
SOLVING PACKING PROBLEM
WITH WEAKER BLOCK SOLVERS *

Hu Zhang
Institute of Computer Science and Applied Mathematics
University of Kiel, Germany
hzh@informatik.uni-kiel.de

We study the general packing problem with M constraints. In [Jansen
and Zhang, TCS 2002] a algorithm for the gen-
eral packing problem was proposed. A block solver with
price vector given accuracy and ratio is required. In addition, in
[Villavicencio and Grigoriadis, Network Optimization (1997)] a
approximation algorithm for standard packing problem and its dual
problem was studied, with a block solver (i.e., In
this paper we develop algorithms for the general
packing problem (or with its dual problem), with only weaker block
solvers with same structure as in previous algorithms,
where For both primal and dual problems we design an algo-
rithm with an and The bound on the number
of iterations is polynomial in M, and Furthermore we show an
algorithm for the primal problem with an and
And the bound on the number of iterations is polynomial in only M and

In both cases running times are further improved with correspond-
ing weaker block solvers. This is the first attempt to solve the packing
problem with weaker block solvers.

Abstract

1. Introduction

An interesting class of optimization problems is the packing problem
or convex min-max resource-sharing problem defined as follows:

* This research was supported in part by the DFG Graduiertenkolleg 357, Effiziente Algorith-
men und Mehrskalenmethoden, by EU Thematic Network APPOL, Approximation and On-
line Algorithms for Optimization Problems, IST-2001-32007, and by EU Project CRESCCO,
Critical Resource Sharing for Cooperation in Complex Systems, IST-2001-33135.

294

where is a vector of M continuous convex functions de-
fined on a nonempty convex set and is the vector of all
ones. Without loss of generality we can assume The functions

are packing constraints. In addition, we denote by
for any given There are many ap-

plications of the packing problem. Typical examples include scheduling
on unrelated machines, job shop scheduling, network embeddings, Held-
Karp bound for TSP, minimum-cost multicommodity flows, maximum
concurrent flow, bin covering, spreading metrics, approximating metric
space, graph partitioning, multicast congestion in communication net-
works, and energy consumption problem in ad-hoc networks on general
metric spaces [1–4, 7, 9, 13, 17, 19, 22].

The problem (P) could be solved exactly in polynomial time in its size
usually. However, in some cases an approximate solution is enough (e.g.
[16]). In addition, it is possible that the size of (P) is exponential in the
size of input (e.g. [1, 15, 19]). Thus we consider fast but approximation
algorithms for problem (P). Given an accuracy tolerance the
approximate problem is as follows:

Grigoriadis et al. [5, 6] proposed algorithms for the above problem
based on the Lagrangian duality relation

where
Denoting by it can be verified that a pair
and is optimal if and only if On the other hand, the
corresponding approximate dual problem is:

In addition, the Lagrangian or price-directive decomposition method is
applied in their algorithms, which is an iterative approach that solves

and by computing a sequence of pairs and to approx-
imate the exact solution from above and below, respectively. Grigo-
riadis and Khachiyan [6] proved that and can be solved in

iterations or calls to a standard approximate
block solver that solves the block problem for a given tol-
erance to compute such that

Villavicencio and Grigoriadis [18] proposed a
modified logarithmic potential function to avoid the ternary search and
the number of iterations is also In [14] the
bound was improved to for both and

However, in general the block problem may be hard to approximate
[1–3, 15, 19], i.e., the assumption to have a block solver with accuracy

295

is too strict. Therefore in [14] the authors considered the
case that only a weak approximate block solver is available,
which is defined to compute such that

where is the approximation ratio. The main goal
is to solve the following primal problem (using the weak block solver):

And the corresponding dual problem is:

Jansen et al. [14] developed an approximation algorithm that for any
accuracy solves the in itera-
tions by adding a new stopping rule. Each step calls the weak block
solver once and has an overhead of
arithmetic operations. In addition, for small ratio with
they improved the bound to

Related results: Plotkin et al. [17] considered the linear feasibility
variants of both problems: either to find a point such that

or to find a point such that
where A is the coefficient matrix with M rows and is an M-dimensional
vector. The problems are solved by Lagrangian decomposition with ex-
ponential potential reductions. The numbers of iterations in these al-
gorithms are and
respectively, where is the width of
B relative to However, their algorithms could have only
pseudo polynomial running time due to the parameter Garg and
Könemann [4] proposed a algorithm for the lin-
ear packing problem within iterations, which is inde-
pendent of the width. Unfortunately implementation results show that
their algorithm is very impractical [1]. Young [20] studied also the lin-
ear case of the packing problem but weak block solvers are allowed.
His algorithm uses calls to the block solver, where

and is
the optimal value of the packing problem. Similar to [17], this result also
depends on input data. Furthermore, Charikar et al. [2] noticed that the
result in [17] for the packing problem can be extended also to the case of
weak block solvers in the same number of iterations.
For the covering problem, which is related to the packing problem, Grigo-
riadis et al [8] showed that the number of iterations is
with Jansen and Porkolab [12] studied the general covering prob-
lem with only weak approximate block solver and showed that at most

296

coordination steps are necessary. Recently
Jansen [10] improved the bound to which is
same as the bound in [14] for the packing problem. In addition, Young
[21] proposed an approximation algorithm for a mixed linear packing
and covering problem with the number of iterations
where is the maximum number of constraints any variable appears in.
Jansen [11] further improved the bound to which is
also the first result independent of data for the mixed problem.

Our contribution: We notice that in [18] a so-
lution for and can be obtained with a
block solver, while a solution for with a

block solver as well. Thus it is an interesting
problem to solve with either a or a
approximate block solver, where In this paper we develop al-
gorithms for the above problems. First, we show a
algorithm for both and with only an
where and the number of iteration is bounded
by We then improve the coordi-
nation complexity to in but an

is required, where
for a constant Notice here Fur-

thermore, for only we develop a algo-
rithm with an with

And the bound on the number of iterations is
which is also improved to in

with an for an These algorithms are the first
ones to solve general packing problems with only weaker block solvers.

Applications: One application is the case that the block problem
only has an algorithm with a running time depending on input value
power to a function of for instance, In this case, to solve
both problem and we just need a
block solver, or a block solver to solve only

Thus the running time of ABS can be reduced and the overall
running time, which is the product of the bound on number of iterations
and the running time of ABS, can decrease considerably. Another very
interesting case is that the requirement of approximation ratio to block
solver is too strict, i.e., only a or
block solver exists, where For this case, if

or respectively, we are able to also use
our algorithms to solve the instance.

The paper is organized as follows: In Section 2 the potential function,
price vector and their properties are reviewed. The algorithm is pre-

297

sented in Section 3, as well as algorithm in Section 4. Improvements
of running times are also addressed. Due to the limit of space, proofs
are not given in this version.

2. Modified logarithmic potential function

We use potential function to relax the packing constraints and show
that an approximation of the minimum value of potential function cor-
responds to an approximation of Thus the original problem can be
replaced by finding a good approximate minimum point of the (smooth)
potential function. The modified potential function is defined as follows
[14, 18]:

where and are variables, and is a given tol-
erance parameter, which is also used in the approximate block solver

Same as [14, 18], in our algorithm, the values of will
be from O(1) down to where is the desired accuracy tolerance.
Since where the function

is well-defined. In addition, it has the barrier property:
for and

The reduced potential function is defined as the minimum of
over for a fixed i.e.

It can be proved that is the solution to the following equation:

The function is strictly decreasing in in
Therefore the implicit function is the unique root of (3)

in the interval and are bounded by the following
lemmas, same as [14, 18].

LEMMA 1 for any

LEMMA 2 for
any

298

The price vector is defined as follows [14, 18]:

The following lemma holds:

LEMMA 3 and for any

3. Approximation algorithm

In this section we will study the algorithm which solves both pri-
mal problem and dual problem with a weaker block solver

where Compared with that in
[18], the block solver employed here is weaker.

The algorithm works as follows. We apply the scaling phase strategy.
In each scaling phase an error tolerance is set. Based on the known
pair of and a solution is delivered by the approximate block solver.
Afterwards an appropriate linear combination of the old solution and
block solution is computed as the new iterate. The iteration stops
when the solution satisfies a stopping rule (defined later). After one
scaling phase, the error tolerance is halved and the next scaling phase
starts until the error tolerance The pair and generated by
the last scaling phase solves both and (see Subsection 3.1).

The minimum dual value can be approximated by where
is the solution computed by the weak approximate block solver for the

current price vector Furthermore, to establish the stopping rule of
the scaling phase in algorithm the value of duality gap should be
estimated in each iteration. Thus we define the stopping rule as follows:

where This stopping rule is similar to that
in [18] (which is only valid for a standard block solver), but with an
additive term in the left hand side and is replaced by Only in this
way can we obtain the desired solution with a weaker block solver. In
addition, the stopping rule (5) is also different from the first one in [14].
We set for the error tolerance in the block solver
To run the algorithm, we need an initial solution Here we
use the solution of the block solver as where the
price vector is the vector of all 1/M’s and the initial error tolerance

299

3.1 Analysis of algorithm

In this subsection we first show the correctness of algorithm by
proving that if the algorithm stops, the delivered pair and is the so-
lution to and Afterwards, we will prove that the algorithm
stops in each scaling phase after a finite number of iterations. From now
on for convenience we denote
and in this section. First we have the following bound on the
initial solution similar to that in [14].

LEMMA 4 If is the solution of then

Before proving the correctness of the algorithm the following tech-
nical lemma is needed to show that even though there is no guarantee
that the sequence of values computed by algorithm is decreasing,

can increases only slightly in each coordination step:

LEMMA 5 For any two consecutive iterates and within a scaling
phase of algorithm

Now we show that algorithm is correct.

THEOREM 6 If algorithm stops, then for any the pair
and delivered solves and with an approximate block solver

where

300

The remaining task is to prove that the algorithm will halt in finite
number of iterations. In order to do so, in the next lemma we show that
the reduced potential function decreases boundedly by a constant
factor (depending on parameters and in each coordination step.
This helps us to prove an upper bound on the number of iterations.

LEMMA 7 For any two consecutive iterates within a scaling
phase of algorithm

THEOREM 8 For a given accuracy tolerance the number of
coordination steps of algorithm is bounded by

Similar to the special case of small discussed in [14], from the The-
orem 6 we immediately have the following result:

COROLLARY 9 If algorithm generates a pair and as
the solution to and with a weak block solver
within iterations.

Remark: It is worth noting that to compute price vector (4), equa-
tion (3) should be solved to obtain while it only can be solved
approximately by numerical methods. The way to avoid the influence of
numerical error is discussed in [8, 14, 18]. And the numerical overhead
in each coordination step can be bounded by with
the Newton’s method.

3.2 Better running time

In [14] it is mentioned that both and can be solved in
iterations with an

However, by Theorem 6 we are only able to show that the bound is
for algorithm to solve and

with In this way we are going to develop another
algorithm to obtain a better running time with a new block solver

where for
a constant Notice here

The stopping rule of is as follows:

where And other parts of algorithm
are same as Lemma 4 and 5 are still valid in this case. Then the
following theorem holds:

301

THEOREM 10 If algorithm stops, then for any the pair
and delivered solves and with an approximate block solver

As for the running time, we have the following lemma for the bound
on increase of reduced potential function similar to Lemma 7:

LEMMA 11 For any two consecutive iterates within a scaling
phase of algorithm

In this way we can follow the proof of Theorem 8 to obtain the number
of iterations of algorithm Since here is a constant in (0, 1/8), we
have the following bound:

THEOREM 12 For a given accuracy tolerance the number
of coordination steps of algorithm is bounded by

This bound is exactly the same as mentioned in [14]. But here we still
get some improvement of the approximation ratio though it is not as
good as algorithm

4. Fast approximation algorithm for

In this section, based on the algorithm in [14], we will propose a fast
approximation algorithm only for with where

The algorithm works similarly to The scaling phase strategy is em-
ployed, and in each scaling phase a relative error tolerance is set. We
have two stopping rules here and the iterative procedure in one scaling
phase stops if any one of them is fulfilled. Then the error tolerance is
halved and the new scaling phase starts in the same way as in algorithm

until the error tolerance The solution delivered in the last
scaling phase solves (see also Subsection 4.1).

We also estimate the duality gap to construct the stop rule. For our
first stopping rule a parameter is defined as follows (same as [14, 18]):

If then the duality gap is small. However, in the case that
is large and close to 1, the gap may be extremely large [14]. To obtain a
better bound on the number of iterations, we define another parameter
to connect the function value with the solution of previous scaling phase.

302

Let be the relative error tolerance of the scaling phase. Then
similar to [14], the parameter is defined as follows:

Let be the solution of scaling phase. Then the two stopping rules
used in the scaling phase are:

where and the parameter
The stopping rules here are similar to those in [14]. But the latter are
only for the case of an

We set for the error tolerance in the block solver
in algorithm We use the solution of the block solver
as initial solution where the price vector is still the vector of all
1/M’s and the initial error tolerance

The step length is set as
similar to [14, 18].

303

4.1 Analysis of the algorithm

We are going to analyze the algorithm is this section. We will show
the correctness, i.e., to prove that the solution of the last scaling
phase is a solution to Then we will prove that the bound on the
number of iterations such that the algorithm stops is polynomial only
in M and From now on we denote

and First we can obtain the following bound on
the function value of the initial solution similar to that in [14, 18].

LEMMA 13 If is the solution of with then

We can prove the following theorem by showing that at the end of the
scaling phase the solution satisfies

THEOREM 14 If algorithm stops, then for any the computed
solution fulfils with where

Then we are to find the bound on the number of iterations of the
algorithm In the next lemma we show that the decrease of the reduced
potential function in each iteration is lower-bounded by a parameter
depending only on and M, similar to Lemma 7. This helps us to
prove an upper bound on the number of iterations.

LEMMA 15 For any two consecutive iterates within a scaling
phase of algorithm

From the above bound we are able to obtain the bound on the number
of iterations of algorithm

THEOREM 16 For a given relative accuracy tolerance algo-
rithm delivers a solution satisfying with a weak
block solver in coordina-
tion steps.

Remark: The running time here is worse than that in [14]. However,
a block solver is required in [14] while here we only need
a In addition, different from Theorem 8, we have got
the first algorithm with the iteration complexity independent of in the
case of weaker block solvers.

Similar to the special case of small discussed in [14],
we here can also design a faster algorithm with only the first stopping
rule. It can be proved that can solve both primal and dual problems

304

with a better bound on the number of iterations. Therefore we have the
following result:

COROLLARY 17 If the algorithm can generate a pair and
solving both and with only the weak approximate block solver

within iterations.

4.2 Better running time

The number of iterations of the algorithm for primal problem in [14]
is bounded by which is better than the bound
in Theorem 16. In addition, in Subsection 3.2 it has been showed that
a better bound on running time can be achieved with a different weak
block solver. Here we also get such an algorithm with this technique.

Similar to the cases in Subsection 3.2, we can develop an algorithm
by slight modification of the stopping rules. Suppose is a

constant. And here a function is defined as:

And
and Define Then the stopping rules of
are as follows:

Lemma 13 is still valid for algorithm Similar to that for we have
the following theorem:

THEOREM 18 If algorithm stops, then for any the solution
delivered satisfies with

As for the running time, we have also the same bound on increase of
reduced potential function for as in Lemma 15. To find the bound
on number of iterations of algorithm we can just apply the similar
argument to the proof of Theorem 16. Since here is a constant in (0,1),
we have the following theorem:

THEOREM 19 For a given relative accuracy the number of
coordination steps of algorithm is bounded by

305

This bound exactly matches the bound in [14]. But here we just need
a weaker block solver.

Remark: We find that if we design the first stopping rule as
for any we can always have a for called
in algorithm. A reasonable choice, for large can generate a
large Unfortunately this kind of improvement is very limited and
the running time increases considerable for the bound on the number of
iterations is

5. Conclusion and open problem

In this paper we have presented the first al-
gorithms for the general packing problem (or with its dual problem),
with only weaker block solvers. The number of iterations is bounded by
polynomials in M, and or even only in M and We also reduced
the bounds to the same as in [14].

An interesting problem is whether one can find
algorithms for general packing problem with only an approximate block
solver where By the gap between and

we conjecture that it is possible and the lower bound on is

References

A. Baltz and A. Srivastav, Fast Approximation of Minimum Multicast Con-
gestion - Implementation versus Theory, Proceedings of 5th Conference on Al-
gorithms and Complexity, CIAC 2003.

M. Charikar, C. Chekuri, A. Goel, S. Guha and S. Plotkin, Approximating a
finite metric by a small number of tree metrics, Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 1998, 379-388.

G. Even, J. S. Naor, S. Rao and B. Schieber, Fast approximate graph parti-
tioning algorithms, SIAM. Journal on Computing, 6 (1999), 2187-2214.

N. Garg and J. Könemann, Fast and simpler algorithms for multicommodity
flow and other fractional packing problems, Proceedings of the 39th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 1998, 300-309.

M. D. Grigoriadis and L. G. Khachiyan, Fast approximation schemes for con-
vex programs with many blocks and coupling constraints, SIAM Journal on
Optimization, 4 (1994), 86-107.

M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel
price-directive decomposition, Mathematics of Operations Research, 2 (1996),
321-340.

M. D. Grigoriadis and L. G. Khachiyan, Approximate minimum-cost multi-
commodity flows in time, Mathematical Programming, 75 (1996),
477-482.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

306

M. D. Grigoriadis, L. G. Khachiyan, L. Porkolab and J.Villavicencio, Approx-
imate max-min resource sharing for structured concave optimization, SIAM
Journal on Optimization, 11 (2001), 1081-1091.

K. Jansen, Approximation algorithms for fractional covering and packing prob-
lems, and applications, Manuscript, (2001).

K. Jansen, Approximation algorithms for the general max-min resource sharing
problem: faster and simpler, Proceedings of the 9th Scandinavian Workshop on
Algorithm Theory, SWAT 2004, LNCS.

K. Jansen, Approximation algorithms for the mixed fractional packing and
covering problem, these proceedings.

K. Jansen and L. Porkolab, On preemptive resource constrained scheduling:
polynomial-time approximation schemes, Proceedings of the 9th Conference
on Integer Programming and Combinatorial Optimization, IPCO 2002, LNCS
2337 329-349.

K. Jansen and R. Solis-Oba, An asymptotic fully polynomial time approxima-
tion scheme for bin covering, Proceedings of 13th International Symposium on
Algorithms and Computation, ISAAC 2002.

K. Jansen and H. Zhang, Approximation algorithms for general packing prob-
lems with modified logarithmic potential function, Proceedings of 2nd IFIP
International Conference on Theoretical Computer Science, TCS 2002.

K. Jansen and H. Zhang, An approximation algorithm for the multicast con-
gestion problem via minimum Steiner trees, Proceedings of 3rd International
Workshop on Approximation and Randomized Algorithms in Communication
Networks, ARANCE 2002.

C. Kenyon and E. Rémila, Approximate strip packing, Proceedings of 37th
Annual Symposium on Foundations of Computer Science, FOCS 1996, 31-36.

S. A. Plotkin, D. B. Shmoys and E. Tardos, Fast Approximation algorithms for
fractional packing and covering problems, Mathematics of Operations Research,
2 (1995), 257-301.

J. Villavicencio and M. D. Grigoriadis, Approximate Lagrangian decomposition
with a modified Karmarkar logarithmic potential, Network Optimization, P.
Pardalos, D. W. Hearn and W. W. Hager, Eds, Lecture Notes in Economics
and Mathematical Systems 450, Springer-Verlag, Berlin, (1997), 471-485.

D. Ye and H. Zhang The Range Assignment Problem in Static Ad-Hoc Net-
works on Metric Spaces, Proceedings of the 11th Colloquium on Structural In-
formation and Communication Complexity Sirocco 2004, LNCS.

N. E. Young, Randomized rounding without solving the linear program, Pro-
ceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, SODA
1995, 170–178.

N. E. Young, Sequential and parallel algorithms for mixed packing and cover-
ing, Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 538-546.

H. Zhang, Packing: Scheduling, Embedding and Approximating Metrics, Pro-
ceedings of the 2004 International Conference on Computational Science and
its Applications ICCSA 2004, LNCS 3045.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

