be mapped to the nodes k, j respec-
tively in ARL(QO;). A policy update operation is a policy relaxation oper-
ation if lub(k, j) = j. For instance, let the operations allowed on FileF be
< r,wx >, Suppose the policy P; =< John,FileF, [001] > is changed to
P =< John,FileF, [101] >. This is an example of policy relaxation because the



70 DATA AND APPLICATIONS SECURITY XVIII

access rights of subject John has increased. Note that lub([001], [101]) = [101].
Thus, this is a policy relaxation.

A policy restriction operation is a policy update operation that is not a pol-
icy relaxation operation. Let the policy object B =< §;,0;,R; > be changed
to P} =< §;,0;,R; >. Let Let R;, R} be mapped to the nodes k, j respec-
tively in ARL(O;). A policy update operation is a policy restriction oper-
ation if lub(k,j) # j. For instance, let the operations allowed on FileF be
< r,w,x >. Suppose the policy P; =< John, FileF, [001] > is changed to P, =<
John,FileF, [110] >. This is an example of policy restriction because the access
rights of subject John has not increased. Note that, lub([001],[110]) = [111].
Since lub([001],[110]) # [110], this is an example of policy restriction. In other
words, moving up the lattice along the edges indicate that policy is being re-
laxed. Moving down the lattice along the edges indicates that policy is being
restricted. Moving from one node to another not connected by edges is also
considered to be a policy restriction operation.

Having discussed about policy updates, we now focus on creation of new
policies and deletion of existing policy. A policy creation operation is one in
which a new policy P; =< §;,0;,R; > is created. Note that creation of a new
policy P; =< 8;, 0y, R; > can be considered to be a policy relaxation operation.
Recall that we assume that our system has positive authorization policies only
and at most one policy can be specified over a given subject and object pair.
Hence, before P; was created S; could not perform any operation on G;. This
can be represented as a dummy policy Py that maps §; to the minimal element
in the access rights lattice of O; (indicated by Node 0). The introduction of a
new policy P; over this subject and object can be viewed as an update of the
policy Py to the new policy P;. Let the access rights specified by policy P
correspond to Node 7 in ARL(0}). In this case, lub(0,n) = n. Hence, creation
of a new policy can be treated as a policy relaxation.

A policy deletion operation is one in which an existing policy B =<
8i, O0i,R; > is deleted. Note that deletion of an existing policy F; specified
over the subject S; and object O; can be thought of as modifying the existing
policy P; to the dummy policy Pz which maps §; to the minimal element (Node
0) in the access rights lattice of object G. In this case, lub(e,0) # 0; hence,
deletion of an existing policy is a policy restriction.

3. TRANSACTION PROCESSING MODEL FOR
POLICY UPDATES

Having given some background on policy updates, we now discuss our
transaction processing model that is based on the standard transaction process-
ing model [3]. Our database consists of data objects and policy objects. The
operations allowed on the data objects are read and write. Policy objects, like



Ray & Xin 71

data objects, can be read and written. However, unlike ordinary data objects,
policy objects can also be deployed. A policy object F; is said to be deployed if
there exists a subject that is currently accessing a object by virtue of the privi-
leges given by policy object P;. Suppose the policy object P; allows subject S;
to read object Ok. Subject §; initiates a transaction T that reads Ok. While the
transaction 77 reads Ok, we say that the policy object P; is deployed.

The operations specified on data objects are Read and Write. A policy object
is associated with four operations: Read, Deploy, WriteRelax, WriteRestrict.
The Write operations on policy object are classified as WriteRelax or WriteR-
estrict. A WriteRelax operation is one in which the policy gets relaxed. All
other write operations on the policy object are treated as WriteRestrict. Two
operations are said to conflict if both operate on the same object and one of
them is a Write operation. The Write operation conflicts with a Read or a
Deploy operation on the same object.

We define transaction in the following manner. A transactionl; is a partial
order with ordering relation<; where (1) 7; C {ri[x],wi[x] | x is a data object
} U {di[x], ri[x], wsi[x], wx;[x] | x is a policy object } U {a,ci}; (2) @ € Ty iff
ci € Tj; (3) if tis ¢; or @, for any other operation p € Tj, py <; t; (4) if ri[x], wi[x]
€ T, then either r[x] <; wi[x] or wi[x] <; #[x]; (5) ifdi[x], ws;[x] € T}, then either
di[x] <; wsi[x] or ws;[x] <; di[x]; and (6) if d;[x], wx;[x] € T},then either dj[x] <;
wx;[x] or wx;[x] <; di[x]. Condition 1 states that the operations allowed on data
objects are Read and Write and the operations allowed on policy objects are
Read, Deploy, WriteRelax (denoted by wx), and WriteRestrict (denoted by ws).
Condition 2 states that this set contains an Abort or a Commit operation but
not both. Condition 3 states that Abort or Commit operation must follow every
other operation of the transaction. Condition 4 requires that the partial order
<; specify the order of execution of Read and Write operations on a common
data or policy object. Condition 5 specifies that if there is a Deploy operation
on a policy object and a WriteRestrict operation on the same object, then the
ordering relation <; must specify the order of the operations. Condition 6
specifies a similar condition for Deploy and WriteRelax operation.

The algorithm that we propose is an extension of the two phase locking
protocol [3]. Each data object O; in our model is associated with two locks:
read lock (denoted by RL(O;)) and write lock (denoted by WL(Q;)). A policy
object P is associated with four locks: read lock (denoted by RL(P)), write
relax lock (denoted by WXL(P))), write restrict lock (denoted by WSL(P;)) and
deploy lock (denoted by DL(F;)). The locking rules for data and policy objects
are the similar to those in the standard two-phase locking protocol [3]: the same
object cannot be locked by different transactions in conflicting modes.

Next we define what it means for a transaction in our model to be well-
formed. A transaction is well-formed if it satisfies the following conditions: (i)
A transaction before reading or writing a data object must deploy the policy ob-



72 DATA AND APPLICATIONS SECURITY XVIII

ject that authorizes the transaction to perform the operation, (ii) A transaction
before reading, write relaxing or write restricting a policy object must deploy
the policy object that authorizes the transaction to perform the operation. (iii)
A transaction before reading or writing a data object must acquire the appropri-
ate lock. (iv) A transaction before deploying, reading, write relaxing, or write
restricting a policy object must acquire the appropriate lock. (v) A transac-
tion cannot acquire a lock on a policy or data object if another transaction has
locked the object in a conflicting mode. (vi) All locks acquired by the trans-
action are eventually released. A well-formed transaction % is two-phase if all
its lock operations precede any of its unlock operations. Consider a transaction
T; that reads object O; (denoted by #;(0;)) and then writes object O (denoted
by w;(Oy)). Policies P,, and P, authorize the subject initiating transaction
T;, the privilege to read object O; and the privilege to write object O respec-
tively. An example of a well-formed and two-phase execution of Z; consists
of the following sequence of operations: < DL(Py), RLi(O;), di(Pm), ri(0;),
DL;(Py), WLi(O4), di(Pn), wi(Ox), ULi(Pm), ULi(Py), UL{(O;), UL{(Oy) >,
where DL;, RL;, WL;, d;, ri, wi, UL; denote the operations of acquiring de-
ploy lock, acquiring read lock, acquiring write lock, deploy, read, write, lock
release, respectively, performed by transaction 7;.

A transaction is policy compliant if for every operation that a transaction
performs, there exists a policy that authorizes the transaction to perform the
operation for the entire duration of the operation. Note that, all transactions
may not be policy compliant. For instance, suppose entity A can execute a
long-duration transaction I; by virtue of policy P,. While A is executing T;,
P, changes and no longer allows A to execute 7;. In such a case, if transaction
T; is allowed to continue after Py has changed, then T; will not be a policy
compliant transaction. Next we define what we mean by a policy compliant
history. A history is policy compliant if all the transactions in the history are
policy compliant transactions. A history H in which all the transactions in the
committed projection are well-formed and two-phase is conflict-serializable
and policy-compliant.

4. CONCURRENCY CONTROL USING SEMANTICS
OF POLICY UPDATE

In this section we show how we can use semantics of the policy update op-
eration to increase concurrency. The basic idea is to classify a policy update
operation either as apolicy relaxation or as apolicy restriction operation. Pol-
icy relaxation causes increase in subject’s access rights; transactions executing
by virtue of a policy need not be aborted when the policy is being relaxed. On
the other hand, a policy restriction does not increase the access rights of the



Ray & Xin 73

subject. To ensure policy-compliant transactions, we must abort the transac-
tions that are executing by virtue of the policy that is being restricted.

The mechanism that we propose is an extension of the two-phase locking
protocol. Each data object O; is associated with two locks: read lock (denoted
by RL(0;)) and write lock (denoted by WL(O;)). The locking rules for data
objects are the same as in the two-phase locking protocol [3]. Corresponding to
the four operations on the policy object, we have four kinds of locks associated
with policy objects: read locks (RL), deploy locks (DL), relax locks (WXL)
and restrict locks (WSL). The entry in the third column of the fourth row is
Signal. This is the case of some transaction I; holding a deploy lock DL on a
policy object, and another transaction 7; wanting to perform an update causing
policy restriction. In this scenario, a signal is generated to abort 7, after which
T, releases the DL lock and 7} is granted the WSL lock.

Table 1. Locking Rules for Policy Objects

Wants
Has RL | WXL | WSL DL

RL Yes | No No Yes
WXL | No | No No No
WSL | No | No No No
DL Yes | Yes Signal | Yes

Since the histories generated by the locking rules given in Table 1 may not
be conflict serializable, we define another correctness criterion, namely, seri-
alizability, and show that our histories do satisfy this new criterion. But first,
we need the notion of equivalence. Two histories H and H are equivalent if
they satisfy the following conditions: (i) they are defined over the same set of
transactions, (ii) the execution of H on some initial state S results in the same
final state S’ as the execution of H' on the same initial state S. A history H is se-
rializable if it’s committed projection is equivalent to a serial history. Histories
generated by the locking rules of Table 1 are serializable and policy-compliant.

S. IMPLEMENTING THE POLICY UPDATE
ALGORITHM
In this section, we will discuss how to implement the algorithms proposed
in previous section for real-time access control policy update.
51 Data Structures for Implementing Policy Updates

A diagram showing the data structures used in implementing the policy up-
date algorithm is shown in Figure 2.



74 DATA AND APPLICATIONS SECURITY XVIII

Lock Status R

/’,,-' Lock List — Tl R T2 R

‘Wait List -

[rel ws | |
P2 -
\ Lock Status wSs
] Lock List — .
P4 Wait List ~—
T4 R T2 wX

Lock Status RD

En == Lock List ——-I?:I D l—l—-{‘n! R I J

Wait List

Policies Lock Table

Pl —

Figure 2. Storing Lock Information for Policy Objects

Policy Object Table This is a hash table containing entries corresponding
to each locked policy object and a pointer to the address where the lock infor-
mation of this policy object is stored. In other words, each entry in this hash
table consists of two fields: the first one stores the policy object id and the
second one points to the Lock Information Table of the corresponding policy
object. The size of this hash table corresponds to the number of policy objects
that are locked.

Lock Information Table This table contains all the lock information per-
taining to a policy object. It contains an entry for lock status, a pointer to lock
list, and a pointer to a wait list. The lock status specifies what modes of locks
are currently held on the policy object. The lock list specifies the list of trans-
actions that are currently holding locks on the policy object, and the modes
of lock they have on the policy object. The lock list can be implemented as a
linked list or hash table. Note that, the lock list also contains the lock status in-
formation. The lock status information is used frequently. Traversing the lock
list and summarizing the lock status information is time-consuming; hence, we
keep this information in a separate field. The wait list specifies the list of trans-
actions that are waiting to lock the policy object and the type of lock they want
on the policy object. The wait list can be implemented as a priority queue.

In our algorithm, a policy object is associated with four kinds of locks,
namely, read, deploy, relax and restrict, that correspond to Read, Deploy,
WriteRelax and WriteRestrict operation performed on policy objects. Some
of these locks may be held concurrently and others must be held exclusively.
The lock status field in the lock information table summarizes what kind of
locks are currently held on a policy object. The lock status field can take on
any of the following values: D: all the locks held on that policy object are de-



Ray & Xin 75

ploy locks; R: all the locks held on that policy object are read locks; RD: all
the locks held on that policy object are read and deploy locks; WX: the lock
held on that policy object is a relax lock; WS: the lock held on that policy ob-
ject is a restrict lock; and, DWX: the locks held on that policy object are relax
and deploy locks.

When multiple transactions are waiting to lock a policy object, these trans-
actions are inserted into a wait list. Note that, different transactions have dif-
ferent kinds of priority in our system. For critical applications such as the
military, policy updates may have a higher priority than transactions deploying
the policy. For this reason, when transactions are inserted into a waiting list we
arrange them in the order of their priorities. The next transaction that is given
the lock from this wait list is the one with the highest priority. In short, we
implement this wait list using a priority queue.

5.2 Algorithms for Implementing Policy Updates

Algorithm 1 Request a lock on policy object

Input: (i) t: the transaction requesting a lock, (ii) tp: the priority of the trans-
action requesting the lock, (iii) p: the policy object for which lock is requested,
(iv) Im: the lock mode that requested by the transaction, and (v) ht: hash table
storing information about policy object.

Output: TRUE/FALSE: indicates whether the request was granted or denied.

Procedure RequestPolicyLock(t, tp, p, Im, ht)

begin
if there is no entry for p in ht
It = create(p, t, Im), /* create a lock table for p */
insert(ht, p, &lt); /* add entry for p in hash table */

return TRUE;
It = getLockTable(ht, p),
if (It.lockStatus == ‘R’ or It.lockStatus == ‘RD’)
if Im == 'D’) and (It.lockStatus # Im)
it.lockStatus = ‘RD’;
if Im == R’orim=="D’)
insert(lt.LockList, t); /*insert t in the LockList */
return TRUE;
if Im == ‘WX or Im == 'WS’)
insert(lt. WaitList, t, tp); /* insert t in the WaitList */
return FALSE;
else (It.lockStatus == ‘D’ ) /* p has deploy locks */
if Im == R’)
It.lockStatus == ‘RD’
if Im == ‘WX’)



76 DATA AND APPLICATIONS SECURITY XVIII

It.lockStatus == ‘DWX’
if (Im == ‘W§’)

for each transaction T; in It.LockList

abort T;; /* release all deploy locks */

delete(lt.lockList),

It.lockStatus = ‘WS’;
insert(lt.LockList, t); /™ insert t in LockList */
return TRUE;

else /* policy p has a restrict or relax lock */
insert(lt. Waitlist, t, tp); /* insert t in WaitList */
return FALSE;

end

Algorithm 2 Release a lock on policy object

Input: (i) t - the transaction that want to release a lock and (ii) p - the policy
object for which lock is being released.

Output: TRUE/FALSE - indicates whether the release was successful or not.

Procedure ReleasePolicyLock(t, p)

begin
if (p is not in ht) /* indicates p is not locked */
return FALSE,
it = getLockTable(ht, p);
remove(lt.LockList, t); /* remove t from LockList */

if (It.LockList == NULL) /* if no other transactions have a lock on p*/
if (It.WaitList == NULL) /* if no transactions are waiting to lock p*/
remove(ht, p);
else
request lock for next transaction in wait list
else /* lock list is not empty */
/* update lock status for the policy object */
read = false, deploy = false; relax = false
for each transaction T; in It.LockList do
if T;.mode == ‘R’
read = true;
else if 7;.mode == ‘D’
deploy = true;
else if T;.mode == ‘WX’
relax = true;
if (read == true) and (deploy == false) and (relax == false)
It.LockStatus = ‘R’;



Ray & Xin 77

else if (read == true) and (deploy == true) and (relax == false)
It.LockStatus = ‘RD’;

else if (read == false) and (deploy == true) and (relax == false)
It.LockStatus = ‘D’;

else if (read == false) and (deploy == true) and (relax == true)
It.LockStatus = ‘DWX’;

else if (read == false) and (deploy == false) and (relax == true)
It.LockStatus = ‘WX';

return 7RUE;
end

6. RELATED WORK

Although a lot of work appears in the area of security policies (please refer
to Damianou’s thesis [6] for a survey), policy updates have received relatively
little attention. Some work has been done in identifying interesting adaptive
policies and formalization of these policies [7, 16]. A separate work [15] il-
lustrates the feasibility of implementing adaptive security policies. The above
works pertain to multilevel security policies encountered in military environ-
ments; the focus is in protecting confidentiality of data and preventing covert
channels. We consider a more general problem and our results will be useful
to both the commercial and military sector.

In an earlier work, Ray and Xin [14] have proposed algorithms for real-
time update of access control policies. The current work enhances one of these
algorithms by providing the implementation details and also discusses how to
handle addition and deletion of policies. In a separate work Ray [13] shows
how the semantics of transactions can provide more concurrency for real-time
update of access control policies.

Automated management of security policies for large scale enterprise has
been proposed by Damianou [5]. This work uses the PONDER specification
language to specify policies. The simplest kinds of access control policies in
PONDER are specified using a subject-domain, object-domain and access-list.
The subject-domain specifies the set of subjects that can perform the oper-
ations specified in the access-list on the objects in the object-domain. This
work describes the implementation of a basic toolkit. The toolkit has a high-
level language editor for specifying policies, a compiler for translating poli-
cies into enforcement components objected to different platforms, a browser
to view and manipulate the domains of subjects and objects to which policies
apply. Thus, new subjects can be added to the subject-domain or subjects can
be removed from the subject-domain. The object-domain can also be changed
in a similar manner. But this work does not allow the policy specification itself



78 DATA AND APPLICATIONS SECURITY XVIII

to change. An example will help illustrate this point. Suppose we have a policy
in PONDER that is implementing Role-Based Access Control: subject-domain
= Manager, object-domain = /usr/local, access-list = read, write. This policy
allows all Managers to read/write all the files stored in the directory /us+/local.
Now the toolkit will allow adding/removing users from the domain Manager,
adding/deleting files in the domain /usr/local. However, it will not allow the
policy specification to be changed. For example, the subject-domain cannot
be changed to Supervisors. Our work, focuses on the problem of updating the
policy specification itself and complements the above mentioned work.

Concurrency control in database systems is a well researched topic. Some
of the important pioneering works have been described by Bernstein et al. [3].
Thomasian [18] provides a more recent survey of concurrency control methods
and their performance. The use of semantics for increasing concurrency has
also been proposed by various researchers [1, 2, 8-11, 17].

7. CONCLUSION AND FUTURE WORK

Real-time updates of policy is an important problem for both the commercial
and the military sector. In this paper we focus on real-time update of access
control policies in a database system. A database consists of data objects that
are accessed and modified through transactions. We consider an environment
in which transactions execute concurrently some of which are policy update
transactions. In an earlier work we proposed an algorithm that allows real-
time update of policies. In this work we extend our approach to handle addition
and deletion of policies and describe properties of histories generated by our
algorithm. We also give the implementation details of our algorithm.

In this work we assume there exists exactly one policy by virtue of which
any subject has access privilege to some object. In a real-world scenario mul-
tiple policies may be specified over the same subject and object. The net effect
of these multiple policies depend on the semantics of the application. Chang-
ing the policies in such situations is non-trivial. Moreover, precedence rela-
tionships may be specified over the different policies. Update of policies may
change these precedence relationship. In future, we plan to propose algorithms
that address these issues.

In future we plan to extend our approach to handle more complex kinds
of authorization policies, such as, support for negative authorization policies,
incorporating conditions in authorization policies, support for specifying pri-
orities in policies. Specifically, we plan to investigate how policies specified in
the PONDER specification language [4] can be updated.



Ray & Xin 79

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Ammann, S. Jajodia, and I. Ray. Applying Formal Methods to Semantic-Based De-
composition of Transactions. ACM Transactions on Database Systems, 22(2):215-254,
June 1997.

B.R. Badrinath and K. Ramamritham. Semantics-based concurrency control: Beyond
commutativity. ACM Transactions on Database Systems, 17(1):163—-199, March 1992.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In Proceedings of the Policy Workshop, Bristol, U.K., January 2001.

N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M. Sloman. Tools for Domain-based
Policy Management of Distributed Systems. In Proceedings of the IEEE/IFIP Network
Operations and Management Symposium, Florence, Italy, April 2002.

N. C. Damianou. A Policy Framework for Management of Distributed Systems. PhD
thesis, Imperial College of Science, Technology and Medicine, University of London,
London, U.K., 2002.

J. Thomas Haigh et al. Assured Service Concepts and Models: Security in Distributed
Systems. Technical Report RL-TR-92-9, Rome Laboratory, Air Force Material Com-
mand, Rome, NY, January 1992.

H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed
database. ACM Transactions on Database Systems, 8(2): 186-213, June 1983.

M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data types.
Journal of Computer and System Sciences, 43(1):25-61, August 1991.

H. F. Korth and G. Speegle. Formal aspects of concurrency control in long-ouration
transaction systems using the NT/PV model. ACM Transactions on Database Systems,
19(3):492-535, September 1994.

Nancy A. Lynch. Multilevel atomicity—A new correctness criterion for database concur-
rency control. ACM Transactions on Database Systems, 8(4):484-502, December 1983.
J. Park and R. Sandhu. Towards Usage Control Models: Beyond Traditional Access
Controls. In Proceedings of the 7th ACM Symposium on Access Control Models and
Technologies, pages 57-64, Monterey, California, June 2002.

I. Ray. Real-Time Update of Access Control Policies. Information and Software Tech-
nology, 2004. To appear.

I. Ray and T. Xin. Concurrent and Real-Time Update of Access Control Policies. In Pro-
ceedings of the 14th International Conference on Database and Expert Systems, volume
2736 of Lecture Notes in Computer Science, pages 330-339, Prague, Czech Republic,
September 2003. Springer-Verlag.

E. A. Schneider, W. Kalsow, L. TeWinkel, and M. Carney. Experimentation with Adap-
tive Security Policies. Technical Report RL-TR-96-82, Rome Laboratory, Air Force Ma-
terial Command, Rome, NY, June 1996.

E. A. Schneider, D. G. Weber, and T. de Groot. Temporal Properties of Distributed
Systems. Technical Report RADC-TR-89-376, Rome Air Development Center, Rome,
NY, September 1989.

L. Sha, J. P. Lehoczky, and E.D. Jensen. Modular concurrency control and failure recov-
ery. IEEE Transactions on Computers, 37(2): 146-159, February 1988.



80 DATA AND APPLICATIONS SECURITY XVIII

[18] A. Thomasian. Concurrency Control: Methods, Performance and Analysis. ACM Com-
puting Surveys, 30(1):70-119, 1998.



