
INFORMATION FLOW ANALYSIS FOR FILE
SYSTEMS AND DATABASES USING LABELS

Ehud Gudes, Luigi V. Mancini, and Francesco Parisi-Presicce

Abstract The control of information flow has been used to address problems concern-
ing the privacy and the secrecy of data. A model based on decentralized labels
extends traditional multilevel security models by allowing users to declassify
information in a distributed way. We extend this decentralized labels model de-
veloped by other authors by addressing specific issues that arise in accessing
files and databases and in general in I/O operations. While retaining the support
for static analysis, we also include run-time checks to allow declassification with
“controlled information leakage”.

1. INTRODUCTION
One of the ways used to address the problem of privacy and secrecy of data

has been through the use of models for a precise control of the propagation of
information [1–3]. Several information flow models have been developed over
the years, mostly for traditional multilevel systems [11]. Some of the more
recent ones are geared toward object-oriented database systems [9, 10], and
toward a decentralized control of access information for a distributed environ-
ment [6]. Our work is based on ideas of [5] and [6] and focuses on alternatives
to that notion of declassification, especially as it relates to flies and databases.

The decentralized label model of [5] is more complex than traditional mod-
els used in classical multilevel security policy. A decentralized label reflects
the flow policies of the individual principals on the data so labeled, and the
use of the labels is such that the different policies are satisfied simultaneously.
Confidentiality is then protected even in the context where the principals dis-
trust each other or their respective code. Note that policy here refers to a single
data entity and not to the behavior of the system as a whole. This decentralized
label model is based on annotated program code that is statically analyzed. It
provides a set of rules that a program must follow to prevent leakage of infor-
mation. A compiler statically checks the flows of information in a program
and allows its execution if all the re-labeling in the program are safe, i.e., legal
according to the rules. In traditional information flow control models, declas-



126 DATA AND APPLICATIONS SECURITY XVIII

sification of information is outside the model and is performed by a trusted
subject. This aspect makes such models unsuitable in a decentralized environ-
ment. In the decentralized label model of [5, 6], limited forms of declassifi-
cation are allowed to be included explicitly by the programmer, provided that
other principals’ policies are not affected.

Our objective is to relax some of the restrictions and consider I/O channels,
files and databases at run-time, and restricted forms of controlled information
leakage.

If the program is compiled when the files to be used at run-time are known,
no later check is needed. If the files or the file labels change, it is necessary to
recompile the program to verify that the rules for declassification are followed.
An alternative to this approach is to use the compilation to produce constraints
on the labels of the files to be used: at run-time, there is a check of permis-
sions to verify that the labels of the files actually used satisfy the compile-time
constraints. If the constraint is, for example, the requirement that the label of
the output file be no less restrictive than the label of the output variables of the
program, the problem reduces to the safe relabeling in [6]. But the constraints
can be of a more general nature (see Section 3) reflecting a more relaxed policy
for information leakage. All this is done independently of the subject execut-
ing the program. The security level of the subject executing a program should
be taken into account, especially when dealing with I/O channels. This is dis-
cussed in this paper.

Declassification can occur at two levels. By the use of the appropriate in-
struction, declassification takes place inside the program and deals with the
labels of variables [5]. The external modification of the label of a file also
may constitute a declassification of the information in the file, if for example
one of the owners of the file adds a reader to his own policy. This kind of
declassification takes place in the administration of files.

Myers and Liskov incorporated the approach and the ideas of [6, 5] into the
specific programming language framework of Java, and called their extended
Java language Jflow [4]. This extended language allows both compile-time
and run-time label checking, supports the definition of label data types, and
provides for automatic label inference.

Samarati et al. presented a related model in the context of Object-oriented
databases [9]. The model provides only for run-time checking by accumulat-
ing the flow during program execution. It checks all the flows between objects
and between calling and called methods. The checks are done by a special
trusted system component called the Message filter. The model was later ex-
tended in [10] to support exceptions. In a recent paper [12] Chen, Wijesekera,
and Jajodia show how different flow models like Denning’s lattice model, and
Myers distributed label model can be formalized using a single Prolog-like
language Flexflow. A different approach to flow control in a web environment



Gudes, Mancini, & Parisi-Presicce 127

was suggested in [13]. In this approach, the flow is controlled by a special
encryption based web viewer, but the flow policies supported are quite limited.

In the rest of this paper, Section 2 overviews the basic notions of the model
based on distributed control via labels and policies in [5, 6] and proposes a
relaxation of this model. Section 3 extends the use of the labels to files and I/O
operations, and is also concerned with the declassification process, before and
after compilation. Section 4 deals with database access and update with views
and labels. Section 5 contains a summary and points to future work.

2. THE LABEL MODEL
In this section, we briefly describe a label model very similar to the one

proposed in [5]. The presentation is slightly different.
The model is based on a notion of label that is used to categorize different

entities and to control the transfer of information between two such entities.
A label can be viewed as a type and rules are described to define compatible
types. We first present a simple version with no relation among the principals,
and then we extend it to consider a hierarchy based on the notion of acts for.

Labels are associated with values (computed or read by a program), vari-
ables (declared and modified in a program), I/O channels (used by programs),
files and views of a database. The compatibility between types determines, for
example, whether a variable can hold a value or can be used to read a file, or
whether a value can be written into a file or into a database.

Given a set of owners and a set of readers, not necessarily distinct, a label
is just a set of pairs with  an owner and a reader. A pair in the
label L indicates the willingness on the part of the owner  to grant reading
rights to for any information labeled L. If there are several owners in the
label, the access to information labeled L depends on the combination of the
different authorizations.
For a label L

Moreover, the following set definitions will be useful in the rest of this paper:

Note that INT(L) is what in [6] (without the principal hierarchy) is called
effective-readers(L).

A label is completely characterized by owners(L) and readers for
each
If
and then it is convenient to denote L by



128 DATA AND APPLICATIONS SECURITY XVIII

as in [5, 6] rather than by

Based on the above conservative definition of access, there are two ways
to declassify information through a modification of the label: either by re-
ducing the set owners(L), that is by removing an owner (more precisely,
by removing all the pairs with the specific owner as first component) or by
adding rights by augmenting one of the sets readers (more precisely,
by adding new pairs for an existing  For example, a data labeled

can be declassified to allow to access
it either by removing (i.e. the entire entry), or by adding

In both cases becomes part of the intersection of the readers set
of L and is authorized to access according to the most conservative policy
mentioned above.

Labels can be ‘ordered’ by defining if is at least as restrictive
as in granting permissions. More formally:

DEFINITION 1 (SIMPLE ORDERING) if and only if
and

A simple fact that follows from the above definition is:

PROPOSITION 2 (LABELS INTERSECTION) If then

2.1 Ordered owners and readers

To allow indirect access rights based on inheritance, owners and readers
are organized in a principal hierarchy, i.e., structured using a reflexive and
transitive relation

A pair indicates that the owner can prevent the owner
from assigning access rights; a pair indicates that can read
whatever can read. This hierarchy determines, for each label L, a set E(L)
of effective flows    obtained by adding to L all pairs implicitly de-
fined (via by L. To this extent, we define a function on sets S of
pairs by letting:

with
with

Since is reflexive, As a function of S, is
monotonic with respect to the Simple Label Ordering, i.e., if then

The function is also monotonic in
(i.e., if then but this fact will not be used
here.



Gudes, Mancini, & Parisi-Presicce 129

Let us denote S by

DEFINITION 3 (HIERARCHICAL LABELS ORDERING) if and
only if  such that and

such that

It is straightforward to verify that is reflexive and transitive. If
and then but it is not necessarily the case that

EXAMPLE 4 The set of owners consists only of and unrelated by and
the set of readers is with and Define

and Then, by definition,
since is reflexive and

Similarly using Furthermore,
Obviously,

Note that taking the hierarchy into account, is a simpler way of
defining what is called in [6].

PROPOSITION 5 (CLOSURES ) If then

The intuition behind is that entities labeled can be safely re-
labeled safely in the sense that under the new label the number of
readers with access to the information is not increased.

So the process of declassifying information consists of re-labeling the infor-
mation from a label to a label Note that the declassification could
only be apparent and not real, since we may have even if

and
We argue, and will discuss it in the next section, that in dealing with files

and I/O operations, may be too restrictive as a notion of safe flow
and could be relaxed. The confidentiality of the information labeled with is
preserved by re-labeling it with also if that is
if any potential effective reader in any policy in is considered trusted (i.e.,
contained in the set of effective readers) in every policy of

and
isSince the sets of owners and readers are finite, the set

finite, with its largest element for some The closure of S with

respect to denoted by is by definition this We denote
the set of readers defined by the above closure as the effective set of readers.

Definition 1 considers all owners and readers unrelated in the hierarchy.
By taking into account the principal hierarchy for owners and readers, the
definition extends to:



130 DATA AND APPLICATIONS SECURITY XVIII

DEFINITION 6 (SAFE RELABELING) An item labeled can safely be re-
labeled if either

or

The constraint is neither more restrictive nor
more relaxing than as the next two examples show. So the relaxation
consists of requiring either one of the two conditions to allow the relabeling.

EXAMPLE 7 The set of owners consists of and unrelated by and
the set of readers is
Define and Then, by definition,

does not hold since there is no “acts for” relation between and
either or But the only reader authorized by is also authorized by both

and and so holds.

The next one shows that the new condition would be too restrictive if used
alone.

EXAMPLE 8 The set of owners consists of and with
and and the set of unrelated readers is Define

and Then, by definition,
since acts for both and but does not hold
because of the policy of

In the rest of this paper, we will write instead of when the
hierarchy does not play a role or is implied by the context.

2.2 Related Issues

In this section, we discuss some of the issues relevant in the model to access
files, databases and in general to perform I/O operations.

Consistency A first issue is the uniform and consistent treatment of files,
I/O operations and/or channels. For example, in the model(s) presented by
Myers and Liskov [6] the writing to an output channel is allowed only if the
set of readers of the channel is a subset of the effective set of readers of the
value written to the channel. In [5] the writing to a channel is allowed only if
the label of the channel is more restrictive than the label of the value written to
the channel. Now these definitions are not equivalent. For example, if a value
label is and the channel label is
then, according to the first definition, writing the value on the channel is
allowed, since is in the effective set of readers, while according to the second
definition, writing is not allowed since the channel label is less restrictive (an
owner was removed). Our approach is closer to the first definition.



Gudes, Mancini, & Parisi-Presicce 131

Declassification In [5] there are two concepts related to Declassification:
the Authority predicate, and the Declassify operator. The Authority predicate
specifies which principal can execute an application process and allows this
correlation to be checked at run-time. Once the application process is running,
then the explicit Declassify operator might be invoked with the desired label
as a parameter. Since in [5], the Declassify operator can only remove policies
which are owned by the principal listed in the Authority predicate, this check
can be done at compile-time. No further check is done at run-time! This, how-
ever, presents a subtle problem with the files access and the I/O channels, as
exemplified by the following taxpayer example from [5]. In this example, a
tax-payer Bob likes to use a general tax program that accesses a proprietary
database to which only the Preparer has access. The compiler does not al-
low writing back into Bob’s file because the label was increased to include the
Preparer. So the only way to allow this example to work, is to allow a declas-
sification at run-time. In [5] the validity of the Declassify operation is checked
at compile time, and since both the Authority predicate and the Declassify op-
erator contain the explicit label “Preparer”, the check succeeds.

This, however, raises two problems. First, this type of check limits the
generality of the Declassify operator, since it requires that all parameters to
Declassify and Authority be explicit at compile-time. Second, it also raises
the problem of Covert channels, since anybody who can bypass the Authority
predicate, can read the information from the Preparer database, can declassify
it and can leak it via a covert channel. A more restrictive approach is desirable
either at compile-time or at run-time.

The above issues call for a more precise definition of I/O operations and of
the operation of declassification in the decentralized labels model, and repre-
sent the first goal of the present paper. The second goal is to extend the model
to the database case.

3. FILES AND I/O CHANNELS

3.1 Compile-time checks

In the previous section, we mentioned two possible interpretations of per-
missions to write to a file and I/O operations. This section analyzes the issues
and proposes our solution based on the intersection interpretation for writing.
This solution for files and I/O channels are also extended to deal with admin-
istration, delegation, database operations and views in the following sections.

We assume that files have labels, so that a file has the label and that
is a variable with label that is,.
We define the permission to write to a file in terms of the two sets INT(L)

and UN(L), defined in Section 2.



132 DATA AND APPLICATIONS SECURITY XVIII

DEFINITION 9 (READ FROM A FILE) A read operation read(f,v) of a
file succeeds if
that is, read(f,v) is allowed if the label of the variable is at least as
restrictive as the label of the file.

DEFINITION 10 (WRITE TO A FILE) A write operation, write(f,v), to a
file is allowed if
that is write(f,v) succeeds if all the readers specified in the file label
are contained in the intersection of all the effective readers in the variable label

EXAMPLE 11 (APPLICATION OF FILE RULES) If
and then write(f,v) is granted, even though is

less restrictive than since an owner is removed. Also, when
the operation write (f,v) would be allowed.

Note that having on the file the label is useful in practice. Con-
sider the two operations in sequence write(f,v), read(f,u), where label
of is These operations appear equivalent to the assignment u
= v. However, the subsequent read from file  into the variable with label

is granted, even if is not an owner of while the assignment u =
v is denied since does not hold.

If we allow the write(f,v) only to a file with at least as restrictive a la-
bel, the subsequent read in could not be performed, even if belonged to

So far, all checks done at compile-time are similar to static type-checking:
they make sure that the information flow along the valid paths is correct. In
particular, the compilation of program Prog produces a set of constraints on
the labels of the files and I/O channels that Prog can access. A run-time
mechanism is needed to enforce that only the read and write operations on files
and I/O channels that satisfy these constraints are allowed. Note that the run-
time checks may be independent from the credential of the subject executing
Prog. To clarify these concepts in the following we take a closer look at run-
time checks.

3.2 Run-time checks

If all checks were made only at compile time and any subject could run
the application, then the whole label structure could not guarantee the correct
information flow. For example, if a subject logs into a system to run an ap-
plication to read and write confidential data on a video-terminal, a run-time
check is needed to compare the label of the I/O channels associated with the
subject with the label of the input/output variables declared in the application.
Therefore critical labels must be kept at run-time and some correlation must be



Gudes, Mancini, & Parisi-Presicce 133

checked between the subject running the application and the subjects appearing
in the label of the variables.

A read operation read(IN,v) from an input channel I N succeeds if
that is, read(IN,v) is allowed if the label of the vari-

able is at least as restrictive as the label of the Input channel. Note that
the label may be determined by the authorization subsystem at run-time
on the basis of the credentials of the subject associated with the channel I N (a
typical example of such a channel is the subject’s keyboard). Of course, also
the label of the variable where the data is read from IN must be kept at
run-time.

A write operation write(OUT.v) to the output channel OUT is allowed if

Note that the label may be determined at run-time according to the
credentials of the subject which is associated with the channel OUT (a typical
example of such a channel is a printer or a video-terminal).

Consider the sequence of the two operations read(f,v); write(OUT,v)
executed by a subject to display the content of a file    on a video-terminal
associated with the output channel OUT.

For the operation read(f,v) to be granted, we must have
which, by Propositions 2 and 5, implies
If also the write(OUT,v) is granted, then it must be

Hence
holds. This means that the union of all the readers in the label of the Output
channel is contained in the intersection of the readers of file   that is a subject
that displays a file must be authorized by all the owners of

THEOREM 12 (SAFE INFORMATION FLOW) Under the conditions in Def.
6, information flow from a file (channel) to another file (channel) is safe.

The proof is straightforward and will not be detailed here due to space lim-
itations.

3.3 The problem of Covert Channels
In the discussion on I/O channels above, we assumed that the program con-

tains read or write operations to I/O channels, and the subject running the
program is associated with the I/O channels accessed by the program and this
correlation is checked at run-time.

A different situation occurs when the program performs only I/O operations
on files. Who can execute such a program? What run-time checks are needed?
In this situation, an illegal information flow outside the system may occur due
to covert channels.



134 DATA AND APPLICATIONS SECURITY XVIII

In the following discussion, we assume that, from the point of view of the
operating system, the subjects mentioned below (i.e. have the
right to execute the program.

Consider a program progR that executes the operation read(f,v), that is,
progR attempts to read a file   with label for
example, into a local variable Subject should be allowed to execute the
program and read since is authorized to read the file by all the owners.

Can a subject that does not appear in the label be allowed to execute
progR ? Note that if we allow to execute read(f,v) and read from file to

cannot write into private files or other I/O channels because of the
compile-time checks. However, could try to leak the contents of through a
covert channel. For example, could design and execute a program ProgCC
that first reads a sensitive file  and then leaks its contents via a covert channel
implemented by ProcCC itself. But, subject should be allowed to execute
progR, since is in the policy of With such a restriction, the information
that might leak is the one that is authorized to read, and could be leaked
by anyway employing any other malicious covert channel; while without our
restriction could leak the content of a file that is not authorized even to
read. The above restriction must be enforced at run-time. It is worth noting the
inevitability of covert channels whenever run-time checks are present. This
problem arises because the run-time check may fail, and the fact of failure
(or its absence) may lead to a leak of information via covert channel. Thus,
limiting the class of users that can execute the program, reduces this risk of
covert channels.

Consider another program progW that executes the operation write(f,v),
that is progW attempts to write into a file Should we check which subject
can run progW as well? This is not necessary, since the compile-time checks
enforce the outwards information flow defined by the labels. Note, however,
that one may employ additional access control policies, to limit the set of sub-
jects who can write into a file. See also our discussion of Database access in
Section 4.

To summarize this point, we check at run-time the subjects running an ap-
plication for two purposes: 1) if the subject is not an owner, then limiting the
execution only to subjects appearing in one of the label entries of the input
channels has the advantage of restricting leakage via covert channels; 2) if the
subject running the application is an owner, then some form of declassification
is possible while keeping control over the dissemination of the information
(see next section).



Gudes, Mancini, & Parisi-Presicce 135

3.4 Declassification
Our approach to declassification is that only owners of I/O channels and

files can declassify information. This choice is inspired also by the originator
controlled release model used by the DoD/Intelligence community.

The check on information declassification can be enforced both at compile-
time or at run-time, based on the Authority predicate and the Declassify op-
erator, discussed in Section 2. In addition, we want a principal specified in
the authority predicate to be allowed to perform declassification only of in-
formation he owns. If the Authority predicate is employed to specify, in the
code, the list of principals that can execute a program, then we can check at
compile-time that every principal in that list is contained in the intersection of
all the owners of all the files and input channels read by the program. If this
is the case, then the Declassify operators present in the program are allowed,
otherwise a compile-time error is returned. Of course, the compile-time check
of declassification is quite restrictive, since not every execution will involve
reading from all files. The difference between the above check and the check
in [5] is that now the parameter to Declassify need not be explicit, thus the
program may be more general (even though it involves more overhead...).

PROPOSITION 13 The “only owners” compile-time check is at least as re-
strictive as the check in [5].

The proof is direct. Every explicit principal in Declassify of [5] must have
an owner policy, which means it is the owner of one of the read files, which is
a necessary condition to being in the intersection of all owners of read files.

A less restrictive (and more precise) approach involves a run-time check.
However, a run-time check requires to collect the information flow at run-time
(similar to what is done by the Message filter approach of Jajodia et al [9]), and
to check each invocation of a declassify operator( DO) against the collected
flow up to the invocation point of DO (making sure that the principal executing
the program is actually in the intersection of the set of owners of the current
flow). Note that compared to the overhead in [9], there is less runtime overhead
here, since we only need to store labels of files and input channels.

Summarizing, a compile-time approach restricts to the worst case the set of
principals who can run a declassification program, while a run-time approach
has a higher overhead, since it implies collecting the information flow and
checking it for each declassify operator invoked.

The next example shows the interaction of the file operations and of the
declassification issue in this model.

EXAMPLE 14 (UPDATING A CUSTOMERS-ACCOUNT FILE) Consider a
customer accounts file in a database and a customer who wants to read his
account data, and update some personal information. The customer subject is



136 DATA AND APPLICATIONS SECURITY XVIII

and the customer’s private file is owned only by and only can read
the file, that is, the private file is labeled by Similarly, the customers
accounts file in the database is owned by the database administrator and
its label is so only can read/write to that file. Here are two
scenarios (see Figure 1):

Figure 1. Accounts database example.

Scenario A
Owner wants to update his account in the database with information from
his private file. Then, reads his private file into a variable with label

and variable is passed as a parameter to a program QW that updates the
account data of into the customer account file. Program QW manages an
array of slots V[n], each slot is labeled statically with label
where represents the i-th customer. QW compares the parameter label of

with the label of the field V[j], using a switch or an if statement (like in the
JFLOW language [4]), and sets if the two labels agree. Now, assume
that V[j] has been updated on behalf of and has been labeled

to allow the actual update of the database. Then, should declassify V[j]
and set it to only.

Next, the program QW invokes another program Q’ with the privileges of
(in the Unix system the program Q’ could be implemented as a

process) and passes to Q’ the parameter V[j] to update the database. Since the
label of V[j] now equals that of the customer accounts file owned by the
update of the database can be performed.

Scenario B
Owner wants to read his account information from the database into a pri-
vate file. Subject may call a program QR with passing, as a
parameter, a variable labeled QR can read the customer accounts
database with privileges, and can enter the information into a QR local



Gudes, Mancini, & Parisi-Presicce 137

variable with label Then, QR declassifies this information
removing from the label of which becomes  Program QR can
do this since QR is running on behalf of the owner of the database. Next,
the program QR sets with the information read from and returns to
Now can write the information back into his private file, since the label of
is

The above two scenarios show that even under the restriction that only owners
can declassify information, reads and updates of personal information into a
shared database can be performed.

3.5 Administration and Delegation
In this section we discuss the policies to manage and administer file labels.

Suppose a file has a label The following are possible administrative
operations that can change labels of files:

Grant read - any listed owner can perform this operation, e.g., owner
can change the label to granting read privileges to

Grant ownership - this operation adds an owner to the label. Any listed
owner can perform this operation, e.g., owner can change the label
to Of course a more restrictive policy is also
applicable, where only a specific owner (e.g. the super-user) can perform
a grant ownership.

Revoke read access - any listed owner can perform this operation by
deleting a reader from his list.

Revoke the ownership of another owner - in our model all owners are
equal, so no owner can revoke another one, unlike the SQL database,
where the Grant hierarchy is preserved.

Revoke self-ownership - we call this operation Administrative Declassi-
fication that any listed owner can perform by deleting himself from the
owner field of the label.

1

2

3

4

5

3.5.1 Uses of administrative declassification. Administrative declas-
sification is necessary to manage file labels. One interesting use of it is to
deal with the problem of NON-originator controlled release. In an originator
controlled release policy, the originator always maintains control on the infor-
mation flow, even if it is copied to other files. This is the case also with the
basic labels model, where the owners always maintain control. Now, some-
times an owner wants to have another user copy his file and to remove himself
as responsible for this file.



138 DATA AND APPLICATIONS SECURITY XVIII

Suppose is the owner of with label and wants to give to
a file  a copy of without appearing as an owner of How can this
be done in our model? There are two ways:

Subject creates a file  with both and as owners and adds
as a reader in the label of Now subject can copy the file to
since the label of is more restrictive than the label of Finally,
removes himself as an owner of and removes as a reader from

Subject creates a file with only as an owner. Subject adds
as an owner for temporarily, and then reads file  in a local

variable, declassifies the data by removing his owner entry (i.e. the data
are temporarily owned only by and writes it into Finally, uses
administrative declassification to remove himself as an owner of file

Basically, the difference between the two scenarios is on who does the copy-
ing, but either way, must be involved into resigning from the originator
control on his data. That is, cannot remove his own responsibility without
performing an explicit operation.

4. DATABASES AND VIEWS

The decentralized labels approach can be extended to databases, both for
compile time and run-time. A run-time information flow approach was inves-
tigated by Samarati et al. [9, 10]. A compile time approach for object-oriented
databases was investigated by one of the authors in [8]. For this paper we do
not distinguish between relational and object-oriented databases, but assume
that all authorization information is associated with a View.

At this point we assume that a view has a single owner which can do the
following:

grant access on the view to other users (read or write or define)

grant access with grant option. Users who get grant access can grant
access to other users. Users who get both define and grant access can
define new views based on their view and grant access to the new views
to other users. A user who defines such a view becomes its owner.

1

2

In addition, we note the following:

The view grant structure is known at compile time, and can be used by
programs which use the view.

The set of subjects who received read access on a view directly or indi-
rectly is called the Closure of the view - clos(V). Obviously if view
is derived from view then contains



Gudes, Mancini, & Parisi-Presicce 139

Programs access the database by issuing a query on the view.

Since clos(V) is known at compile time, the query’s label can be di-
rectly computed. However, since the query may not access all the attributes
of the view, it is necessary to compute the closure of each accessible at-
tribute separately. For an attribute A, we denote by clos(A, V) the closure
of A with respect to view V and define it as

 derived from V,  can read That is, the closure includes all the
users granted read access for the relevant attributes via the original view, or via
any view derived from it.

In order to define the label of A with respect to V, we need to consider the
owners of the different views which derive V. Therefore, we define the label of
A with respect to V as:

the label of a query accessing attributes A, B via the views and
is and respectively (i.e. the
query accessing has a more restrictive label.)

the label of a query accessing attributes C, D via the views and is
and respectively.

the label of a query accessing attributes A, C via the view is

The above discussion defines how to compute the label label(Q, V) for a
query Q at compile-time. Using the above definitions one can define the no-

is V or derives V,
and This definition is justified as follows. Whenever we
go up in the hierarchy, we are more restrictive, since we potentially add more
owners, ( so the basic view will have only one owner in the label ). It is also
justified by noting that revocation of rights in SQL databases is recursive.

To define the label of a query with respect to a view, we require that all the
attributes that the query may access be defined in the view.

DEFINITION 15 (QUERY LABELS) The label of a query Q which accesses
attributes of a view V is:

This label is defined as the set of owners of each of the derived views that
contain all attributes accessed by the query, and the set of all the readers who
have access to all the attributes appearing in the query (for that view).

Figure 2 illustrates this definition. The figure shows a view with attributes
A, B, C, D, and two views and derived from it, and the readers who have
access to each view. Assume that the owner of and is and the owner
of is then

is V or derived from V,
and



140 DATA AND APPLICATIONS SECURITY XVIII

tion of safe flow for databases similar to that of files, and apply both compile-
time and run-time checks. We will not discuss it further here due to space
limitations.

Figure 2. Example for Views labels.

5. CONCLUSIONS
Maintaining and enforcing the privacy and secrecy of data is recognized

as a difficult problem, more so in an environment with decentralized control.
Information flow control with the decentralized label model [6] is a step in the
right direction. In the present paper, we have extended this work to deal in
more details with files and I/O channels in section 3 and with databases and
views in section 4. In the process, we have argued that the rule is
too restrictive for many situations involving files and proposed more relaxed
constraints that consider the readers to whom all the owners grant access.

Run-time checks are necessary to allow this form of controlled declassifi-
cation. Though covert channels are possible, their impact can be limited by
verifying the rights of the executors of a program.

Another issue is Administration. We have shown how various policies such
as Delegation or Non-ORG control can be implemented using our model.

Among the several directions for future work is the investigation of alterna-
tive policies for declassification based, for example, on the presence of a given
reader in the majority of the sets readers(L, o), or in all the sets readers(L, o)
for a qualified subset of owners. Under investigation is also the problem of us-
ing the principal hierarchy to control the delegation, from an high level subject

to a lower level subject For example, if a supervisor wants a tech-
nician to run a backup program on his behalf, with our run-time policy the
technician cannot, unless is included in the label of the files. A useful ex-
tension of this policy would allow to run the backup if has an ancestor,
with respect of the principal hierarchy, appearing as a reader in the label of the
files.

Finally, we like to add that the definitions and proofs provided in this paper
are quite intuitive. Our current research aims to develop a formal language and



Gudes, Mancini, & Parisi-Presicce 141

formal derivation rules on the labels, in the style of [6], to assist in the static
analysis of the information flow.

Acknowledgments

This research was performed in part during a visit by the authors at the Cen-
ter for Secure Information Systems at George Mason University, VA (USA).

References

D. E. Bell and L. J. LaPadula. Secure Computer System: Unified Exposition and Multics
Interpretation MTR-2997, MITRE Corp., Bedford, MA, March, 1976. reprinted in J. of
Computer Security vol.4, no.2-3, pages 239–263, 1996.

J. A. Goguen, and J. Meseguer. Security Policies and Security Models in Proc. 1982
IEEE Symposium on Security and Privacy, Oakland, CA, pages 11–20.

J. McLean. Reasoning about Security Models, in Proc. 1987 IEEE Symposium on Se-
curity and Privacy, Oakland, CA, April 1987, pages 123–131. Also in Advances in
Computer System Security, vol. III, ed. R. Turn, Artech House, Dedham, MA, 1988.

A. C. Myers: JFlow: Practical Mostly-Static Information Flow Control. Proceedings,
POPL 1999: 228-241

A. C. Myers, and B. Liskov. Protecting Privacy using the Decentralized Label Model
. Trans. on Software Engineering and Methodology, vol.9, no.4, October 2000, pages
410–442.

A. C. Myers, and B. Liskov. Complete, Safe Information Flow with Decentralized Labels.
in Proc. IEEE Symposium on Security and Privacy, Oakland, CA, May 1998, pages 186–
197.

R. Sandu and P. Samarati. Access Control: Principles and Practice. IEEE Communication
Magazine, pages 40–48, 1994.

M. Gendler and E. Gudes, “A compile-time Flow Analysis of Transactions and Methods
in Object-oriented databases,” Proceedings, 11 IFIP WG11.3 Database Security Confer-
ence, Lake Tahoe, CA. 1997.

P. Samarati, E. Bertino, A. Ciampichetti and S. Jajodia “Information Flow Control in
Object-Oriented Systems,” IEEE Trans. on Knowledge and Data Engineering, July, 1997,
9(4), pages 524–539.

P. Samarati, E. Bertino, A. Ciampichetti and S. Jajodia: Exception-Based Information
Flow Control in Object-Oriented Systems. TISSEC 1(1), pages 26–65 (1998)

S. Jajodia, R. Sandhu: Towards a Multilevel Secure Relational Data Model. Proceedings
SIGMOD Conference 1991, pages 50–59

S. Chen, D. Wijesekera, S. Jajodia: Flexflow: A flexible flow control policy specification
framework Proceedings of IFIP WG11.3 Int. conference on data and application security,
Estes park, Co., 2003.

Yasuhiro Kirihata and Yoshiki Sameshima: A Web-based System for Prevention of Infor-
mation Leakage proceedings of WWW2002, 2002.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]


