
SUBTYPING-INHERITANCE CONFLICTS:
THE MOBILE MIXIN CASE*

Lorenzo Bettini1 Viviana Bono2 Betti Venneri1
1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Dipartimento di Informatica, Università di Torino
1 {bettini,venneri}@dsi.unifi.it, 2bono@di.unito.it

Abstract In sequential class- and mixin-based settings, subtyping is essentially a rela-
tion on objects: no subtype relation is defined on classes and mixins, otherwise
there would be conflicts with the inheritance mechanism, creating type un-safety.
Nevertheless, a width-depth subtyping relation on class and mixin types is use-
ful in the realm of mobile and distributed processes, where object-oriented code
may be exchanged among the sites of a net. In our proposal, classes and mix-
ins become “first-class citizens” at communication time, and communication is
ruled by a type-safe width-depth subtyping relation.

1. Introduction
In sequential class-based settings, and similarly in sequential mixin-based settings,
subtyping is essentially a relation on objects. Either no subtype relation (as in [9]), or
no non-trivial subtype relation is defined on classes and mixins, otherwise there would
be conflicts with the inheritance mechanism (see [11], Chapter 5.3). Our goal is to
study a subtyping relation extended to classes and mixins in the realm of mobile and
distributed processes, where object-oriented code can be exchanged among the sites of
a network. Classes and mixins become “first-class citizens” at communication time,
and communication is ruled by the subtyping relation.

In [5], we introduced MOMI (Mobile Mixins), a core coordination calculus for
mobile processes that exchange mixin-based object-oriented code. The leading idea
of MOMI is that the intrinsic “incompleteness” of mixins, which are incomplete
classes parameterized over a superclass [10, 2, 17], makes mixin-based inheritance
more suited than classical class-based inheritance to model mobile code. The most
important feature of MOMI’s typing is a subtype relation that guarantees safe, yet
flexible, code communication. We assume that the code that is communicated has
been successfully compiled, and that it travels together with its static type. When the

*This work has been partially supported by EU within the FET - Global Computing initiative, project AG-
ILE IST-2001-32747, project DART IST-2001-33477 and by MIUR project NAPOLI. The funding bodies
are not responsible for any use that might be made of the results presented here.

452

code is received on a site (whose code also has been successfully compiled), it is ac-
cepted only if its type is subtyping-compliant with respect to the one expected. If the
code is accepted, it can interact with the local code in a safe way (i.e., with no run-time
errors), without any further type checking of the whole code.

The proposed subtype relation on classes and mixins is far from straightforward.
In fact, it is well known that subtyping and inheritance do not interact well: prob-
lems mirroring the “width subtyping versus addition” and “depth subtyping versus
override” conflicts in the object-based setting [1, 15, 8, 20] also arise in our setting.
Our contribution is to solve comprehensively both conflicts in the setting of mobile
mixin-based code, enforcing a correct substitution property. The effort of defining a
class-mixin subtype relation and the related dynamic checking at communication time
is worthwhile in a distributed setting, where it is not predictable how mobile code will
be used when transmitted to different remote contexts, and, symmetrically, a certain
site must allow some controlled flexibility in accepting foreign code.

2. MOMI: Mobile Mixin Calculus

The calculus MOMI has an object-oriented mixin-based component, and a coor-
dination component including representative features for distribution, communication
and mobility of processes and code. MOMI supports mixin-based class hierarchies via
mixin definition and mixin application. Specific incarnations of most object-oriented
notions (such as, e.g., functional or imperative nature of method bodies, object ref-
erences, cloning, etc.) are irrelevant in this context, where the emphasis is on the
structure of the object-oriented mobile code. Hence, we work here with a basic syn-
tax forming the kernel calculus SOOL (Surface Object-Oriented Language, shown in
Table 1), including the essential features a language must support to be the MOMI’s
object-oriented component.

SOOL expressions offer object instantiation, method call and mixin application;
denotes the mixin application operator and it associates to the right. A SOOL value,
to which an expression reduces, is either an object, which is essentially a (recursive)
record or a class definition, or a mixin definition, where
denotes a sequence of method definitions, and with denotes a
sequence of method re-definitions, where is the type of the original method in
the superclass and is the type of the redefining method body of in the mixin.
I, J and K are sets of indexes. Method bodies, denoted here with (possibly with
subscripts), are closed terms/programs and we abstract away from their actual form.

453

Another assumption we make is that methods do not accept/return classes and mixins
as parameters/results, in order to keep the algorithm of Section 6 technically simpler.

A mixin is essentially an abstract class that is parameterized over a (super)class.
Each mixin consists of three parts: (i) methods defined in the mixin; (ii) expected
methods, that must be provided by the superclass; (iii) redefined methods, where next
can be used to access the (old) implementation of the method in the superclass. The
application constructs a class, which is a subclass of C.

MOMI’s coordination compo-
nent is similar to CCS [18] but also
inspired by KLAIM [14], since phys-
ical nodes are explicitly denoted as
localities. MOMI is higher-order in
that processes can be exchanged as
first-entity data. A node is denoted
by its locality, and by the pro-
cesses P running on it, i.e.,
Informally, sends A, that
can be either a process, P, or code

represented as an object-oriented value, v, to locality where there may be a process
waiting for it by means of a receive. The argument of receive, id, ranges over x (a
variable of SOOL) and X (a process variable).

3. Typing

The set of types for SOOL is defined as follows:

(possibly with a subscript) denotes a record type of the form
we say that the subject occurs in is the set of the subjects of and

is the set of all the method names occurring in (e.g., if
then and As we left method bodies unspecified
(see Section 2), we must assume that there is a type system for the underlying part
of SOOL that types correctly method bodies, records, and some sort of fix-point. We
denote this type derivability with and are used as assumptions in
typing values. SOOL typing environments are sets of assumptions of the form and

where x is a variable and m is a method name.
Class types and mixin types are formed over

record types. A class type collects the types of its methods The typ-
ing rule for mixin values is in Table 3 (typing rules for classes and other values are
straightforward and therefore omitted). A mixin type encodes the following informa-
tion, are the types of the mixin methods (new and redefining, respectively).

are the expected types of the methods that must be supported by any class
to which the mixin is applied. In there are the types of the methods that are not
redefined by the mixin but expected to be supported by the superclass. In there are
the types assumed for the superclass bodies of the methods redefined by the mixin. We

454

refer to both sets of types and as expected types since the actual superclass
methods may have different types. Well-typed mixins are well formed in the sense
that name clashes among the different families of methods do not happen.

The typing rules for SOOL expressions are in Table 4. The crucial rule (mixin app)
relies strongly on a subtyping relation <: whose judgments are of the form
This subtyping relation depends obviously on the nature of the SOOL calculus we
choose, but as an essential constraint it must contain the width and depth subtyping
rule for record types. Our specimen record subtyping rule is an algorithmic subtyping
rule as the one in [19]:

In order to formalize the (mixin app) rule, we introduce the following operation
over record types and are considered as distinct elements, thus
and are the standard set operations):

In the rule (mixin app), contains the type signatures of all methods supported by
the superclass to which the mixin is applied. Then, are the superclass meth-
ods redefined by the mixin, are the superclass methods needed by the mixin

455

methods but not redefined, and are the superclass methods not mentioned in the
mixin definition at all. Notice that the superclass may have more methods than those
required by the mixin constraints. The premises of the rule (mixin app) are as follows:
(i) requires the actual types of the superclass methods be subtypes
of those expected by the mixin; (ii) checks that the types of the meth-
ods redefined by the mixin are subtypes of the superclass methods with the same
name; (iii) guarantees that no name clash takes place dur-
ing the mixin application. Intuitively, the above constraints insure that all the actual
method bodies of the newly created sub-class are at least as “good” as expected. The
resulting class, of type contains the signatures of all methods forming the
new class created as a result of the mixin application. and are inherited
directly from the superclass, and are defined by the mixin.

Typing rules for processes are defined in Table 5. At this stage, we are not interested
in typing processes in detail, therefore we will simply assign to a well-typed process
the constant type proc, which means that the object-oriented code the process may
contain is well typed. The set of types is extended to Typing
environments are extended with assertions where id ranges over x and X and
ranges over

The rules are auto-explicative. Notice that if a process P has type proc, then all
object-oriented expressions occurring in P are typed. Finally, we require that a pro-
cess, in order to be executed on a site, must be closed (i.e., be without free variables),
so it must be well typed under It is easy to verify that if a process P is closed,
then, for any occurring in P, the free variables of A are bound by an outer
def or by an outer receive. This implies that the exchanged code is closed when a
send is executed. Notice also that all typing rules characterizing our calculus are in an
algorithmic form.

4. Subtyping on Classes and Mixins
The key point of our approach is the introduction of a subtyping relation, on class
and mixin types. It is of paramount importance to notice that is never used in the
(local) static type inference. Only during communication the actual parameter type
will be matched against the formal parameter type by in order to synchronize a
send action with a receive one. Therefore, in our mobile scenario, classes and mixins
get a polymorphic and higher-order nature only during the mobile code exchange via

The subtyping relation is defined in Table 6. The rule is naturally

456

induced by the depth-and-width subtyping on record types. The rule (/’)
allows the subtype to define more new methods; (ii) requires the subtype to override
the same methods; (iii) allows a subtype to require fewer expected methods.

The communication mechanism is implemented by annotating the send’s argument
with its type during the static type analysis. Therefore, it is possible to replace the for-
mal parameter inside a process P with the sent code if its type is subtyping-compliant
with the expected one, without requiring any further type checking. To guarantee
this, we must prove that our type system enjoys a property of substitutivity, i.e., well-
typedness is preserved under substitution by Concerning this issue, width and depth
subtyping raises two orthogonal problems that mirror their counterparts in the object-
based setting [1, 15, 8, 20]. We solve those problems, and prove a global substitutivity
property, in the sequel.

5. Width Subtyping vs Method Addition: Refreshing

Accidental overrides can occur when replacing at run-time M or C with and of
smaller types in a mixin application because of names of new methods possibly
added by or This is related to the “width subtyping versus method addition”
problem (well-known in the object-based setting, see for instance [15]), that in our case
boils down to a careful management of such dynamic name clashes. Thus, we define
a suitable capture-avoid-substitution, denoted with [], requiring possible renaming of
methods with fresh names.

DEFINITION 1 (SUBSTITUTION BY REFRESH) If x is a class variable of type
and C is a class value of type such that

then denotes the replacement of to x, where is obtained from C
by renaming all methods belonging to with fresh names.
If x is a mixin variable of type and M is a mixin
value of type such that

then [M/x] denotes the replacement of to x, where
is obtained from M by renaming all methods belonging to
with fresh names. In all remaining cases, substitution is intended as a standard re-
placement.

With our solution, new methods added by a class or a mixin value during substitu-
tion are hidden by renaming, for each occurrence of the variable to be replaced (this is
similar to the “privacy via subsumption” of [20]). Notice that we only rename methods
that do not appear in the type of the variable x. This constraint ensures that the sub-

457

typing relation is preserved by the refreshed version. This basic property is necessary
for proving that the substitution is type-safe (Theorem 11).

PROPERTY 1 (REFRESHING PRESERVES SUBTYPING) Let be a class
value or a mixin value. If and with then with

From the point of view of the implementation, the above treatment of “global” fresh
names can be solved with static binding for the mentioned methods. The technique of
using the static types of the variables and the actual types of the substituted class or
mixin definitions may recall the approach of [17] of allowing overriding, i.e., dynamic
binding, only for methods declared in the mixin’s inheritance interface.

6. Depth Subtyping vs Override: Annotating Processes

Let P be a closed process to be compiled. While reconstructing the derivation of
(this derivation is unique, see the typing rules), it is easy to decorate any

send argument occurring in P with its type. For instance, has
type proc, and its compiled version is if exp has type

However, this type information is not sufficient for dynamic matching, since the
presence of depth subtyping conflicts with the overriding inheritance mechanism.
First, we present an example (which is directly adapted from the classical one related
to the object-based case of [1]). Let us consider the following expression:

where M is a mixin redefining n with body –3. Now, receive could accept as an
actual parameter a fully-fledged class where the actual
body of m is (i.e., it invokes the sibling method n and applies the natural
logarithm to the result of the invocation), since posint <: int; however, the result of the
execution of would raise a run-time error.

To abstract away from the details of the previous example, we consider the follow-
ing situation: a variable appearing in an expression of the form
and being the argument of a receive, with M a mixin that overrides with
We might substitute dynamically to such x any received class with

i.e., We can have three cases with respect to
and are not comparable. The only case that does

not create problems is case (i).
The same problem can arise when replacing a mixin value M to a mixin variable

x, e.g., in a mixin application of the shape In fact, some new method
m might be of type in the of the) type of M (see mixin) rule in Table 6),
while it is of type in x and redefined by as with and Again,

is well typed if and only if
As a consequence, the formal parameter of a receive, if it is of type “class” or

“mixin”, must be annotated not only with its explicit type (which acts as an upper
bound for the type of the actual parameter), but also with some information about a
“lower bound”, such as the above This “lower bound”, in general, cannot be

458

simply another type because a “class” or “mixin” variable can appear inside a chain
of mixin applications, and this may give rise to several constraints concerning several
methods. Any receive’s argument of type “class” or “mixin” will be then annotated
with both its type and a type assertion which will contain no lower bound if the
parameter does not participate in any mixin application.

The algorithm presented in Tables 7 and 8 performs all the above type annotations
while checking well-typedness of processes. We remark that the preliminary version
of this algorithm sketched in [6] was a restriction of the present one, since depth
subtyping was only considered on classes (not on mixins).

DEFINITION 2 A type assertion is a property of the where
is either a class or mixin type and:

Informally speaking, acts as an “inf” for (resp. since it contains
lower bounds for some (possibly none) of the types associated to methods in
(resp. We define as follows: We de-
fine as follows: and

DEFINITION 3 Let be a class or mixin type and be a type assertion,
We say that satisfies denoted by if and only if

In other words, means that is a subtype of but for any
method m such that then Notice that if the second
condition holds trivially. For instance, the type sat-
isfies the assertion provided
that and and that and The clause on mixins is
analogous, on the component We can collect assertions for several distinct vari-
ables, therefore obtaining a type effect.

DEFINITION 4 A type effect is a set, possibly empty, of type assertions
where

459

An annotated process, denoted by is a process decorated by adding: (i) types to
the arguments of its send’s; (ii) and types and type assertions to the arguments of its
receive’s. The procedure for annotating processes is described in two steps. Firstly, the
algorithm Ann is defined on SOOL expressions: returns where

is the type of exp in and is the derived type effect. Then, we define
that returns is the annotated version of P, proc means that P is well
typed in and is a type effect. In both cases, the algorithm fails if the expression or
the process are not typable, but here we do not handle failures explicitly.

The algorithm Ann on expressions is in Table 7 and it is defined inductively on the
structure of expressions. For simplicity, we use the notation to denote the type

such that for any value not only for the variables occurring in Type
assertions are neither generated nor modified by class and mixin definitions. The only
values affecting them are variables of class or mixin types. When the algorithm is
called on a variable x of class or mixin type it creates a new assertion
where the lower bound for is temporarily empty. This lower bound will be defined
by examining the possible occurrences of x inside mixin applications present in the
expression. Notice that the final type effect collected by the algorithm can consist
of several type assertions, since different free variables of mixin and class types can
occur inside the same expression.

Cases of new exp and are simple. The only interesting case concerns mixin
application expressions of the shape In this case, recursively
calls Ann on x and exp, therefore obtaining a type assertion and a type effect
respectively. Let x be of type Now must be firstly
updated by using and then the resulting type effect must be extended with the
new type assertion The first operation is performed by the function update, which
is formally defined in Definition 5. The function enriches with
lower bounds associated to any method belonging to in the following way:
(i) for all assertions of of the shape where if m has

460

no lower bound in then the new lower bound is added to (ii) analogously,
for assertions where

Thus, defines the lower bound associated to the method name m
only if a lower bound for m had not already been defined; this guarantees that the
greater lower bound for any redefined method is stored in the assertion. Finally, the
assertion generated by the mixin value x, is added to the result of update. Notice
that all this is based on the fact that mixin applications are well typed, thus, if x occurs
twice in the same mixin application expression, its must be empty and therefore

is well defined.

DEFINITION 5 Given an effect and a record type is the type
effect defined as follows:
for each assertion

The algorithm Ann for processes is in Table 8 and is defined inductively on the
structure of processes or, equivalently, on typing rules for processes. The resulting
will contain type assertions for all of the variables occurring in the mixin application
subterms of the process. Notice that a free variable can have different occurrences in a
process P, in particular, it can occur in different sub-processes, giving raise to different
type effects, one for each sub-process. Thus, when Ann is called on the process

type effects obtained by recursive calls on and (on exp
and P) must be merged according to the Definition 7 of merge. Namely, if and
(exp and P) produce two distinct type assertions corresponding to the same variable,
then the maximum lower bound for every method is collected (which always exists by
well-typedness and Definitions 6 and 7).

When Ann is called on a the argument A is annotated with its type,
while the effect generated by A is merged with the one collected when annotating the
continuation P. When Ann is called on the variable id is annotated

1

2

if then where

otherwise,

461

with its type and with the assertion on the subject id that is possibly generated during
the recursive call of Ann on the continuation is

and otherwise). Since receive is a binder for id, it makes sense to discard the
assertions for id from the type effect after annotating the receive, thus
the final is empty when starting from a closed P.

In the following we define formally the function merge that takes two type effects
and builds a new type effect.

DEFINITION 6 Given the types and we define

then

i)

ii) for any free variable x of class or mixin type occurring in P, then there is one
and only one type assertion of the shape such that:

(a)
(b)

(correctness of lower bounds) is well defined (according to Definition 2);
(completeness of lower bounds) for each is redefined by a
mixin in some mixin application expression occurring in P and for each
such redefinition we have that

COROLLARY 9 For any well-typed closed process P,
its compiled version is of the form
where is correct and complete w.r.t. the occurrences of x in (A is

of type

LEMMA 10 (SUBSTITUTION FOR EXPRESSIONS) Let v and exp be an object-

oriented value and an object-oriented expression, respectively. If

DEFINITION 7 Given two type effects and where is
defined as follows:

A key property of merge is its monotonicity: merging two type effects never de-
creases the inf associated to variables’ types.

THEOREM 8 (SOUNDNESS OF THE ANNOTATION ALGORITHM) If

for all

if label for all then
else if label for some let

and then where:

for all such that label for all then

462

and then provided that the following condition (COND) is
satisfied:

if is a mixin or class type: if and there is an
assertion such that
otherwise:

THEOREM 11 (SUBSTITUTION FOR PROCESSES) Let v, exp and P be an
object-oriented value, an object-oriented expression and a process, respectively. If

and then provided that the following
condition (COND) is satisfied:

if is a mixin or class type: if and there is an
assertion such that then

otherwise:

7. Operational Semantics

The operational semantics of MOMI groups two sets of rules. The first one describes
how to evaluate SOOL object-oriented expressions and is denoted by We omit it
here since it is standard. The second set of rules, presented in Table 9, describes the
evolution of a net. It is based on a standard structural congruence defined as the
least congruence relation closed under the following rules:

Notice that the semantics is defined on annotated (compiled) processes Actions
send and receive synchronize only if the type of the delivered expression matches the
one expected according to the following matching predicate:

The type of the send’s argument A is built statically by the annotation algorithm.
The (comm) rule uses this type information, delivered together with the argument A, in
order to check dynamically that the received item is correct with respect to the formal
argument. The other rules are straightforward.

Assuming that types are preserved under a subject-reduction property is
proved by using Theorem 11, that deals with the crucial case of rule (comm). Then,
the subject reduction property extends easily to a global type safety for nets, where a
net N is well typed if and only if for any node for some
Finally, the theorem below guarantees that merging (well-typed) code received from a
remote site into local (well-typed) code does not harm local type safety.

THEOREM 12 (SUBJECT REDUCTION) If N is well typed and then
is well typed.

463

The dynamic checking during communication is the only dynamic use of types:
it consists essentially in checking some subtyping relations between record, class or
mixin types, which is of linear complexity on the argument types. The type analysis
of processes remains totally static and performed in each site independently.

Let us go back to the example of the beginning of Section 6. The annotated ver-
sions of those processes are:

and

where
The communication between and cannot take place because

In fact, but

8. Conclusions
We introduced a safe form of subtyping on classes and mixins, by offering a gen-
eral and comprehensive solution both to “width subtyping versus addition” and “depth
subtyping versus override” conflicts. Correctness is guaranteed by our renaming, to
take care of name clashes, and by our constraints, to avoid accepting code that create
override conflicts. The solution for the width-subtyping-related problem is the formal
counter-part of classical implementation techniques to avoid name-clashes. The solu-
tion for the depth-subtyping-related problem is, at the best of our knowledge, the first
proposal in the literature to solve such problem, and it is based on the simple obser-
vation that a method body cannot be overridden by a body whose type is bigger with
respect to subtyping, i.e., is “less good”.

Some future research directions look interesting: (i) to introduce higher-order mix-
ins and mixin composition as presented in [17]; (ii) to replace structural subtyping with
a form of nominal subtyping; (iii) to explore the possibility of applying a form of our
“safe subtyping” to typed traits [21, 16].

In the literature, there are some proposals of combining objects with processes
and/or mobile agents, such as, e.g., [13, 12]. Our approach is, however, more related
to works as [22], where properties of distributed systems are enforced by a typing
system equipped with subtyping. In our case the property we address is a flexible and
type-safe coordination for exchanging code among processes.

Concerning the applicability of MOMI’s approach, in [7] we presented O’KLAIM,
a mixin-oriented version of KLAIM. A prototype implementation of O’KLAIM is pre-
sented in [4] and freely available at http://music.dsi.unifi.it. This is based
on the Java package momi [3], that implements the run-time system (or the virtual

464

machine) for MOMI classes, mixins and objects. Code exchange in O’KLAIM ex-
ploits width subtyping only. An extended version of O’KLAIM (and relative imple-
mentation), including the annotation algorithm for dealing with depth subtyping, is
work-in-progress.

References
[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]
[19]
[20]

[21]

M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
D. Ancona, G. Lagorio, and E. Zucca. Jam - A Smooth Extension of Java with Mixins. In
Proc. of ECOOP’00, volume 1850 of LNCS, pages 145–178, 2000.
L. Bettini. A Java package for class and mixin mobility in a distributed setting. In Proc,
of FIDJI’03, volume 2952 of LNCS, pages 12–22. Springer-Verlag, 2003.
L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming & their
Implementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003. Available at
http://music.dsi.unifi.it.

L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile Object-Oriented Code. In Proc.
of Coordination, volume 2315 of LNCS, pages 56–71. Springer, 2002.
L. Bettini, V. Bono, and B. Venneri. Subtyping Mobile Classes and Mixins. In Proc. of
FOOL 10, 2003.
L. Bettini, V. Bono, and B. Venneri. O’KLAIM: a coordination language with mobile
mixins. In Proc. of Coordination, volume 2949 of LNCS, pages 20–37. Springer, 2004.
V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell Lambda Calculus of
Objects. In Proc. of CSL’94, volume 933 of LNCS, pages 16–30. Springer-Verlag, 1995.
V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins. In Proc. of
ECOOP’99, volume 1628 of LNCS, pages 43–66. Springer-Verlag, 1999.
G. Bracha and W. Cook. Mixin-based inheritance. In Proc. of OOPSLA ’90, pages 303–
311. ACM, 1990.
K. Bruce. Foundations of Object-Oriented Languages –Types and Semantics. The MIT
Press, 2002.
M. Bugliesi, S. Crafa, and G. Castagna. Typed Mobile Objects. In Proc. of CONCUR ’00,
volume 1877 of LNCS, pages 504–520. Springer-Verlag, 2000.
L. Cardelli. A Language with Distributed Scope. Computing Systems, 8(1):27–59, 1995.
R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Interac-
tion and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.
K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping. In
Proc. of FCT’95, volume 965 of LNCS, pages 42–61. Springer-Verlag, 1995.
K. Fisher and J. Reppy. A typed calculus of traits. In FOOL 11, 2004.
M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. of POPL ’98,
pages 171–183. ACM, 1998.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.
B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
J. Riecke and C. Stone. Privacy via Subsumption. Information and Computation, 172:2–
28, 2002.
N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behaviour.
In Proc. of ECOOP 2003, volume 2743 of LNCS, pages 248–274. Springer, 2003.
N. Yoshida and M. Hennessy. Subtyping and Locality in Distributed Higher Order Mobile
Processes (extended abstract). In Proc. of CONCUR’99, volume 1664 of LNCS, pages
557–572. Springer-Verlag, 1999.

[22]

