
SCHEDULING WITH RELEASE TIMES
AND DEADLINES ON A MINIMUM
NUMBER OF MACHINES *

Mark Cieliebak1, Thomas Erlebach2, Fabian Hennecke1,
Birgitta Weber1, and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zurich,
8092 Zurich, Switzerland

cieliebak, hennecke, weberb, widmayer @inf.ethz.ch

2Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
8092 Zurich, Switzerland
erlebach@tik.ee.ethz.ch

Abstract In this paper we study the SRDM problem motivated by a variety of practical
applications. We are given jobs with integer release times, deadlines, and
processing times. The goal is to find a non-preemptive schedule such that all
jobs meet their deadlines and the number of machines needed to process all jobs
is minimum. If all jobs have equal release times and equal deadlines, SRDM
is the classical bin packing problem, which is The slack of a
job is the difference between its release time and the last possible time it may
be started while still meeting its deadline. We show that instances consisting of
jobs with slack at most one can be solved efficiently. We close the resulting gap
by showing that the problem already becomes if slacks up to 2
are allowed. Additionally, we consider several variants of the SRDM problem
and provide exact and approximation algorithms.

1. Introduction

In this paper we study the SCHEDULING WITH RELEASE TIMES AND DEAD-

LINES ON A MINIMUM NUMBER OF MACHINES (SRDM) problem: Given
jobs, each associated with a release time, a deadline, and a processing time,
what is the minimum number of identical machines that a non-preemptive
schedule needs such that all jobs meet their deadlines?

*Work partially supported by the EU Thematic Network APPOL II, IST-2001-32007, with funding provided
by the Swiss Federal Office for Education and Science.

210

The task to process all given jobs within certain time frames and minimize
the number of needed machines has recently gained new interest [5] and ap-
plies to many practical applications. For example, consider a workshop with
a variable number of repairmen. In the morning the boss gets a number of re-
quests from customers. Each customer has a certain time window in which a
repairman is allowed to visit. If there is no traveling time between customers,
the SRDM problem is equal to finding the minimum number of repairmen
needed for this day. If all time windows are equal, SRDM is the classical bin
packing problem [8, 10]. On the other hand, if the time window of each cus-
tomer is exactly the repair time, the number of needed repairmen is the same
as the clique number of the corresponding interval graph.

The variant of SRDM where the goal is to decide whether all jobs can be
scheduled on one machine is known as “sequencing with release times and
deadlines”. It is strongly [10]. This implies that there cannot be
an approximation algorithm for SRDM with ratio for any

Related Work Machine scheduling problems have been the subject of ex-
tensive research and numerous publications (see [11] for references). Recently
two variants of machine scheduling problems have gained a lot of interest:
real-time scheduling [1–3], and the job interval selection problem (JISP) [6,
9, 14]. For the real-time scheduling problem the input consists of jobs and

machines. Each of the jobs is associated with a release time, a deadline, a
weight, and a processing time on each of the machines. The goal is to find
a non-preemptive schedule that maximizes the sum of the weights of the jobs
that meet their deadlines. The input of the JISP consists of a set of jobs and
an integer value Each job consists of a number of intervals on the real line.
The goal is to select a subset of intervals with maximum cardinality such that
at most one interval is selected for each job, and for any point on the real line
at most intervals containing are selected. An optimum schedule for these
two problems in general just processes a subset of all jobs.

For the real-time scheduling problem constant approximation algorithms are
known. In [2] Bar-Noy et al. presented an LP-based approach, whereas in [1]
and [3] Bar-Noy et al., and Berman and DasGupta proposed combinatorial al-
gorithms. If the number of machines for the JISP is one, Spieksma proved
in [14] MAXSNP-hardness for this problem and proved that a greedy algo-
rithm gives a 2-approximation. In [6] Chuzhoy et al. presented an

algorithm for JISP.
Very recently Chuzhoy and Naor [5] have studied the machine minimiza-

tion problem for sets of alternative processing intervals. The input consists of
jobs and each of them is associated with a set of time intervals. A job is

scheduled by choosing one of its intervals. The objective is to schedule all
jobs on a minimum number of machines. Chuzhoy and Naor [5] have shown

211

unless

Model and Notation Each job of the input is associated with a release
time a deadline and a processing time where and are integers and

The interval is the window in which an interval of size
will be placed. If the size of the window is equal to the job occupies
the whole window. If the window of a job is larger than its processing time,
the choice of a schedule implies for each considered job shifting an interval
(the processing interval) into a position within a larger interval (the window).
Therefore, we use the notation of interval graphs and shiftable intervals [12]

The difference is the slack and corresponds to the
maximum amount the interval can be moved within its window. The flexibility

This position is described by a placement The processing in-
terval according to a placement is denoted by The
range within the window that the interval has to occupy for every placement is
the core. If the slack is smaller than the processing time, the core is the interval

otherwise the core is empty.
For an of shiftable intervals,

defines a placement, where for the value is the placement of
the shiftable interval Both and together describe a finite collection
of intervals and can be interpreted as an interval
graph G. For the definition of interval graphs see [4]. Since one machine can
process only one job at a time, the maximum number of overlapping intervals
corresponds to the minimum number of machines needed to process all jobs.
This value is equal to the size of a maximum clique of the interval graph G and
can be determined by a sweepline algorithm in time

The domain D of the input is the interval where is the ear-
liest release time and is the latest deadline. Let be the number
of overlapping intervals at point The maximum number of overlapping
intervals over all possible is the height of which is denoted by

We denote the minimum height over all placements by
The SCHEDULING WITH RELEASE TIMES AND DEADLINES ON A MINI-

MUM NUMBER OF MACHINES (SRDM) problem is defined as follows:

The decision version of the problem is An instance is a yes-
instance, if and only if a placement exists such that the height of the corre-
sponding set of intervals is less or equal to

INSTANCE:
SOLUTION:
MEASURE:

An of shiftable intervals.
A placement
The height of the interval set

that their machine minimization problem is to approximate

of an interval in its window is described by the ratio
For every interval we have to select a legitimate position within its window.

212

The interval graph of all non-empty cores of the shiftable intervals in
is the core graph. Analogously, the window graph is the interval graph of the
windows of The maximum cliques of the core and window graphs obviously
determine lower and upper bounds for

In this paper we will present algorithms which use the maximum slack

function of a placement for is a function where is mapped
to the number of intervals of which contain the point

Our Contribution In this paper, we give several exact and approxima-
tion algorithms for the SRDM problem and special cases of it. We start with
presenting exact algorithms for the SRDM problem. In Section 2.1 we give a
polynomial time algorithm for instances with Then we develop two
dynamic programs for the decision version The first one considers
instances where the maximum slack is smaller than the minimum processing
time. Its running time is exponential in The second can be used for any in-
stance. Its running time is exponential in the maximum number of overlapping
windows.

In Section 3 we describe several approximation algorithms. We explain how
filling machine by machine leads to a to SRDM. For
restricted instances we develop algorithms with a constant approximation ratio.
We show that for small windows even an arbitrary placement is a good approx-
imation. The Greedy Best Fit algorithm is an asymptotic 9-approximation for
instances with equal processing times. This algorithm can be extended for
instances with a restricted ratio of processing times. For the general case we
show that the number of machines determined by this algorithm can differ from
the optimum value by a factor of In addition we study a few special
cases. We present an asymptotic 4.62-approximation algorithm for SRDM in-
stances where all jobs have equal release times. If the window graph is a clique
we present an asymptotic 14.9-approximation.

Since the SRDM problem is easy to solve if is 0 or 1, we aim to
understand instances where the slack is bounded. We will prove in Section 4
that the problem is already for instances with every fixed

A full version of this paper can be found in [7].

2. Efficient Solutions for Special Cases

Although the SRDM problem is in general, some problem in-
stances can be solved efficiently. In this section we propose a polynomial time
algorithm for cases with and we present two dynamic programs for
restricted instances of SRDM. The first approach deals with instances with
small slack compared to the processing times, whereas the second has a poly-

and maximum flexibility over all shiftable intervals. The height

213

nomial running time if the maximum number of overlapping windows is con-
stant.

2.1 A Polynomial Time Algorithm for SRDM
with Maximum Slack 1

Next we present a polynomial time algorithm for SRDM instances with

THEOREM 1 The SRDM problem with maximum slack at most 1 can be
solved in polynomial time.

Proof. We solve the decision version and use binary search to
determine the minimum value for Let the input instance
with domain D contain shiftable intervals with slack 1, and shiftable
intervals with slack 0. If the height of the cores is greater than
is a no-instance.

The placement of a shiftable interval with slack 1 is either 0 or
1. Hence, the corresponding interval contains either the point or

This observation leads to the following network flow formulation.
Initially, the network contains nodes and representing the source and the
sink. For every shiftable interval in with slack 1 we add a
node Next we introduce a node for every integer value where the
number of overlapping windows at point is strictly larger than the number
of overlapping cores at The number of is at most The source
is connected by an edge of capacity 1 to all nodes representing a shiftable
interval The node has two outgoing edges, having
capacity 1, to the nodes and There is an edge from every to the
sink Its capacity is the difference between and the height of the cores at

A flow on edge determines a unique placement of the shiftable in-
terval such that it contains The capacity on edge guarantees that

is at most for all Thus, a maximum flow of size from
to returns a placement for the input such that If the

maximum flow is less than is greater than The decision version
can be solved in time using the maximum flow algo-

rithm presented by Sleator and Tarjan [13].

2.2 Dynamic Program for Rather Stiff Instances

In the following we only consider instances for where the
maximum slack is less than the minimum processing time For those
instances the sequence of the jobs on one machine is already determined by
their release dates. Thus, if the shiftable intervals
are ordered by non-decreasing values, then it is possible to schedule the first

214

jobs on machines if and only if the first jobs can be scheduled in
such a way that there exists at least one machine with enough remaining idle
time to process the job afterward.

We recursively compute table F, where indicates for
whether it is possible to schedule the first jobs such that for all
machine finishes its last job no later than We start with
TRUE for all integers within the domain and recursively define

The value of where is the right endpoint of the
domain, indicates if all jobs can be scheduled on machines. If L denotes the
width of the domain of the given shiftable intervals, the total effort to calculate
the whole table is where the last factor results from evaluating
the right hand side of the recursion above. So we have the following theorem:

THEOREM 2 For an instance of with there exists a
dynamic program that computes the optimum solution with running time

where L denotes the width of the domain of the instance.

2.3 Dynamic Program for Bounded Number of
Overlapping Windows

THEOREM 3 The problem can be solved in time
where H is the maximum number of overlapping windows and

the number of shiftable intervals.

Proof. W.l.o.g. we assume that the window graph for a given of
shiftable intervals is connected. Let be
the sorted set of all distinct left window endpoints, with For
let be the set of all indices of shiftable
intervals whose windows contain A local placement P for is a mapping

where describes job placement.
We say that a local placement P for is feasible if the resulting height of

the local placement is at most and either or there exists a feasible
local placement Q for such that for all

The program checks for increasing the feasibility of all possible
local placements for The information which is relevant for the next step
is stored in a table. Assume there exists a feasible local placement for
If then is a placement of all jobs in Otherwise there exists a
feasible local placement for such that and place the jobs
with indices from in the same way. Iteratively we know there exists

215

a sequence of feasible placements for which represents a
placement for all jobs. On the other hand, if we are given a placement for
the input such that the restriction of to gives a feasible
local placement for Details of the running time analysis are omitted due to
space restrictions.

3. Approximation Algorithms for SRDM

In this section, we develop and analyze approximate solutions. We start
with an intuitive approach of iteratively filling machines. We show that an
arbitrary placement is a good approximation if is small. We develop the
Greedy Best Fit algorithm, which is a good approximation for instances where
the processing times do not differ very much. A lower bound for this algorithm
is presented as well. Finally, we study approximation algorithms for instances
where all windows have one common point.

3.1 A Algorithm

A greedy 2-approximation algorithm for the job interval selection problem
(JISP) is presented in [14]. To solve the SRDM problem we use this algorithm
and successively load machines with jobs until no job is left over.

THEOREM 4 Iteratively filling the machines using a constant approximation
algorithm for JISP leads to a algorithm for SRDM.

3.2 Instances with Small Windows

If the ratio of the maximum slack and the minimum processing time
is small, an arbitrary placement of all shiftable intervals is already a good

approximation for SRDM.

THEOREM 5 An arbitrary placement is a for SRDM,
where

Proof. The proof is by contradiction. Assume that, for an of shiftable
intervals with there exists a placement and a point such

that
Let be the subset of shiftable intervals whose windows contain

Using an optimum solution, this subset can be partitioned into at most
sets such that the height of is 1. By for we denote
the restriction of to the set Using an averaging argument we know that
for the placement there exists one with
The number of elements in must be at least Consider a placement

of the shiftable intervals in with W.l.o.g. we assume the
elements in are sorted such that for

216

We consider the points and
By definition of at least intervals can be placed between L and R, hence

Since all windows in contain we know
We obtain which
contradicts our hypothesis.

3.3 The Greedy Best Fit Algorithm

If the ratio between the longest and shortest processing time is bounded
we propose the Greedy Best Fit (GBF) algorithm. This algorithm processes
the shiftable intervals in order of increasing window size. For a job J the
algorithm calculates for every placement the maximum height inside the
interval From the subset of placements which lead to the lowest height, it
chooses the leftmost.

For the analysis of the GBF algorithm, we define the work of a set of in-
tervals I in as the value We start with the case where all
processing times are equal.

THEOREM 6 For a SRDM instance with equal processing times the GBF
algorithm returns a placement such that

Proof. Let be the intervals placed by the GBF algorithm. Denote
Consider the first shiftable interval in whose placement

increases the height to Denote by the set of all intervals which have
been placed so far, not including J, i.e. and
for all placements The size of J’s window is Let denote
the subset of intervals whose intersection with is non-empty and denote
by W the work of in Since the size of the windows of all intervals in

is not greater than L, even an optimal solution has to place them between
and It follows

To obtain a lower bound on W, we construct a set of intervals with the
following properties: the height of is any placement of J increases the
height to and the work of is minimal. Since the placement of J increases

217

the height, there is no range of length between and with height at most
Hence, there must be peaks of height at least every points

within the interval Thus consists of peaks of height

and width and we get a lower bound From the
definition of N we have Since

The idea of the proof above can be extended to instances with different
processing times by constructing the peaks of intervals of size and calcu-
lating their work as if they were of size This results in

If we partition a given instance of SRDM into subinstances such that the
ratios between the maximal and the minimal processing times are bounded by

we obtain

The GBF algorithm can be implemented using 3 nested for loops. The way
we presented it in Algorithm 1 its running time depends on the size of the
domain. With some changes the algorithm can be implemented in time

Lower Bound for Greedy Best Fit. Unfortunately for general in-
stances the GBF algorithm does not have a constant approximation ratio.

THEOREM 9 The height of the GBF algorithm can differ from the optimum

Best Fit algorithm returns a placement with

THEOREM 8 There exists an asymptotic al-
gorithm to SRDM.

THEOREM 7 GBF has asymptotic approximation ratio for SRDM.

N is a positive integer, with the bounds on L and W we have

by a factor of

3.4 Constant Approximation for Complete
Window Graphs

If the release times of all shiftable intervals are equal and all deadlines are
equal as well, we have the classical bin packing problem ([8, 10]). For this
problem constant approximation algorithms and asymptotic polynomial time
approximation schemes are known. Hence it would be interesting to generalize
these results to SRDM instances with a complete window graph.

Equal Release Times. In the following we investigate the case where
all release times are 0 but the deadlines differ.

THEOREM 10 If all release times of shiftable intervals are equal the Divide

218

Proof. The Divide Best Fit algorithm splits into two sets according to their
flexibility values. The set denotes relatively flexible shiftable intervals
where the values are at least The remaining shiftable intervals are
relatively stiff.

For the flexible set the GBF algorithm traverses the shiftable intervals by
increasing right endpoints. It places the intervals as far to the left as possible
such that the height is minimized. This algorithm leads to a collection of inter-

by In the stiff set all intervals are placed
at their rightmost position. The resulting height is at most twice the optimum
height.Using the lower bound on we obtain the stated approximation.

Obviously, the Divide Best Fit algorithm can be adapted to solve problem
instances where the release times differ and all deadlines are equal.
Window Graph Is a Clique. Next we want to generalize the problem
discussed in the previous section and consider instances

of SRDM where all windows have a common point Thus, it
holds for We partition into three disjoint subsets

and The set contains all members of whose cores do not

to the right of Similarly, the set contains all members
of whose cores do not contain and for which The

remaining shiftable intervals are in and have cores overlapping in We
transform into by setting all release times to and into by
setting all deadlines to Now we use the Divide Best Fit algorithm to place

and independently. Finally, we place the intervals in arbitrarily. To
analyze the approximation ratio of the described algorithm, we first show that
the height of the optimum solution for is at most three times the optimal
height for

Proof. We change the optimum placement for such that the resulting place-
ment is feasible for the restricted instance and its height only increases by
a factor of three. We change the placements for all shiftable intervals placed
to the left of If an interval is placed completely to the left of we replace

vals with height It is not difficult to see that can be bounded

contain and for which the part of the window left of is larger than the part

LEMMA 11 The minimum height of can be bounded by

219

it with its mirror image where the mirror is at This is feasible since the part
of the window to the right of is larger than its remaining part. This opera-
tion, carried out for all intervals to which it applies, increases the height of the
placement by a factor of at most 2. If the interval is placed such that it contains

it is shifted to the right of This shifting can increase the height by another
We have a new placement where all intervals are placed to the right of

and its height is at most
The analogous result holds for too. The height of the optimal placement

for is at least the minimum height for every single set and Using
Theorem 10, the placement computed by the algorithm for has height at

most and similarly for Since the domains of
and are non-overlapping, the height of the overall solution computed

by the algorithm is at most
This gives the following theorem.

most

4. of SRDM with Maximum Slack 2

As shown in Section 2.1, the SRDM problem is easy to solve if the maxi-
mum slack is at most 1. Furthermore a very simple approximation algorithm
can be found if the ratio between maximum slack and minimum processing
time is small. Hence, it seems as if small slack makes the problem easy. Sur-
prisingly, already if the SRDM problem is

THEOREM 13 The SRDM problem with

Proof. This proof is by reduction from 3-SAT [10]. The input is a set U of
variables and a Boolean formula in conjunctive normal form. Every clause
C contains 3 literals, where a literal is a variable or a negated variable in U.
3-SAT asks for an assignment to U such that is satisfied. For a Boolean
formula having clauses, we construct a set of shiftable intervals such
that if and only if is satisfiable. W.l.o.g. we assume that every
variable in U occurs in negated and not negated.

The construction of contains generators for variables, clause gadgets and
gadgets for copying values of literals. We are going to explain our construction
with help of Figure 1.
Generator: For every variable we construct a generator with starting point

In our example they are positioned left, indicated by light-grey boxes. A
generator is built out of four shiftable intervals. Two of them have a slack of
zero (are fixed). Both shiftable intervals with slack greater zero overlap one of

THEOREM 12 For SRDM instances where the window graph is a clique,
there exists an approximation algorithm such that the resulting height is at

220

the fixed intervals by 1 unit. These two represent both literals of the variable.
Only one of its literals can be TRUE. An interval in its leftmost position is
interpreted as a literal set to TRUE. Otherwise the literal is set to FALSE.

The endpoints of the windows are defined by a starting point of a copy
gadget, or by a clause. Since at least one of the intervals has to be
shifted to the right and represents a literal which is FALSE. Observe that both
shiftable intervals starting at can be shifted to the right, and thus represent
false. Then the corresponding variable will not contribute to the result.
Copy Gadget for Values of Literals: In a literal can occur more than once.
Thus, the construction of has to ensure that all shiftable intervals represent-
ing the same literal have the same value. To copy values of literals a copy
gadget with the following form is used:

In the example these gadgets are depicted by boxes with round corners.
Within the copy gadget exists only one shiftable interval with slack 2. The
value represents the starting point of the copy gadget.

To not exceed the copy gadget has to work in the following way:
If the original literal is placed left, both copies can also be placed left without
exceeding height 2. On the other hand, if the original interval is shifted to the

221

right, both copies have to be shifted to the right in order to obtain the minimum
height for this gadget.

Observe that for every copy gadget we introduce one shiftable interval with
slack zero starting at zero. To simplify Figure 1 we split some of these intervals
into two parts. It is always possible to shift an interval representing a literal
to its right endpoint, even if it could also be placed left. This would set the
corresponding literal to FALSE. The important point is: if once a literal is set
to FALSE, all copies of this literal will represent FALSE as well.
The Clause Gadget: For every clause a clause gadget is constructed. In Fig-
ure 1 these gadgets are octagons and placed at the right end. Every gadget
is built out of three shiftable intervals representing literals and three shiftable
intervals with zero slack.

The starting points of the literals are defined either by a generator or by a
copy gadget. To not exceed at most 2 of the literals can be shifted
to the right (FALSE). Hence, at least one literal must not be shifted – and
represents a TRUE literal. A clause gadget has its left starting point at an
appropriate position defined by the placement. As indicated in Figure 1, the
value R has to be the same value for all clauses in
Placement of Components: All gadgets have to be placed independently of
each other. As shown in the example, the starting points of the generators dif-
fer and the copy gadgets have their starting points one after the other without
influencing each other. At the right end of the domain the clause gadgets are
placed similar to the generators on the left. The formula contains different
variables, clauses, and hence literals. If there exists a placement for

such that has height then the 3-SAT formula is satisfiable. Since
we placed all gadgets independently, it is essential that all generators and copy
gadgets have height two, and every clause gadget has height three. If no copy
gadget has height three, all literals set to FALSE at their generators are repre-
sented by a shifted interval at the corresponding clause gadget. Observe that
for every placement the height at point R – 1 and 0 is exactly Because
at most two intervals are allowed to be shifted at every clause gadget – to not
exceed the height – at least one interval of every clause gadget must not be
shifted. Thus, if the Boolean formula is satisfiable, a placement for can
be found such that is Otherwise is at least

In the proof of Theorem 13 the maximum flexibility is 2. We can
adapt the gadgets and the placements of the components such that we obtain
the following result:

THEOREM 14 The SRDM problem is for arbitrary

222

5. Conclusion

We studied the SRDM problem, a scheduling problem motivated by a va-
riety of practical applications. We presented positive and negative results, but
there are still open questions. Is there an asymptotic PTAS or an approximation
algorithm with a constant approximation ratio for arbitrary problem instances?
Even if we cannot hope for a algorithm, an asymptotic
PTAS could still exist.

Acknowledgment We would like to thank Riko Jacob for many helpful
comments and suggestions.

References
[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

A. Bar-Noy, R. Bar-Yehuda, A. Freund, J.S. Naor, and B. Schieber. A unified approach to
approximating resource allocation and scheduling. Journal of the ACM, 48(5): 1069–1090,
2001.
A. Bar-Noy, S. Guha, J.S. Naor, and B. Schieber. Approximating the throughput of multi-
ple machines in real-time scheduling. SIAM Journal on Computing, 31(2):331–352, 2001.
P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization for
real-time scheduling. Journal of Combinatorial Optimization, 4(3):307–323, 2000.
A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: a Survey. SIAM Monographs
on Discrete Mathematics and Applications, 1999.
J. Chuzhoy and S. Naor. New hardness results for congestion minimization and machine
scheduling. accepted for STOC’04, 2004.
J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job interval
selection problem and related scheduling problems. In IEEE Symposium on Foundations
of Computer Science, pages 348–356, 2001.
M. Cieliebak, T. Erlebach, F. Hennecke, B. Weber, and P. Widmayer. Scheduling jobs on
a minimum number of machines. Technical Report 419, Institute of Theoretical Computer
Science, ETH Zürich, 2003.
E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for bin pack-
ing: A survey. In D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems.
PWS, 1996.
T. Erlebach and F.C.R. Spieksma. Interval selection: Applications, algorithms, and lower
bounds. Journal of Algorithms, 46(1):27–53, 2003.
M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Com-
pany, New York, 1979.
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and
scheduling: Algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy Kan, and P. Zip-
kin, editors, Handbooks in Operations Research and Management Science, volume 4,
pages 445–522. North-Holland, 1993.
F. Malucelli and S. Nicoloso. Shiftable interval graphs. In Proc. 6th International Con-
ference on Graph Theory, 2000.
D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26(3):362–391, 1983.
F.C.R. Spieksma. Approximating an interval scheduling problem. In International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, volume
1444, pages 169–180. Springer-Verlag LNCS, 1998.

- approximation

[2]

