
HIGHLY UNDECIDABLE QUESTIONS FOR
PROCESS ALGEBRAS*

Department of Computer Science, Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava - Poruba, Czech Republic

Petr.Jancar@vsb.cz

BRICS†, Department of Computer Science, University of Aalborg
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

srba@brics.dk

Abstract We show of weak bisimilarity for PA (process algebra), and of
weak simulation preorder/equivalence for PDA (pushdown automata), PA and
PN (Petri nets). We also show of weak equivalence for the
(sub)classes BPA (basic process algebra) and BPP (basic parallel processes).

Keywords: Weak bisimilarity, simulation, trace preorder, high undecidability

1. Introduction

In the area of verification, the possibilities of checking behavioural equiva-
lences and/or preorders of systems are a natural object to study, which includes
various decidability and complexity questions. A part of research effort has
been aimed at bisimulation equivalence (bisimilarity) and simulation preorder,
since these had been recognized as fundamental notions. We are interested in
infinite-state systems, for which recent surveys of results have been given, e.g.,
in [Burkart et al., 2001, and 2002, Srba, 2002].

The systems we study can be uniformly defined by means of process rewrite
systems (PRS) — see Figure 1 for the PRS-hierarchy from [Mayr, 2000]; the
second and the third level from the bottom is the focus of our interest. We now

*Both authors are partly supported by the Grant Agency of the Czech Rep., grant No. 201/03/1161.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

508

provide a selection of some results relevant to our paper (all references can be
found in [Srba, 2002]).

(Strong) bisimilarity is already well known
to be decidable for the class BPA (basic pro-
cess algebra, or basic sequential processes),
i.e., the class of labelled transition systems
generated by left-most derivations of context-
free grammars in Greibach normal form; the
states correspond to finite sequences of non-
terminals which are composed sequentially
and only the first one, say X, can be rewrit-
ten according to a rule while emit-
ting an action (so for a state we have

Bisimilarity is also known to be decidable for BPP (basic par-
allel processes); the only difference with BPA is that nonterminals are viewed
as composed in parallel, i.e., each can be rewritten. (We can mention also the
recent result et al., 2003] showing the decidability for the union of BPA
and BPP.) An involved result by Sénizergues (later strengthened and simplified
by Stirling) showed the decidability even for PDA – labelled transition systems
generated by pushdown automata (where a state comprises a control
state and a sequence of stack symbols). For PN (labelled place/transition Petri
nets) bisimilarity is known to be undecidable; this even holds for the subclass
PPDA (pushdown automata with stack symbols composed in parallel), which
lies strictly between BPP and PN. For the class PA (where the right-hand sides
of grammar rules can contain a mixture of sequential and parallel composi-
tions), the decidability question is still open. (Strong) simulation preorder is
undecidable (already) for both BPA and BPP – as well as classical language
equivalence and its modification called trace equivalence.

We can naturally ask similar questions for models with silent (internal) ac-
tions, and explore weak bisimilarity and weak simulation. Decidability of
weak bisimilarity is still open for both BPA and BPP. From [Srba, 2003a] it
is known to be highly undecidable for PDA and PN, more precisely, complete
for the level of the analytical hierarchy (i.e., it can be described by a formula

where is a first-order arithmetical formula containing the
predicate X; we refer to [Rogers, 1967] for further details about arithmetical
and analytical hierarchies). For PA, weak bisimilarity was recently proved un-
decidable in [Srba, 2003b] but the absence of a control unit seemed to prevent
a reduction showing so this problem was left open. In fact, such
questions might not seem very relevant from the ‘practical’ point of view, nev-
ertheless we believe that categorizing undecidable problems according to their
degrees of undecidability is still useful for deeper understanding of the studied
problems. We can also recall the general experience that the ‘natural’ unde-

509

cidable problems (in computer science) are either on the lowest levels of the
arithmetical hierarchy or on the lowest levels of the analytical hierarchy (see,
e.g., [Harel, 1986]).

In this paper we succeeded in modelling a sufficient fragment of the (miss-
ing) finite-control unit, which enabled us to show of weak
bisimilarity also for PA. We then use some modifications of the developed re-
ductions to show of weak simulation preorder/equivalence
for all the classes PDA, PA and PN (in fact, again even for PPDA).

Weak trace preorder/equivalence is easily shown to be in i.e., (very)
low in the arithmetical hierarchy. This seems to contradict the experience from
the strong case (without silent actions) where the complexity increases in the
direction: bisimulation – simulation – trace. We give some results indicating
that when taking infinite traces into account, the mentioned ‘contra-
diction’ disappears; in particular we show of weak pre-
order/equivalence for both BPA and BPP.

We also show that weak regularity checking (checking if a given system is
weakly bisimilar to some finite-state one) is ‘easier’, by which we mean at
most hyperarithmetical, for any reasonable process algebra. Finally we add
a few observations about of branching bisimilarity for PDA
and PPDA.

Note: a full version of this paper appears as and Srba, 2004].

2. Basic Definitions

A labelled transition system (LTS) is a triple where S is a set
of states (or processes), is a set of labels (or actions), and

is a transition relation; for each we view as a relation
on S where We assume that contains a
distinguished silent action The weak transition relation is defined by

for and for
Given a binary relation is a weak simulation iff

for each and such that there is such that
and A weak bisimulation is a weak simulation which

is a symmetric relation. We say that a process is simulated by a process
denoted if there is a weak simulation containing Processes

and are simulation equivalent, denoted if and
Processes and are weakly bisimilar, denoted if there is a weak
bisimulation containing

We shall use standard game-theoretic characterizations of the introduced
notions. A (weak) bisimulation game on a pair of processes and is a
two-player game between ‘Attacker’ and ‘Defender’. The game is played in

510

rounds. In each round the players change the current states and (initially
and according to the following rule:

Attacker chooses and such that

Defender responds by choosing such that

States and become the current states.

1

2

3

A play is a maximal sequence of pairs of states formed by the players according
to the rule described above, starting from the initial states and Defender
is the winner in every infinite play. A finite play is lost by the player who is
stuck. A (weak) simulation game is played similarly, the only change is that
Attacker is bound to choose (thus playing in the “left process” only).

PROPOSITION 1 It holds that (resp. iff Defender has a
winning strategy in the bisimulation (resp. simulation) game from and

PA-processes

Let be a set of process constants. The class of process expressions
over is given by where is the empty
process, X ranges over ‘.’ is the operator of sequential composition, and

stands for a parallel composition. We do not distinguish between process
expressions related by a structural congruence, which is the smallest congru-
ence respecting that ‘.’is associative, is associative and commutative, and

is a unit for ‘.’ and We shall adopt the convention that the sequential
operator binds tighter than the parallel one. Thus, for example, means

A PA process rewrite system ((1, G)-PRS in the terminology of [Mayr,
2000]) is a finite set of rules of the form where

and E is a process expression. Let us denote the set of actions and the
set of process constants that appear in as and respectively.
(Note that these sets are finite).

A PA system determines a labelled transition system where the process
expressions over are the states and is the set of labels. The
transition relation is the least relation satisfying the following SOS rules (recall
that is commutative):

A process constant is called a deadlock iff contains no rule
for any E. In the usual presentation of PA it is often assumed that

contains no deadlocks.

511

PDA, PPDA, BPA and BPP processes

Let and be finite sets
of control states, stack symbols and actions, respectively, such that
and is the distinguished silent action. A PDA system (or a pushdown
automaton) is a finite set of rewrite rules of the type or
where and Such a PDA system gener-
ates a labelled transition system where is the set of states, is the
set of actions, and the transition relation is defined by prefix-rewriting rules:

implies
for all A PPDA system (a parallel pushdown automaton) is defined in
the same way as a PDA system but the composition of stack symbols is now
viewed as commutative, i.e., ‘parallel’. (So each symbol stored in the stack is
directly accessible and the stack can be viewed as a multiset of stack symbols.)
A PDA (resp. PPDA) system is called BPA for basic process algebra (resp.
BPP for basic parallel processes) whenever the set of control states is single-
ton. The classes BPA, BPP, PDA and PA correspond directly to the classes
from the PRS hierarchy in Figure 1. The class PPDA is positioned strictly
between BPP and PN. Hence all the lower bounds we shall prove for PPDA
immediately apply also to PN.

Defender’s Choice Technique

In what follows we shall frequently use a technique called ‘Defender’s
Choice’ (abbreviated by DC). The idea is that Attacker in the (bi)simulation
game starting from and can be forced by Defender to play a cer-
tain transition in the following sense: if Attacker takes any other avail-
able transition, Defender can answer in such a way that the resulting
processes are guaranteed to be (bi)similar (and hence Attacker loses).
A typical situation in
the case of bisimilar-
ity may look like in
Figure 2 part a) where

for all
(very often and
will be even syntacti-
cally equal). It is easy
to see that in the bisim-
ulation game starting
from and Attacker
is forced (DC) to take
the transition In all other possible moves he loses.

512

In the case of simulation game, Defender can also use another way to force
Attacker to perform a certain move. Defender can threaten to enter a univer-
sal state, i.e., a state where all available actions are constantly enabled. The
situation may look like in Figure 2 part b). Obviously Attacker who is playing
in the left process is forced (DC) to perform the action to which Defender
can answer only by the same action; the players then continue from the pair

and Should Attacker play or in the first round, Defender answers by
the same action and enters the universal state U. From now on Defender can
answer to all Attacker’s moves and clearly wins.

3. of weak (bi)similarity problems

From [Srba, 2003a] we know that weak bisimilarity is on PDA
and PPDA. For PA only undecidability was known [Srba, 2003b] and it was
not clear how to simulate “finite-control unit features” which would allow to
derive high undecidability as well. Here we answer this question by showing

also for PA. We then add the results for
weak simulation preorder (and equivalence) on all the classes PDA, PA and
PPDA. Finally we sketch an extension of the results to branching bisimilarity
on PDA and PPDA.

We first observe that the mentioned problems are in the expression
“there exists a set of pairs which contains and is a weak bisimulation
(a weak simulation)” can be routinely transformed into a For this,
it is sufficient that the relations and are arithmetical (which is obvi-
ously true for any reasonable process algebra like PRS); in fact, these relations
are even decidable for the classes PDA, PA and PPDA which we are primarily
interested in.

The results are achieved by (algorithmic) reductions from suit-
able problems which are known to be One of them is the follow-
ing:

Problem: Recurrent Post’s correspondence problem (rPCP)
Instance: Two sequences
of nonempty words over an alphabet such that for all
Question: Is there an infinite sequence of indices from the set

in which the index 1 appears infinitely often and for which the
infinite words and are equal ?

Such an infinite sequence is called a solution of the instance
(A, B). Any finite sequence is called a partial solution of (A, B)
iff is a prefix of

REMARK 2 The problem rPCP is usually defined without the condition
we have included this additional requirement since it is technically con-

venient and can be easily shown not to affect the following theorem.

513

THEOREM 3 ([Harel, 1986]) Problem rPCP is

Let us now fix an instance (A, B) of rPCP, over an alphabet where
and A solution of (A, B), if it exists, can

be naturally represented by an infinite sequence of process constants from
the sequence can be divided into finite segments, where a

segment is defined as a sequence from We note that
an infinite sequence composed from segments represents a solution of (A, B)
iff all its finite prefixes represent partial solutions, which is equivalent to saying
that infinitely many of its finite prefixes represent partial solutions.

A general idea behind our reductions can be described as the following game
(which is then concretely implemented in the particular cases we study). Start-
ing from the empty sequence (viewed as a partial solution), Attacker can re-
peatedly request Defender to prolong the so far constructed partial solution by
adding a further segment (for which the implementations will use sequences
of Besides the mentioned request, Attacker has also a possibility to
enter a checking phase to verify that the (so far) constructed sequence indeed
represents a partial solution – if it does not then Attacker wins, and if it does
then Defender wins. This means that Defender has a winning strategy if and
only if there is an (infinite) solution of the (A, B)-instance.

We now describe a concrete implementation for weak bisimilarity of PA. We
show an (algorithmic) construction of a PA system with a pair of processes

and such that

We present in a stepwise manner, always giving a piece of it together with
several useful observations (which should make the verification of the desired
property straightforward).

In the construction we use a distinguished process constant D which is a
deadlock, i.e., there are no rules with D on the left-hand side. Particularly
useful for us is to note that Later on we show that using
the deadlock is not essential (just technically convenient).

Our first intention is to arrange that the bisimulation game will start
from the pair and continue through some pairs

...where are re-
versed segments which are chosen by Defender (using DC, i.e. Defender’s
Choice technique). Let us look at the rules in the groups I and II.

514

According to these rules, when starting from the pair Attacker

is forced (DC) to perform otherwise Defender can reach a
syntactic equality. Defender can be then viewed as forced to respond by

for a (reversed) segment of his choice. If he does not finish
by using the rule Attacker can perform a move according to
this rule in the next round — thus installing a pair anyway.

Rules in II make clear that Attacker is now forced (DC) to move
and Defender can respond by since D is a dead-

lock, we can view the installed pair as Similarly as above,
Defender cannot gain by not using the rule As we shall see later,
he neither can gain by installing for

To enable Attacker to enter the checking phase, we add the following rules.

Having a pair Attacker can thus also choose to play a
(instead of an in this case he is obviously forced (DC) to play

Defender can respond by for some
where and are new process con-

stants (we recall that is the alphabet of the instance (A, B)). In the whole PA

system there will be only one rule with the action namely (in
group V). By inspecting the rules it is easy to verify that if Defender chooses

not to finish his move by using the rule Attacker can play
in the next round and thus, in fact, force reaching a pair

We now want to arrange that the above mentioned Defender’s response
can be successful if and only if

represents a partial solution; and in this case the response must be such that
where

In order to achieve that, we define the set is a suffix of some
or of new process constants (where denotes the reversal

operation), and we add the following rules.

515

We can easily verify that a necessary condition for the processes
and to be weakly

bisimilar is that and (2) holds. But
due to the possible mixing of ‘letter-actions’ and ‘index-actions’, the condition
is not sufficient. That is why the above processes are preceded by Z in our
bisimulation game. If Z can be somehow used to implement a ‘switch’ for
Attacker by which he binds himself to checking either only the index-actions
or only the letter-actions then our goal is reached.

We first note that the outcomes of such switching can be modeled by com-
posing in parallel either a process constant (which masks all letter-actions)
or (which masks all index-actions). So we add the rules for and
also all the rules for Z (whose meaning will become clear later).

The following propositions are now easy to verify.

PROPOSITION 4 It holds that
if and only if and for all

PROPOSITION 5 It holds that
if and only if

In order to realize the above discussed ‘switch’, we add the final group of rules.

Now the pair of processes is the pair we were aiming
to construct according to equation (1). This is confirmed by the following two
lemmas (the proofs are in the full version of the paper).

LEMMA 6 If the rPCP instance (A, B) has no solution then

LEMMA 7 If the rPCP instance (A, B) has a solution then

Now we state the main theorem, which assumes the usual class PA, i.e.,
without deadlocks.

516

THEOREM 8 Weak bisimilarity on PA is

Proof. The membership in was already discussed; follows
from the construction we described and from Lemmas 6 and 7 – on condition
that we handle the question of deadlocks. However, there is a straightforward
(polynomial-time) reduction from weak bisimilarity of PA with deadlocks to
PA without deadlocks (described in [Srba, 2003b]).

Combining with the results of [Srba, 2003a] (for PDA and PPDA), we can
conclude that weak bisimilarity problems for all PRS-classes on the third level
of the hierarchy (and above) are Using a similar general strategy,
we can show the same results also for weak simulation preorder and equiva-
lence:

THEOREM 9 Weak simulation preorder/equivalence on PDA, PA and PPDA
is

The constructions are more straightforward in this case, where each player is
given a fixed system to play in. Here Defender can influence Attacker’s moves
by threatening to enter a ‘universal’ process, which enables all actions forever.
Problem rPCP is convenient for reductions in the cases of PDA and PA; in the
case of PPDA, the recurrent problem for nondeterministic Minsky machines is
more suitable. (It asks whether there is an infinite computation which uses a
distinguished instruction infinitely often.) A detailed proof is given in the full
version of the paper.

A natural conjecture is now that all relations subsuming weak bisimilar-
ity and being subsumed in weak simulation preorder are also Such
claims, for general relations are usually proven by reduction
(from a suitable problem constructing two processes and such that

if the answer (for the instance of being reduced) is YES and
if the answer is NO.

So far we do not see how to modify our constructions to satisfy this. How-
ever, in the case of PDA and PPDA, we could in this way derive
for all relations between weak bisimilarity and branching bisimilarity. A
branching bisimulation (as introduced by van Glabbeek and Weijland, see,
e.g., [van Glabbeek and Weijland, 1996]) is a symmetric relation R where,
for each each (Attacker’s) move can be matched by a

(Defender’s) move where we require
and also Defender’s move can be empty in the case

(then

CLAIM 10 All relations subsuming branching bisimilarity and being sub-
sumed in weak bisimilarity are on PDA and PPDA.

We do not provide a detailed proof since it would require to repeat the con-
structions used in [Srba, 2003a], with some slight modifications. The point is

517

that the long (of Defender) can be made reversible (e.g., for setting a
counter value there are for both increasing and decreasing). This can
be achieved easily in the presence of a finite-control unit (like in case of PDA
and PPDA). Such a reversibility is not present in our construction for PA, and
it is unclear whether PA can model these features in an alternative way.

4. Other semantic equivalences

A natural question to ask is about the complexity of other well-known
semantic equivalences (like those in [van Glabbeek, 2001] or, more rele-
vantly for us, in [van Glabbeek, 1993]). Of particular interest is the question
whether some other equivalences are also highly undecidable (i.e., beyond (hy-
per)arithmetical hierarchy). We provide a few results and notes about this.

For a finite or infinite we write iff there are

such that for all The coarsest equivalence among
the studied action-based semantic equivalences is the trace equivalence: two
processes and are weakly trace equivalent iff

(i.e., and enable the same finite observable traces).
We can immediately see that the problem is at a very low level in the

arithmetical hierarchy even for very general classes of labelled transition sys-
tems. We call a labelled transition system (LTS) recursively enumerable
if the set of states S and the set of actions are both (represented as)
recursively enumerable sets of strings in some finite alphabets and the set

is also recursively enumerable.
The respective algorithms (Turing machines) can serve as finite descriptions of
such an LTS.

We can easily observe that given a recursively enumerable LTS (where
includes the set is also recursively
enumerable. More generally, the set of all triples where L is (a
description of) a recursively enumerable LTS, one of its states and a finite
sequence of its (observable) actions such that (in L), can be defined by
some where is recursive (with the parameters
coded by natural numbers).

PROPOSITION 11 The set of all triples where L is (a description
of) a recursively enumerable LTS and two weakly trace equivalent states,
is in

REMARK 12 In fact, for the classes like PDA, PA and PN the set

is even recursive. For PDA and PA this follows, e.g., from [Büchi,
1964] and [Lugiez and Schnoebelen, 2002] and for PN it can be decided by
standard constructions from Petri net theory (reducing to the coverability prob-
lem). This means that weak trace equivalence for such classes is in

518

For other equivalences based on trace-like finite behaviours (sometimes
called ‘decorated traces’), i.e., failure equivalence, ready equivalence, ready-
trace equivalence etc., we can make similar observations. This means that in
fact all these (weak) equivalences are very low in the arithmetical hierarchy.

In some sense, this might seem as a surprising fact. In the strong case (with-
out complexity of the equivalence problems is decreasing in the
direction: trace – simulation – bisimulation. On the other hand in the weak
case the situation now seems to look different. However, the right way for
such a comparison is to take also infinite traces (i.e., into account.
Then the above complexity-decreasing chain is restored as illustrated below.

REMARK 13 For image-finite labelled transition systems (like those gener-
ated by PRS systems in the strong case), the finite-trace equivalence implies
also the equivalence. This is, however, not true for non-image-finite
systems, which are easily generated by PRS systems in the weak case.

We shall focus on the classes BPP and BPA. For BPP weak bisimilarity is
known to be semidecidable [Esparza, 1997], so it belongs to the class In
fact, it seems even well possible that the problem is decidable (see
2003] where PSPACE-completeness of strong bisimilarity is established).
Simulation preorder/equivalence (as well as trace preorder/equivalence) is
undecidable even in the strong case [Hüttel, 1994]. Weak simulation pre-
order/equivalence is surely in (the best estimate we can derive at the mo-
ment) while we can prove that weak preorder/equivalence is

THEOREM 14 Weak preorder/equivalence on BPP is

Given a nondeterministic Minsky machine, the nonexistence of an infinite
computation using instruction 1 infinitely often can be reduced to the weak

preorder (equivalence) problem. In order to prove this we modify a
known construction showing undecidability of trace preorder in the strong case
(which can be found in [Hirshfeld, 1994]). A more detailed sketch of the proof
is in the full version of the paper.

For BPA, the situation is roughly similar though a bit more unclear. Both
weak bisimilarity and weak similarity are surely in but otherwise we only
know that weak bisimilarity is EXPTIME-hard [Mayr, 2003] and weak simi-
larity undecidable; the latter follows from undecidability of (even) strong sim-
ilarity [Groote and Hüttel, 1994]. There are some reasons to conjecture that
weak bisimilarity of BPA might be decidable. The (obvious) membership in

thus seems to be a very rough upper bound, and one might start to try to
strenghten this by showing that the problem is in the hyperarithmetical hierar-
chy, i.e., in the intersection of and Nevertheless, it seems that a deeper
insight would be needed even for this less ambitious goal.

519

The undecidability of strong trace equivalence for BPA follows easily from
classical results for context-free langauges. Moreover, similarly as in the case
of BPP, we can show:

THEOREM 15 Weak preorder/equivalence on BPA is

The theorem holds even when one BPA-process is a fixed finite-state pro-
cess. The proof uses the recurrent problem for nondeterministic Turing ma-
chines and builds on the classical context-free grammar generating all words
which do not correspond to correct computations of a Turing machine (where
all even configurations are written in the reverse order). More details are in the
full version of the paper. We also add an analogy to Proposition 11:

PROPOSITION 16 The set of all triples where L is (a description of)
a recursively enumerable LTS and two weakly equivalent states,
is in

5. Regularity is in the hyperarithmetical hierarchy

Here we look at some more specialized problems, namely the question of
equivalence (of a general process) with a given finite-state process, and the
question of regularity, which asks whether a given (general) process is equiva-
lent (weakly bisimilar in our case) to an (unspecified) finite-state process.

Denoting the collection of all sets which are recursively enumerable in TA
(truth in mathematics) by we can show:

PROPOSITION 17 The problem of weak regularity of recursively enumerable
labelled transition systems is in

Though the stated result is not too practical, it still separates weak bisimilar-
ity checking from weak regularity checking for the classes like PDA, PA and
PPDA (because is a proper subclass of Recalling the general
experience that natural problems (in computer science) are either at low levels
of the arithmetical hierarchy or at low levels of the analytical hierarchy, we
have at least some indication in what direction the results for regularity can be
possibly strengthened.

References

[Büchi, 1964] Büchi, J.R. (1964). Regular canonical systems. Arch. Math. Logik u. Grundla-
genforschung, 6:91–111.

[Burkart et al., 2001] Burkart, O., Caucal, D., Moller, F., and Steffen, B. (2001). Verification on
infinite structures. In Bergstra, J., Ponse, A., and Smolka, S., editors, Handbook of Process
Algebra, chapter 9, pages 545–623. Elsevier Science.

[Esparza, 1997] Esparza, J. (1997). Petri nets, commutative context-free grammars, and basic
parallel processes. Fundamenta Informaticae, 31:13–26.

520

[Groote and Hüttel, 1994] Groote, J.F. and Hüttel, H. (1994). Undecidable equivalences for
basic process algebra. Information and Computation, 115(2):353–371.

[Harel, 1986] Harel, D. (1986). Effective transformations on infinite trees, with applications to
high undecidability, dominoes, and fairness. Journal of the ACM (JACM), 33(1):224–248.

[Hirshfeld, 1994] Hirshfeld, Y. (1994). Deciding equivalences in simple process algebras.
Tech. report ECS-LFCS-94-294, Dept. of Computer Science, University of Edinburgh.

[Hüttel, 1994] Hüttel, H. (1994). Undecidable equivalences for basic parallel processes. In
Proc. of TACS’94, volume 789 of LNCS, pages 454–464. Springer-Verlag.

2003] (2003). Strong bisimilarity on basic parallel processes is PSPACE-
complete. In Proc. of LICS’03, pages 218–227. IEEE Computer Society Press.

et al., 2003] and Moller, F. (2003). Deciding bisimilarity be-
tween bpa and bpp processes. In Proc. of CONCUR’03, volume 2761 of LNCS, pages
159–173. Springer-Verlag.

and Srba, 2004] and Srba, J. (2004). Highly Undecidable questions for pro-
cess algebras. Tech. Report RS-04-8, BRICS Research Series.

and 2002] and (2002). Equivalence-checking with
infinite-state systems: Techniques and results. In Proc. of SOFSEM’02, volume 2540 of
LNCS, pages 41–73. Springer-Verlag.

[Lugiez and Schnoebelen, 2002] Lugiez, D. and Schnoebelen, Ph. (2002). The regular view-
point on pa-processes. Theoretical Computer Science, 274(1–2): 89–115.

[Mayr, 2000] Mayr, R. (2000). Process rewrite systems. Information and Computation,
156(1):264–286.

[Mayr, 2003] Mayr, R. (2003). Weak bisimilarity and regularity of BPA is EXPTIME-hard. In
Proc. of EXPRESS’03, pages 160–143.

[Rogers, 1967] Rogers, H. (1967). Theory of Recursive Functions and Effective Computability.
McGraw-Hill.

[Srba, 2002] Srba, J. (2002). Roadmap of infinite results. Bulletin of the European Association
for Theoretical Computer Science (Columns: Concurrency), 78:163-175. Updated online
version: http://www.brics.dk/~srba/roadmap.

[Srba, 2003a] Srba, J. (2003a). Completeness results for undecidable bisimilarity problems. In
Proc. of INFINITY’03, pages 9–22.

[Srba, 2003b] Srba, J. (2003b). Undecidability of weak bisimilarity for PA-processes. In Proc.
of DLT’02, volume 2450 of LNCS, pages 197-208. Springer-Verlag.

[van Glabbeek, 1993] van Glabbeek, R.J. (1993). The linear time – branching time spectrum II
(the semantics of sequential systems with silent moves). In Proc. of CONCUR ’93, volume
715 of LNCS, pages 66–81. Springer-Verlag.

[van Glabbeek, 2001] van Glabbeek, R.J. (2001). The linear time - branching time spectrum I:
The semantics of concrete, sequential processes. In Handbook of Process Algebra, chapter 1,
pages 3–99. Elsevier Science.

[van Glabbeek and Weijland, 1996] van Glabbeek, R.J. and Weijland, W.P. (1996). Branching
time and abstraction in bisimulation semantics. Journal of the ACM, 43(3):555–600.

