
PERFORMANCE-CONSCIOUS KEY
MANAGEMENT IN ENCRYPTED DATABASES

Hakan Hacigümüs and Sharad Mehrotra

In this paper, we investigate the key management issues in encrypted database
environments. We study the issues in the context database-as-a-service (DAS)
model that allows organizations to outsource their data management infrastruc-
tures to a database service provider. In the DAS model, a service provider em-
ploys data encryption techniques to ensure the privacy of hosted data. The se-
curity of encryption techniques relies on the confidentiality of the encryption
keys. The dynamic nature of the encrypted database in the DAS model adds
complexity and rises specific requirements on the key management techniques.
Key updates are particularly critical because of their potential impact on overall
system performance and resources usage. In this paper, we propose specialized
techniques and data structures to efficiently implement the key updates along
with the other key management functions to improve the systems’ concurrency
performance in the DAS model.

The commodity pricing of processors, storage, network bandwidth, and ba-
sic software is continuously reducing the relative contribution of these ele-
ments to the total lifecycle cost of computing solutions. Operating and in-
tegration costs are increasing, in comparison. The research community has
responded by working on approaches to automated system administration as
in [2]. Increasingly, large companies are consolidating data operations into
extremely efficiently administered data centers, sometimes even outsourcing
them [4].

The Database-as-a-Service (DAS) model [8] is one manifestation of this
trend. In the DAS model, the client’s database is stored at the service provider.
The provider is responsible for provisioning adequate CPU, storage, and net-
working resources required to run database operations, in addition to the sys-
tem administration tasks such as backup, recovery, reorganization etc.

A fundamental challenge posed by the DAS model is that of database pri-
vacy and security [8]. In the DAS model, the user data resides on the premises
of the database service provider. Most companies and individuals view their

Abstract

1. INTRODUCTION

data as an asset. The theft of intellectual property already costs organizations
great amount of money every year [3]. The increasing importance of security
in databases is discussed in [6, 12, 11–1, 8, 7, 5, 9, 10]. Therefore, first, the
owner of the data needs to be assured that the data is protected against mali-
cious attacks from the outside of the service provider. In addition to this, recent
studies indicate that 40% of those attacks are perpetrated by the insiders [3].
Hence, the second and more challenging problem is the privacy of the data
when even the service provider itself is not trusted by the owner of the data.
Data encryption is proposed as a solution to ensure the privacy of the users’
data. The first problem is examined in [8] and the second one is studied in [7],
which explores how SQL queries can be executed over encrypted data.

The security of any encryption technique relies on the confidentiality of the
encryption keys. Hence, key management plays an essential role in a sys-
tem, which employs encryption techniques. In this paper, we mainly focus on
the key management issues in the context of the database-as-a-service model,
where the clients’ databases are stored at the service provider site in the en-
crypted form. We argue that the key management in the hosted databases
requires special consideration especially due to the dynamic nature of the
database systems.

The update transactions are an essential part of the database systems and
applications. Each update transaction requires at least one invocation of the
encryption function to encrypt the data in the system.1 It is known that en-
cryption is a CPU intensive process [8]. Therefore the update transactions may
hold locks on the certain set of database records for an extended period of
time causing a decline in the system performance. Besides the database update
transactions, re-keying is another process, which requires the invocation of the
encryption function in the system. As we discuss in Section 3 re-keying is rec-
ommended and sometimes required for the systems that employ encryption.
Re-keying large amounts of data entails significant encryption costs and inter-
feres with the other transactions thereby causing a performance degradation in
the system. In this study, we address these issues by proposing a specialized
key management architecture in Section 3. We also introduce a system archi-
tecture taxonomy in Section 2.3, which is coupled with the key management
architecture to enable the performance-conscious encryption key management
in dynamic database environments.

1The actual number of invocations depends on various factors such as the data unit subject to the encryp-
tion, i.e., the granularity of the encryption, specifics of the transaction, e.g., an insert only transaction, a
transaction on a number of data objects, etc.

96 DATA AND APPLICATIONS SECURITY XVIII

Hacigümüs & Mehrotra 97

Figure 1. Database-as-a-Service architecture

The system we use in this study is based on the architecture proposed and
described in [7]. The basic architecture and the control flow of the system are
shown in Figure 1. It is comprised of three fundamental entities. A user poses
the query to the client. A server is hosted by the service provider that stores
the encrypted database. The encrypted database is augmented with additional
information (which we call the index) that allows the certain amount of query
processing to occur at the server without jeopardizing the data privacy. A client
stores the data at the server. Client2 also maintains the metadata for translating
the user queries to the appropriate representation on the server, and performs
post-processing on server query results. From the privacy perspective, the most
important feature is, the client’s data is always stored in the encrypted form at
the server site. The server never sees the unencrypted form of the data, and
executes the queries directly over the encrypted data without decrypting it.

2Often the client and the user might be the same entity.

2. SYSTEM ARCHITECTURES

2.1 Overall DAS Architecture

98 DATA AND APPLICATIONS SECURITY XVIII

We briefly summarize how the client’s data stored at the server in an en-
crypted fashion in the DAS model.3

For each relation we store, on the server, an encrypted
relation: where
Here, an etuple stores an encrypted string that corresponds to a tuple in a
relation R. Each attribute stores the partition index for the corresponding
attribute that will be used for query processing at the server.

For example, consider the relation emp given in Table 1 that stores infor-
mation about employees. The emp table is mapped to a corresponding table,
shown in Table 2, at the server:

The RID represents record identifier, which is a unique number created by
the client for each tuple. Here, the RIDs are not the same as unique identi-
fiers, which are used as references to the records and assigned by the database
manager, as it is done in most of the commercial database products. Instead,
these RIDs also uniquely identify the records, however, they are created and
assigned by the client to facilitate the schemes we present in the study. The
KID represents the key identifier, which is also created and assigned by the
client. The KID indicates which key is used to encrypt the etuple of the cor-
responding tuple. We elaborate the use of KIDs in Section 3.3. The column
etuple contains the string corresponding to the encrypted tuples in emp. For
instance, the first tuple is encrypted to “=*?Ew@R*((¡¡=+,-... ” that is equal to

where is a deterministic encryption algo-
rithm with key Any deterministic encryption technique such as AES, DES
etc., can be used to encrypt the tuples. The column corresponds to the
index on the employee ids.4

3We will not repeat all of the details of the storage model here, since it is thoroughly discussed in [7].
Rather, we only provide the necessary notations to explain the constructs we develop in this work.
4The details of creation of those index values can be found in [7].

2.2 Storing Encrypted Data in the Database

Hacigümüs & Mehrotra 99

Figure 2. Architectural model alternatives for database service

In this section, we propose different instantiations for the overall system
architecture presented above. Our classification of the system architecture al-
ternatives is client-oriented. In other words, we identify the architecture model
based on how the clients interact with the service provider. We classify the
system architecture models under three categories; standalone clients, group of
clients, and client networks. Each model has implications on the characteristics
of the system including the control flow, index management, key management,
and query processing. We first present the details of each architecture below.

Standalone clients: In the standalone clients model, shown in Figure 2(a),
each client is a single node connecting to the service provider individually. The
client does not directly share the data with the other clients. Possible example
for the clients of this architecture is personal users accessing to the services,
such as e-mail, rent-a-spreadsheet etc., via a web browser or a lightweight
application interfaces.

Client networks: In this architecture, shown in Figure 2(b), the client of the
service is a network rather than the individual nodes. A characteristic example
for this architecture is larger corporations, which maintain their own network
infrastructure as corporate networks and outsource some or all of their IT op-
erations. In this model, the nodes inside the network utilize a connection point
(or multiple points) to communicate with the service provider. We call this dis-
tinguished node as coordinator node. The coordinator node is responsible for
set of operational tasks, such as maintaining metadata information required to

2.3 Classification of the System Architectures

100 DATA AND APPLICATIONS SECURITY XVIII

execute queries directly over encrypted data (as described in Section 2.1), ex-
ecuting transactional semantics in the multi-tier client/server architecture, and
the key management tasks as we describe in Section 3.

Group of clients: In this case, as shown in Figure 2(c), multiple clients
access to the same service individually. Those clients are somehow related to
each other. The relationship can be organizational, i.e., the group of clients be-
longing to an organization, or data sharing or both. A typical example for this
model is small companies, which have multiple but limited number of users.
They do not want to (or need to) maintain an integrated network infrastructure
containing the coordinator nodes as in client networks case. Nonetheless, they
need to enable collaboration among the user nodes in the organization as the
users (or employees) of them would be sharing the data in terms of querying
and updating and are related by business means. Therefore the user nodes are
connected to each other to share local information, such as the metadata. In-
herently this information is managed in a distributed fashion. We will not fur-
ther discuss the distributed data management techniques in this context since
it would cause us to diverge from the main content of the paper.

Key management is a group of policies and procedures that regulate the
maintenance of encryption keys within the system. Key management tech-
niques have been extensively studied in the applied cryptography literature
[13]. In this study, we will discuss the most relevant aspects of the key man-
agement techniques to database-as-a-service model by considering their impli-
cations on the system implementation issues. We consider the following com-
ponents of the key management architecture: key generation, key installation,
key distribution, and key update.

We will discuss each of these functionalities in the context of the DAS model
and indicate where the each of the tasks are identified in the respective sections.
However, before that we will discuss another important notion, key assignment
granularity, which affects the discussion of the techniques and the constructs.

3. KEY MANAGEMENT

3.1 Key Assignment Granularity

A key can be used to encrypt different database objects in the database, such
as a table, or a row. We call this as the assignment granularity of the key. The
selection of granularity would have its own pros and cons, depending on the
system setup, limitations on computing and storage of the client etc., and the
security requirements. We classify the key assignment granularity into three
categories; database-level, table-level, and vertical-partitions-level.

Hacigümüs & Mehrotra 101

Database-level granularity indicates that only one key is used for the
whole database. Any data unit, which is processed in the database, is encrypted
with the same key, which is created for the whole database.

Table-level granularity indicates that there is one key that is used for a
given group of tables. Note that, in a table group, there might be only one
table. If the group consists of multiple tables, then each table will have an
individual entry in the key registry (discussed in Section 3.3) differing only in
the key correspondence values. For example, key can be created for table
emp and key can be used for the tables mgr and proj.

In vertical-partitions-level case, a group of database rows are encrypted
with the same key. In the most extreme case, a different key is used for each
row. Alternatively, the rows can be grouped. A typical example would be
using the domain value intervals that are used to create the partition ids in
the encrypted version of the table (if the equi-width histograms are used for
partitioning). All rows in a value interval can be encrypted with the same key.
For example, the key can be used to encrypt the rows of emp table, whose
mgr.salary values fall in [30K, 50K) and the key can be used for the rows,
whose mgr.salary values fall in [50K, 70K).

Note that, the key assignment granularity is different from the granularity
of data that is subject to the encryption. For example, we may choose table
level-key assignment granularity for the emp table. Thus, one key is used
to encrypt any data, which would be inserted into the table. However, since
we use row-level encryption as data granularity in the model, each tuple is
encrypted individually with the key assigned for emp table to create etuples.

3.2 Key Generation

Key generation involves the creation of the encryption keys that meet the
specifications of the underlying encryption techniques. These specifications
define the properties, such as size, randomness, that the keys should have. The
medium in which keys are created is a particular interest for the DAS model
since the decision has both security and performance implications. We pro-
pose the classification of key generation schemes in two categories; the pre-
computation based scheme and the re-computation based scheme.

Pre-computation: The encryption keys are computed and stored (the stor-
age is discussed in Section 3.3) in a ready-to-use format at any time. In this ap-
proach, the keys are stored in a directly usable form. Hence we do not need to
re-compute the keys when they are used. This saves the computation required
for the key generation, which is an advantage for this approach. However, if
the number of keys in the system increases, the size of the key registry (dis-
cussed in Section 3.3) increases as well. This will lead to an increased storage

102 DATA AND APPLICATIONS SECURITY XVIII

Figure 3. Key Registry

requirement, which is a disadvantage. The number of required keys is related
to the key assignment granularity selection, which is discussed in Section 3.1.

Re-computation: In this case, the keys are re-computed whenever they are
needed for encryption/decryption. The required information to re-compute the
keys is obtained from the data items we discuss in Section 3.3. Specifically,
the key material column of the key registry provides the seed for the key gener-
ation algorithm, such as MD5, SHA, etc., used in the system. The key genera-
tion algorithm is executed with the key material information to re-compute the
needed keys. If the number of keys is small, the approach reduces the size of
the key registry. On the other hand, if the number is larger, then the overhead
due to re-computation can be significant.

In the DAS model there are two places where the key generation may take
place. The first option is the client itself and the second option is a third party
trusted server, which provides the key generation (and possibly additional key
management functions) as a service. Note that, we do not consider the server
as an option since the server is considered as an untrusted party in the model.

Generating the keys at the client site provides flexibility, less complexity in
terms of system management, and eliminates the requirement for trust mecha-
nisms, which regulate the collaboration between the client and the third party
key server. The flip side is that the key generation process becomes the client’s
responsibility, which may incur computational overhead on the client’s system
resources that may be limited.

3.3 Key Installation and Key Registry

Once the keys are generated, they need to be operational and accessible for
the authorized users. The key installation defines how and where the key are
stored during the regular use. We propose a specialized data structure, key
registry, that is responsible for storing the key material information.

The key registry is the data structure that stores all the required information
to manage the keys. It has a tabular structure, shown in Figure 3, which consists
of four columns corresponding to Key ID (KID) List, Key Correspondence, Key
Mode, Key Material, and an indefinite number of rows, each corresponding to
a different key that is used in the system. We will discuss where and how the
key registry is stored in Section 3.4.

Hacigümüs & Mehrotra 103

Key ID (KID) List provides a list of numbers that are used to identify the
corresponding key. Note that a key does not need to have a unique identi-
fier. These numbers are just used to make the associations between the records
read from the encrypted database tables and the key registry entries. When
an encrypted tuples is read from the database (or a tuple is to be inserted into
the database) the system should know which key had been used to encrypt
the record. KID column in the encrypted storage model (Section 2.2) provides
that information. Maintaining multiple identification numbers for the keys also
increases the security afforded by the system. An adversary cannot directly
recognize the etuples, which are encrypted with the same key.

Key Correspondence indicates the database object to which the key is as-
signed. The database object is one of the granularity choices, as defined in Sec-
tion 3.1, in the system. In the correspondence column of the key registry, we
use a special notation to indicate the correspondence to the database objects.
(Note that, here we describe the conceptual implementation of the key registry.
An actual implementation of this framework could be done in different ways
to achieve a better performance.) The set of correspondence identifiers are:
database, table, RID, PID, where database indicates whole database, table in-
dicates single or multiple tables, RID indicates a set of record identifiers, and
PID indicates a set of partition ids. RID and PID identifiers are qualified by the
necessary qualifiers, such as a table name and a column name, that they belong
to. The interval of values is represented in the brackets, e.g., [20,50] indicating
the continuous interval of values between 20 and 50. The list of values are
given separated by comma, e.g., 20, 22, 45.

Key Mode specifies whether the key generation method is pre-computation
or re-computation, as they are described in Section 3.2.

Key Material contains either the actual key, if the key mode is pre-
computation, or the necessary initialization parameter(s) required for the re-
computation of the key, if the key mode is re-computation.

For example, consider the key registry entries given in Figure 3. The first
row indicates that only one key is assigned to mgr table (see the second col-
umn), thus any data item inserted into the table is encrypted with that key.
The third column, Mode, shows that pre-computation mode is used, therefore
the key is already generated and stored in the Material column. The second
row shows that any record of proj table whose RID is between 1 and 20 is
encrypted by using the key given in the Material column. The forth row ex-
amplifies the use of PIDs. Any record of emp table whose partition id for eid
attribute is in the list of {1,5,6} is encrypted by using the key given in the Mate-
rial column. Note that, for this entry, the Mode column indicates re-compute.
Thus, each time the key is re-generated by using the seed value given in the
Material column.

104 DATA AND APPLICATIONS SECURITY XVIII

3.4 Key Distribution
After a key is generated, a corresponding entry is created in the key reg-

istry. Upon request, the keys should be provided to the authorized users. This
process is called key distribution. Similar to the case for the key generation
function there are different alternatives where the key distribution can be han-
dled, the client site, a trusted third party service provider, and the server site.

For the standalone clients model, the client either stores the key registry on
its machine or utilizes a trusted third party server for this purpose. Yet another
possibility is to store the key registry at the server site unlike key generation
function. The key registry can be encrypted by using a master key and stored at
the server securely. When the client needs to use key material, it can be down-
loaded from the server and be decrypted with the master key. These alternatives
are also valid for the client networks and the group of clients models. For the
former, coordinator node can act as a medium for storage and communication
with the other users.

If the server or a third party server is chosen for the key distribution, the user
authentication is an issue to address. This can be solved by using public key
infrastructure (PKI). After the key generation, the key registry can be locked
with the public key. This way anyone can request the encrypted key registry
but only the authorized users can decrypt using their private key.

3.5 Key Updates
From the security perspective the lifetime of an encryption key should be

limited and the key should be removed from the active usage under certain
circumstances. Re-keying is recommended and sometimes required. Periodic
re-keying is considered as a good practice, especially, for data stored over an
extended period of time to prevent a potential key compromise. If a key com-
promise is suspected or expected, an emergency re-keying has to be performed.
In those cases, all affected keys should be changed.

The key update has significant implications on the DAS model in which
large amount of data is divided into the parts and encrypted with different keys.
Therefore we particularly emphasize the need for the efficient mechanisms to
handle the key updates. Above, we presented how the encryption keys can be
applied at different granularity levels. Choosing a finer level granularity would
increase the security, at the increased cost of key management since larger
number of data items would be encrypted with different keys.

From a database system point of view, the interference between the key
update procedure and regular database queries, being executed by the users,
should be minimized. This relates to the concurrency performance of the sys-
tem. Generally, the key update procedure consists of five main steps:

1) Generation and installation of a new key

Hacigümüs & Mehrotra 105

2)
3)
4)
5)

Fetching the etuples that are subject to key change
Decryption of the etuples
Re-encryption of the etuples with the new key
Replacement of the etuples, re-encrypted with the new key

In this procedure, the records, which are subject to the key change are re-
encrypted with the new keys. Therefore, duration of this process, the records
should be locked for any update transaction. Otherwise an update transaction
may update a record with a new content while the re-encryption process is in
progress. When the re-encryption is completed the old content, which is en-
crypted with the new key is inserted back into the database. This would over-
write the updated value of the record causing inconsistency in the database.
Note that, usually, the client has limited computational and storage power and
encryption and decryption are particularly computationally very expensive op-
erations [8]. Therefore, this may lead to a longer duration of key update pro-
cedures. If the key update blocks out significant amount of user transactions
then throughput of the system may considerably deteriorate.

It may appear that by choosing a finer granularity for processing, for ex-
ample a row-at-a-time, the key update procedure could be speeded up with
lesser interference with the other transactions. This would, however, cause
an increased network traffic and message initiation cost since the number of
transmission requests increase with the finer granularity. Yet, there is another
deeper problem that we have to consider from the security point of view. If
the client re-encrypts and inserts back a single etuple, then the server would
know that the new and the old etuples correspond to the exact same data but
just encrypted with different keys. This nullifies the key change. Alternatively
the client can perform the key updates over group of etuples, but this solution
takes us back to the concurrency problem described above.

Secondly, we need to be judicious about the system resource usage due to
key updates. This includes, network bandwidth and I/O overhead.

To address these issues, we devised techniques to handle the key updates
in a performance-conscious manner. In these techniques, our goal is to min-
imize the interference between the key update procedures and the other user
transactions, and to minimize the system resources usage. We describe our
techniques in the client networks architectural class where the requirements
we stated above are most pronounced. The applications of the techniques ex-
tend to the other classes, namely; standalone clients and the group of clients, if
it is needed.

3.5.1 Key update protocol. The overall key update protocol is shown
in Figure 4. We bring the etuples (along with RIDs and KIDs) that are sub-
ject to key change to the coordinator node in groups in a certain size, is
a system parameter, which is determined by considering the performance and

106 DATA AND APPLICATIONS SECURITY XVIII

Figure 4. The key update protocol

security requirements. The number of etuples that can be brought to the co-
ordinator node is limited by the processing and storage resources in the node.
We elaborate the security aspect of it below.

The coordinator node first decrypts the etuples and re-encrypts them with
a new key. (A new entry for the key in the key registry is created before the
initiation of this process.) Afterward, the coordinator node shuffles the tuples
by replacing the RIDs with the new randomly generated ones. Finally, those re-
encrypted and shuffled tuples are inserted back into the database at the server
by replacing the old ones. (For the sake of simplicity, here we assume that
there are no other pointers that are maintained separately at the server to the
records, such as indices over partition ids.) Note that, as we shuffle the RIDs,
the server cannot know one-to-one correspondence between the old etuples and
newly encrypted ones. The server can only try to match them. This point is the
motivation behind using the group of data units in certain size. As the size of
the group increases it becomes unfeasibly expensive to try all the possibilities
for the server.

3.5.2 Concurrent updates. Having discussed the security side of key
update scheme, now we turn our attention to the system performance side of
it. We consider user transactions in two groups, read transactions and update
transactions. The read requests do not change the data in any means. The
update requests, on the other hand, may insert/delete data or change some part
or all of the existing data stored at the server. (Note that, the implementation
of transactional semantics in a client/server environment is an orthogonal issue
to our discussion here.)

Read transactions can be executed concurrently with the key update pro-
cedure. When a group of etuples are brought in to the coordinator node, the
original copies of those are still available at the server for querying. Note that,
from the query processing (over encrypted data) perspective the only critical
attributes in the storage model are partition indexes. All supported query con-
ditions are handled by making use of the partition indexes [7].

Hacigümüs & Mehrotra 107

Figure 5. Handling the update transactions with the key update

Based on the encrypted data storage model, predicates in the user query are
evaluated as described in [7]. This process includes the translation of the query
into a form that retrieves the (super)set of etuples by evaluating the predicates
directly over encrypted data. When the qualified etuples (along with RIDs and
KIDs) are fetched, the client looks up the key registry and finds out the valid
key(s) for each etuple and decrypts them. Note that, even the coordinator node
runs a key update over the etuples that are returned as the answer of the query,
the content of the data is the same. The only information the user needs to
correctly decrypt is the valid keys and this information is provided by the key
registry.

Update transactions need a special attention as, unlike the read transac-
tions, they change the content of the data. Algorithmic steps to efficiently
handle the update transactions is given in Figure 5. Upon request, the user re-
ceives and decrypts the etuples. After this, the user performs the changes over
the data. Next, a tuple, which has been updated, has to be encrypted to pro-
duce corresponding etuple. (Here, we assume that the data update procedure
is performed a tuple-at-a-time.)

The user checks if the tuple is in the list of tuples being processed by the
coordinator node (Line 4). This can be done by using the RIDs. To make the
look-up even more efficient, we can store the tuples in a sorted list or in a tree
based data structure based on their RIDs at the coordinator node. (As we stated

108 DATA AND APPLICATIONS SECURITY XVIII

earlier, RIDs are assigned by the client and they are not used as references to
records by the server.) If the tuple is not in the coordinator node’s list then the
user retrieves the encryption key information from the key registry, encrypts
the tuple and inserts it into the database.

If the tuple is in the coordinator node’s list then the user has two options;
first (Line 10), the user can transfer the updated tuple to the coordinator node
for encryption. The coordinator node first replaces the copy of the tuple with
the updated tuple, encrypts it with the new key, and inserts it into the database
along with the other tuples by following the procedure described earlier. Here
the RID of the tuple is not shuffled since it will replace the old version, con-
taining the old content, in the database. As a second option (Line 14), the user
can encrypt the updated tuple with the new key by itself. Note that, the new
key information is placed in the key registry before the coordinator node starts
its processing. Then the user sends a notification to the coordinator node and
the coordinator node drops the corresponding tuple from its list. Following
this, (Line 18), the client inserts the updated tuple into the database. Since the
coordinator node drops the tuple from the update list, it is not included in the
tuples that are re-encrypted and inserted back by the coordinator node thereby
preventing the overwriting and inconsistency.

The decision between those two alternatives should be made dynamically by
considering the performance requirements of the system and the current status
of the processes. Another system parameter we maintain for the coordinator
node is time-to-live (TTL). The TTL defines the maximum time frame for a
completely processed group of re-encrypted tuples before they are inserted
back into the database. If the TTL will have been passed when the update have
been finalized then the user chooses the second alternative (Line 14).

This procedure allows us to defer the updates to the database and piggyback
the re-encrypted tuples with the ones in coordinator update list to be inserted
into the database thereby increasing the system’s concurrency performance and
security. For some situations, deferring the updates is preferred. The coordi-
nator node can wait, instead of inserting back the re-encrypted tuples, for an
updated tuple, which is included in the coordinator update list. This can be
done as long as the TTL is valid. By doing this the coordinator node can pig-
gyback the tuples with the tuples that are already in its list and inserts them
together into the database. This both improves the systems resources usage
and the security afforded by the system.

4. CONCLUSIONS

We have studied the efficient encryption key management problem in the en-
crypted database environments, specifically in database-as-a-service (DAS) se-
tups. We have presented specialized techniques and data structures to improve

Hacigümüs & Mehrotra 109

the efficiency of the key management functions, which also deliver higher de-
gree of concurrency in the system. We particularly observed the importance
of the key update procedures and proposed efficient key update alternatives,
which allow the system to update the keys in a concurrent fashion.

The system specific parameters, namely; the group size and TTL param-
eters, have implications on the security and the performance afforded by the
system. Hence, the quantification of their impact is an important issue for
the future work. Moreover, there are system design issues that require further
research. For example, fault-tolerance issues for the key update procedures
should be studied in detail.

References
R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In Proc. of VLDB,
2002.
S. Chaudhuri, E. Christensen, G. Graefe, V. R. Narasayya, and M. J. Zwilling. Self-tuning
technology in microsoft sql server. Data Engineering Bulletin, 22(2):20–26, 1999.
Computer Security Institute. CSI/FBI Computer Crime and Security Survey.
http://www.gocsi.com, 2002.
ComputerWorld. J.P. Morgan signs outsourcing deal with IBM. Dec. 30, 2002.
E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing
confidentiality and efficiency in untrusted Relational DBMSs. In Proc. of 10th ACM
Conf. On Computer and Communications Security, 2003.
B. Fernandez, R. C. Summers, and C. Wood. Database Security and Integrity. Addison-
Wesley, 1981.

B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted Data in
Database Service Provider Model. In Proc. of ACM SIGMOD, 2002.

B. Iyer, and S. Mehrotra. Providing Database as a Service. In Proc. of
ICDE, 2002.

B. Iyer, and S. Mehrotra. Ensuring the Integrity of Encrypted Databases
in Database as a Service Model. In Proc. of 17th IFIP WG 11.3 Conference on Data and
Applications Security, 2003.

B. Iyer, and S. Mehrotra. Efficient Execution of Aggregation Queries
over Encrypted Relational Databases. In Proc. of International Conference on Database
Systems for Advanced Applications (DASFAA), 2004.
J. He and M. Wang. Cryptography and relational database management systems. In Proc.
of IDEAS ’01, 2001.
T. Lunt and E. B. Fernandez. Database Security. ACM SIGMOD Record, 19(4), 1990.
D. R. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

