DAMAGE DISCOVERY IN DISTRIBUTED
DATABASE SYSTEMS

Yanjun Zuo and Brajendra Panda

Abstract Damage assessment and recovery in a distributed database system in a post
information attack detection scenario is a complicated process due to the
indirect dependencies among (sub) transactions that are executed in various
sites. Particularly, damage assessment in such a system requires
collaborations among multiple participant sites as a result of distributed
transactions. In this paper, we discuss two primary models, namely,
centralized and peer-to-peer, to conduct damage assessment after an intrusion
on a distributed database system is reported. For the centralized model, three
different options have been presented. Advantages and disadvantages of each
model are discussed.

1. INTRODUCTION

Distributed database systems are widely used in web based applications
and mission-critical programs. Reliability and higher availability of
resources are major motivations for moving toward distributed database
management systems. More importantly, the introduction of a wide range of
real-time applications can be implemented more effectively in a distributed
environment. However, distributed database systems introduce difficulties
in data protection and overall system securities. In the case of detection of
an intrusion in such a system, immediate damage assessment and recovery
must be followed in order to completely wipeout the effect of the attack and
restore the database to a consistent state, the state the database would have
reached if there were no attack. Assessment is important since initial
damage could later spread to other parts of the database via legitimate
transactions or other means such as system integrity check as described in
[1] and [3]. During the assessment and recovery process the system must be
offline or at least part of the system will not be available for the users. This
affects the system availability and introduces the known problem of denial

112 DATA AND APPLICATIONS SECURITY XVIII

of service. In distributed database systems, due to heavy dependencies
among transactions and sub-transactions at various sites, damages would
spread faster than that in a centralized system. Therefore, it is essential to
employ fast and accurate damage assessment procedures as soon as the
attack is detected.

2. RELATED WORK

Several models have been proposed for database damage assessment and
recovery. Some of the recent developments on damage assessment and
recovery from information attacks are discussed in [4, 8, 9, 10, 11]. Most of
those proposed models concentrate on centralized database systems and very
few of them have been applied to distributed database systems. Assessing
damage for a centralized database system is relatively easier since there is no
distributed transaction, which may introduce “hidden” damage that could not
be detected if viewed only from any single site after an attack has been
detected. Peng Liu and Xu Hao [7] have proposed a completely distributed
algorithm for distributed database systems. Their model essentially requires
communications among every site directly. In a system with a large number
of distributed sites, the model incurs a large volume of network
communications in order to detect all affected transactions. In this work, we
have developed damage assessment models, which fall into two basic
categories: centralized and peer-to-peer. The former model can effectively
reduce the network traffics required for communications among multiple
sites for the purpose of damage assessment and the latter avoids single point
of failure and offers faster execution.

3. BASIC DAMAGE ASSESSMENT MODELS

Our developed models are based on the assumptions that the local logs
are not damaged and blind writes are not permitted. The output of each
model is a set of transactions that are detected as affected, either directly or
indirectly, by a malicious transaction. These transactions are then provided
as input to a recovery algorithm. Recovery methods are not discussed in this
paper due to space constraints. We assume that the distributed database
system consists of multiple sites, each of which contains a local manager to
coordinate with other sites and/or the coordinator. The two basic assessment
models we present are centralized and peer-to-peer models as illustrated in
Figure 1. We have developed algorithms for each of the models as well as
their sub models (where applicable). Due to space limitations, the

Zuo & Panda 113

algorithms are not provided in this paper; interested readers may contact the
authors.

=

Figure 1(a): Peer-to-peer model

>
SO

Secondary

Coordinator coordinator

Figure 1(b): Centralized model

3.1 Peer-to-peer model

This model does not require a coordinator in order to perform damage
assessment. Every site acts as a peer to others. Each site manager is
responsible for scanning its local log. If the site manager identifies some
affected (global) transactions, it multicasts their identifiers to every other
site, where a sub-transaction of any of these affected global transactions is
executed. We assume that each site keeps information about sites where a
global transaction’s sub-transactions were executed. Then each receiving
site manager scans its local log to further detect any more affected
transactions based on the newly received information if there are any. Each
site manager starts scanning the log beginning where the first affected

114 DATA AND APPLICATIONS SECURITY XVIII

transaction appears. The identifiers of newly identified affected global
transactions are sent to all related sites for further assessment.

Malicious Site i Site k
transactions —— |
reported

Mik={T1,T8} ——0u | B Assessing

Assessing {

Mik=(T3, TI17}) __

Figure 2: Time line of assessment process of peer-to-peer model

For further clarification of the situation, consider the following scenario,
as depicted in Figure 2. A site i identifies global transactions, T, Tg, and Tz
as affected. The site manager then discovers that T, and Tg have sub-
transactions executed at site k and Ty has its subtransactions executed at
sites other than site k. For simplicity, we only consider communications
between site i and site k. Site i then sends a list of affected transactions {T},
Tg} to site k. We denote this message as My = {T}, Ts}, where M is the
message sent from site i to site k and the message contains a list of affected
global transaction identifiers, {T}, Tg} in this case. Site i does the same for
other sites if necessary. After site k receives this message, it performs
assessment and identifies several global transactions including Tg as
affected. After learning that transaction Ty has a sub-transaction executed at
site i, site k sends a message (My; = {To}) to site i. After site i receives this
message from site k£ and performs assessment, it does not identify any new
sub-transaction of any global transaction that is dependent on Ty (or Ty’s
sub-transactions). Hence site i does not send any new message based on the
previously received message to site k. Some time later, site i identifies
global transactions T3 and T;; are affected (based on information received
from other sites) and both these transactions have sub-transactions executed
at site k. Once again, site i sends a message containing T3 and T to site k.
The process continues until no affected transactions found at site i or k.

The advantages of this model include: (1) the process is fully distributed,
so, every site executes the same algorithm and has a balanced data

Zuo & Panda 115

processing and communication load; (2) there is no single point of failure;
(3) the processing load is distributed among local sites and the damage
assessment time can be minimum. One of the disadvantages of this model is
the relatively large amount of network traffic. Another disadvantage is that
the synchronization process for this approach can be complicated. This
model is best suited for databases with small number of distributed sites. In
order for this model to work effectively any two sites in the system should
communicate with each other directly.

3.2 Centralized model

This model requires one coordinator for the purpose of damage
assessment. The coordinator can be produced through a voting process
when the distributed database system starts up. A site which is most likely
to hold the coordinator (called coordinator site) should have the following
specifications: (1) located at the most “convenient” place in the system in
term of network distance; (2) equipped with super-processing abilities; (3)
connected with all other sites by high speed network links; (4) backup made
by at least one other machine in the same site in case of system failure. Any
site with highest combined features of these characters will be given
preference to host the coordinator.

In addition to coordinating with the coordinator, each site manager is also
responsible for scanning the local log. Each site manager exclusively
communicates with the coordinator. The centralized model can be further
divided into three sub models: receive and forward model, local dependency
graph model, and central graph repository model. These models are
described next.

3.2.1 Receive and forward model

In this model, the coordinator receives and forwards messages
appropriately. The assessment process is iterative and recursive. The
coordinator site keeps information about each global transaction to
determine where its sub-transactions are executed.

During the damage assessment and recovery procedure, each site
manager sends a list of global affected transaction identifiers to the
coordinator, which further locates the sites where sub-transactions of any of
these affected transactions were executed. Then the coordinator sends each
identified site a list, which contains the affected global transaction
identifiers, which have sub-transactions executed at that site. When a site
manager receives this list, it uses this information to further assess if any
more transactions at its own site have been affected. It does so by scanning

116 DATA AND APPLICATIONS SECURITY XVIIT

the local log to find any transactions, which are dependent upon any of the
affected transactions received from the coordinator. If no more global
transactions have been newly detected as affected, it sends a “clear” message
to the coordinator, which means the received affected transaction list has not
lead to any new detection. On the other hand, if some global transactions
have been detected as affected based on the received information, their
identifiers are sent to the coordinator. In any case, the newly identified
affected local transaction list is kept locally without sending it to the
coordinator.

Coordinator Site i
reported [——
S i —— M.=(TL. T4 —p
Flag[{] = “Assessing” gz }Assessing
/4—— M;={T2, T8}
Flaafi1="Clear"
IE—
. Mci=(T6- T9} '————’
Time Flaefil="Assessing” }Assessing
M={T12
/ < {T12}
Flaefil = “Clear”
M, = “Completion™ -—_}

v

Figure 3: Time line of assessment process of receive and forward model

The coordinator keeps an array of flags for each site to keep track of each
site status for the purpose of assessment. Initially, each flag is set to “clear”.
When the coordinator identifies some affected global transactions having
sub-transactions running at a site, it sends a message to that site and resets
that site’s corresponding flag to “assessing”. When it receives a reply from
that site, the coordinator resets the flag for that site to “clear”. When all the
site flags are “clear”, the assessment process is over.

Figure 3 gives an example of the basic assessment process. Initially, the
coordinator is reported that sub-transactions of T and T4 are affected at site
i. So it sets Flag[i] to “assessing” and sends this list to site i, which further
assesses and identifies global transactions T, and Ty as affected. Hence site i
sends this information to the coordinator. When the coordinator receives the

Zuo & Panda 117

reported M; = {T,,Ts}, it resets Flag[i] to “clear”. Then the coordinator
identifies which sites have executed sub-transactions of T; and T, and sends
the corresponding lists to those sites. Later on, the coordinator receives
information that Tg and Ty are affected. It then sends a list containing Tg and
Ty to site i since T¢ and Ty have sub-transactions executed at site i. Site i
receives this information and assesses. This process continues until all site
flags are set to “clear”.

This model has the best scalability of all models presented in this paper
and can be used in large-scale distributed databases. @ Message passing
between the coordinator and each site can be intensive given a database with
a large number of distributed sites but the processing burden is light at the
coordinator site. The damage assessment efficiency is largely dominated by
the communication effectiveness between the coordinator and each local
site.

3.2.2 Local dependency graph model

When a site manager reports malicious global transactions, the
coordinator sends a request message to every site, i, asking for the local
transaction dependency graph, G;, maintained at each site. The coordinator
creates a bad transaction list to store the affected transaction identifiers, say,
{B,, By, ..., By} for each site. The coordinator builds the global transaction
dependency graph using the local graphs Gy, G, ..., Gy Several methods
have been already developed to construct such a global graph. Some of these
methods, their advantages, and drawbacks can be found in [2, 5, 6].

Coordinator Site i
Malicious
[——— 3 -— L1
transactions Micl="Rogent —
renorted
Time & Mi = Gi
Assessing
[Bad transaction list for site i
v --_*

Figure 4: Time line of assessment process of local dependency graph model

118 DATA AND APPLICATIONS SECURITY XVIII

Figure 4 depicts the assessment procedure of the local dependency graph
model. In this model, the coordinator carries heavy loads since it performs
the assessment based on the built global transaction dependency graph. The
coordinator maintains a global affected transaction list. If any transaction is
dependent on any of the transactions in the affected list, the former
transaction is determined as affected and its global identifier is added to the
affected list if it is a sub-transaction of a global transaction. After all
transactions in the global dependency graph are evaluated, the assessment
process becomes over. The coordinator sends a list of affected transactions,
By, By, ..., B, (or their sub-transactions) to the corresponding sites.

It is crucial for the coordinator to be equipped with super-processing
abilities, i.e., multiple-processors running in parallel. Only inter-process
communications in the coordinator site are necessary if multiple processes
are employed. Hence, the reduced amount of network communications
(which could be among sites with far away from each other) is one of the
advantages of this model. Another positive side of this model is that the
assessment procedure is not recursive at each site. One of its disadvantages
is the overload on the coordinator machine. This may cause processing
delays in a system with a large number of sites. Another disadvantage is that
a site can’t start repair process until it receives the final damaged transaction
list (including both global and local transactions).

This model is best suited for middle-scale distributed database systems
with limited network bandwidth capability. Message passing between the
coordinator and each local site is minimum and processing burden for each
site is very light. The coordinator processing ability largely influences the
assessment time but the initial time to build a global dependency graph can
cause delays after malicious transactions are reported since the coordinator
has to ask each site for transaction dependency graph to be sent to it.

3.23 Central graph repository model

This model has each site send its local transaction dependency graph to
the coordinator periodically. The coordinator stores each graph and updates
the corresponding dependency graph only when it receives any change to the
graph from a site. Every site transmits to the coordinator only changes to its
local dependency graph since the last transmission. After receiving an
update from a site, the coordinator sends an acknowledgement back to that
site to make it aware that the coordinator has received the update. Then the
site can simply delete the copy of the sent message. For any message
without acknowledgement, each site keeps a copy in a buffer since that
could be used for further investigation (this update may not be used by the
coordinator since it has already started its assessment work). Having

Zuo & Panda 119

received the malicious transaction identifier list from a site (sites), the
coordinator scans each dependency graph recursively and identifies any
affected transactions based on the local dependency graphs Gy, Gy, ..., Gy, It
records a list for each site, which contains the damaged sub-transactions
executing on that site. Figure 5 shows the procedure for damage assessment
between the coordinator and site i.

In this model, the coordinator keeps the local transaction dependency
graphs separately instead of building the global transaction dependency
graph unlike the local dependency graph model. Next, we analyze both
positive and negative aspects of both of these methods.

Coordinator Site {
Malicious
trai t ——————]
i &—— Gitime
reported]

\ l4——— AGi time 2
-—-—'-_-—--—--
¢ AGi time 3
Time /—{
¢ AGi time 4
Assessing

Bad transaction list for site {

Figure 5: Basic assessment process of central graph repository model

If the coordinator wishes to keep a damaged transaction list for each site,
then the local dependency graph model is more desired. If a global
dependency graph was built, any newly identified damaged transactions had
to be further investigated to see which sites they are associated with.
Separating each local dependency graph would directly put any newly
identified transaction Ids into the site list immediately after scanning the
local dependency graph. Another reason to avoid building a global
dependency graph is time and efforts required to build the global
dependency graph itself. But building a global dependency graph has its
own advantages. The coordinator does not need to jump back and forth
among multiple local dependency graphs while it is performing damage
assessment. It requires only one pass of the whole dependency graph when
the assessment process is performed. Hence, the coordinator in the local

120 DATA AND APPLICATIONS SECURITY XVIII

dependency graph model as described in the previous section uses a global
dependency graph. In this model, the coordinator ignores any new updates it
receives from a site during the assessment process. It just employs the most
recent information before starting the assessment work. Since the
coordinator does not always have the most recent information about each
local transaction dependency graph, the identified affected transaction list
for some sites may not be the final results. Hence, the coordinator puts a
timestamp for each list in order for each site to do further investigation if
necessary. The options for further work are broad. Basically, any of the
models discussed in this paper could be employed to do further investigation
since the last update of the local dependency graph.

This model works best for middle to large-scale distributed databases
with coordinators equipped with a cluster of processors, which can achieve
parallelism in processing multiple local dependency graphs. The
communication between the coordinator and each local site may vary from
moderate to intensive depending on frequency of updates to local
dependency graphs being sent to the coordinator by each site.

4. SYCHRONIZATION ISSUES

For any model with recursion among multiple objects, a synchronization
mechanism needs to be employed to deal with the order of information flow.
In this section we discuss how to incorporate synchronization mechanisms to
our models.

4.1 Message serial numbers in the receive and forward
model

Figure 6 shows the synchronization mechanism using serial numbers to
keep track of information flow. Each message is tagged with a serial
number sent out from each site (including the coordinating site). If the
coordinator sends out M- to site i and shortly it sends out another Mg-;
(after receiving a message from other site and performing the assessment), it
should receive two replies from site i, M;~; and M;-;, which corresponds to
M.i-i and M2 respectively (where Mc;-; and Mc;-; are messages 1 and 2
sent from the coordinator to site i. M-y M;-; are messages 1 and 2 replied by
site i to the coordinator). In the basic model shown earlier without
synchronization mechanism, at time point A in Figure 6, after the
coordinator receives M-, based on the basic model, it would set the status
flag of site as “clear”. Actually, the flag should not be set to “clear” since
M.i-; is yet to be received by the coordinator from site i. The status flag can

Zuo & Panda 121

be set to “clear” at the coordinator site only after the replay for the last M,; is
received. So, for the last Mg received by site i, if there are no more affected
global transactions identified, site i sends a “clear” message to the
coordinator (M; = “clear”).

Coordinator
Site i
Malicious transactions
reported R
/ Mci-0= (T, T4} —— g
_}Assessing
Flaelil = “ Assessine™ L Mi-0= {T2, T8}

Flag[i] = “Clear”

Mci-1 = {T9, T6} —Pp

}Assessing
Mci-2 = {TI1} 74

Flag[i]="Assessing”

Time-,t___‘_‘ K/ Mi-1= {T12, T7} e }Asscssing
Flag[i]="Assessing" /k/ Mi-2 = “clear”
Flag[i] = “Clear” [Fre Mci-n = “completion™ b

Figure 6: Synchronized assessment process for receive and forward model

If a new message arrives from a site i while site k is processing another
message from site i, a window buffer similar to the sliding window in TCP
protocol kept in site k can hold the second message to wait for the next
iteration of the assessment process. By using this window, each site should
keep track of the responses it has received and the ones that are pending.
Hence, the flow-control mechanism can assure that a previous message with
a smaller serial number is processed before processing a later message with a
larger serial number.

4.2 Status messages among multiple sites in the peer-to-
peer model

In the peer-to-peer model, synchronization helps detect termination for
the assessment algorithm. Each site keeps track of the status for every other
site in order to know precisely when the assessment is over. The value of the

122 DATA AND APPLICATIONS SECURITY XVIII

flag reads either “assessing”, meaning the site is doing assessment work, or
“clear”, meaning it has detected all affected transactions based on the current
information. Whenever a site receives a bad transaction list, it sends an
“assessing” message to all other sites. After it finishes the assessment work
based on the received message, it sends a “clear” message to all other sites to
let them know it is done. Ifa site does not receives a bad transaction list for
a certain time, it sends out a “clear” message again to let its peers know that
it is clear. Every site also sends an “assessing” message to all other sites
telling them which of them should perform assessment if the sender
identifies some global transactions as affected. When a site finds that all the
flags of all sites read “clear”, it knows that the assessment is over at every
site.

S. CONCLUSION

In this paper, we discussed centralized and peer-to-peer models for
distributed database damage assessment. These models are different from
those for the centralized database systems. In the context of distributed
database systems, collaborations among multiple sites (directly or indirectly)
are crucial. This is determined by the nature of global transactions, which
have sub-transactions executed at multiple sites. Identification of affected
transactions is the burden of each site manger, which is responsible for
scanning the log and checking for the transaction dependency graphs. In the
peer-to-peer model, each site communicates with the coordinator extensively
and the coordinator acts to receive and forward corresponding messages to
the appropriate sites. The centralized model puts much of the burden of
damage discovery on the coordinator site and the requirement for message
transmissions between each site and the coordinator is reduced.

Acknowledgement
This work has been supported in part by US AFOSR under grant

F49620-01-10346. The authors are thankful to Dr. Robert. L. Herklotz for
his support, which made this work possible.

Zuo & Panda 123

References

(1]

(2]

[3]

[4]

[3]

(6]

(7

(8]
B

(10]

(11]

P. Ammann, S. Jajodia, C. D. McCollum, and B. Blaustein, “Surviving Information
Privacy, p. 164-174, Oakland, CA, May 1997.
E. Bernstien, V. Hadzilacos, and N. Goodman, “Concurrency Control and Recovery in

Database Systems”. Addison-Wesley, Reading, MA, 1987.

R. Graubart, L. Schlipper, and C. McCollum, “Defending Database Management
Systems against Information Warfare Attacks”. Technical report, The MITRE
Corporation, 1996.

S. Jajodia, C. D. McCollum, and P. Amman, “Trusted Recovery”. Communications of
the ACM, 42(7), pp. 71-75, July 1999.

H. Korth, E. Levy, and A. Silberschatz, “A Formal Approach to Recovery by
Compensating Transaction”. In Proceedings of the 16" VLDB Conference, Brisbane,

Australia, 1990.

Scott D. Lathrop, Gregory J. Conti, Daniel J. Ragsdale, “Information Warfare in the
Trenches”. Security education and Critical Infrastructures, January 2003.

Peng Liu, Xu Hao, “Efficient Damage Assessment and Repair in Resilient Distributed
Database Systems”. IFIP TC11/WG11.3 Fifteenth Annual Working Conference on

Database and Security, July 15-18, 2001.

P. Liu, P. Ammann, and S. Jajodia, “Rewriting Histories: Recovering from Malicious
Transactions”. Distributed and Parallel Databases, 8(1), pp. 7-40, January 2000.

B. Panda and J. Giordano, “Reconstructing the Database After Electronic Attacks”.
Database Security XII: Status and Prospects, S. Jajodia (editor), Kluwer Academic
Publishers, 1999.

P. Ragothaman, and B. Panda, “Modeling and Analyzing Transaction Logging
Protocols for Effective Damage Assessment”, In Proceedings of the 16™ Annual IFIP
WG 11.3 Working Conference on Data and Application Security, King’s College,
University of Cambridge, UK, July 2002.

R. Sobhan and B. Panda, “Reorganization of Database Log for Information Warfare
Data Recovery”. In Proceedings of the 15™ Annual IFIP WG 11.3 Working Conference
on Database and Application Security, Niagara on the Lake, Ontario, Canada, July 15-
18, 2001.

