
NESTED COMMITS FOR MOBILE CALCULI:
EXTENDING JOIN *

Roberto Bruni‚ Hernán Melgratti‚ Ugo Montanari
Dipartimento di Informatica‚ Università di Pisa‚ Italia.
{ bruni‚ melgratt‚ ugo} @di.unipi.it

Abstract In global computing applications the availability of a mechanism for some form
of committed choice can be useful‚ and sometimes necessary. It can conveniently
handle‚ e.g.‚ distributed agreements and negotiations with nested choice points.
We propose a linguistic extension of the Join calculus for programming nested
commits‚ called Committed Join (cJoin). It provides primitives for explicit abort‚
programmable compensations and interactions between negotiations. We give
the operational semantics of cJoin in the reflexive CHAM style. Then we discuss
its expressiveness on the basis of a few examples and encodings. Finally‚ we
provide a big-step semantics for cJoin processes that can be typed as shallow
and we show that shallow processes are serializable.

1. Introduction

In recent years‚ wide area network computing‚ web programming‚ and‚ more
generally‚ global computing (GC) are attracting the interest of many researchers
in an attempt of laying the foundations for largely distributed applications. Such
applications often require a coordination layer to orchestrate their components‚
which are designed and implemented separately‚ run on different platforms and
communicate asynchronously. Often‚ the components must agree on the ac-
tivities they are carrying on (e.g. in terms of transactions‚ like in [16‚ 7]) by
committing the results of long distributed decision processes as soon as the
participants reach partial agreements. Applications can handle these situations
in an ad hoc manner or they can rely on a fixed set of coordination primitives.
In this work we are interested on studying suitable primitives for describing dis-
tributed commits in GC applications. Note that we use the term “commit” (also
contract or negotiation) instead of “transaction” to emphasize the coordination
aspects‚ which are orthogonal to ACID database transactions. For instance‚ in

* Research supported by the MSR Cambridge Project NAPI‚ by the FET-GC Project IST-2001 -32747 AGILE‚
by the MIUR Projects COFIN COMETA and IS-MANET‚ and by the MURST-CNR 1999 Project.

564

the case of web services‚ the orchestration layer should provide the primitives
for specifying transactional services and the valid interactions between them.
Nevertheless‚ any service should be responsible for maintaining the consistency
on their local data (i.e.‚ assuring ACID properties on them).

Process description languages (PDLS) are mathematical models of compu-
tation designed for isolating and studying phenomena that occur in concurrent
languages. In the spirit of PDL‚ it would be desirable to extend well-known cal-
culi with primitives for distributed nested commits. Two key operations are the
“abort with compensation” (e.g.‚ to stop a negotiation when some participants
withdraw their interest in carrying out the contract) and the “commit” (to store
a partial agreement before moving to the next phase of a long negotiation). In
this paper we introduce Committed Join (cJoin) as an extension of the Join
calculus [12]. The features of cJoin are compared against two other paradigms
with commit‚ namely AKL [13] and Zero-Safe nets [8].

The design of cJoin has been inspired by the requirements (i)–(vi) below.
Contracts are decision processes distributed on several nodes‚ each with the
possibility of consulting both local and global resources and generating local
sub-contracts (e.g. modeling decisions internal to an organization). However:
(i) each internal sub-decision should be stored locally and not made public
before a common agreement is achieved; (ii) global resources might be made
available to partners upon commits‚ marking the conclusion of some contract;
(iii) decision processes can be aborted‚ in which case all participants should
be informed and suitable compensation procedures activated (e.g.‚ upon abort‚
new attempts for finding an agreement can be initiated) ; (iv) divergence is
possible‚ but well designed GC applications should guarantee that each contract
eventually leads to an abort or a commit; (v) when two processes involved in
separate negotiations exchange some information‚ then their contracts should
be merged into a unique one; (vi) it should be possible to have nested contracts.
Though an internal abort can be compensated in such a way that the main
contract can still be successfully completed‚ a failure of the main contract should
cause the abort of all ongoing internal activities.

We define the small-step operational semantics of cJoin in the reflexive
CHAM style [12]. We also give a big-step semantics for the sub-calculus of shal-
low processes and we show that shallow processes are serializable by proving
a correspondence between their CHAM and big-step semantics. Serializability
ensures the correctness of reasoning at different levels of abstractions when
transactions become atomic transitions at the abstract level.

Synopsis. In § 2 we recall the principles of the CHAM and the syntax and
semantics of Join. Committed Join is introduced in § 3. In § 4 we illustrate
the main features of cJoin by showing a simple application for booking trips
and the encoding of AKL. The implementation of zs nets is presented in § 5.
Finally‚ we study serializability in § 6.

565

2. Background: CHAM and Join

The Chemical Abstract Machine. In CHAM [3] states (called solutions)
are finite multisets of terms (called molecules)‚ and computations are multiset
rewrites. Multisets are denoted by and abbreviated with
Solutions can be structured in a hierarchical way by using the operator mem-
brane to group a solution into a molecule In [3] molecules can be
built also with the constructor airlock‚ but it is not needed in our presentation.

Transformations are described by a set of chemical rules‚ which specify how
solutions react. In a CHAM there are two different kinds of chemical rules:
Heating / cooling (or structural) rules representing syntactical rearrange-
ments of molecules in a solution‚ and reaction rules Structural rules are
reversible: a solution obtained by applying a cooling rule can be heated back
to the original state‚ and vice versa. Instead‚ reaction rules cannot be undone.

The laws governing CHAM computations state that whenever an instance of
a left-hand-side of a rule is found into a solution‚ it can be replaced by the
corresponding instance of the right-hand-side. Chemical rules have
no premises and are purely local‚ specifying only the part of the solution that
actually changes. Consequently‚ they can be applied in every larger solution

(chemical law) and also in grouped sub-solutions‚
In particular‚ they can be nested at any level of hierarchical solutions.

Note that‚ since solutions are multisets‚ rules can be applied concurrently.

The Join calculus. The Join calculus [12] is a well-known PDL with asyn-
chronous name-passing communication. It has the same expressive power as
the asynchronous and it has distributed running implementations‚
e.g. Jocaml [10] and Polyphonic [1]. Join relies on an infinite set of
names Name tuples are written Join processes‚ definitions
and patterns are in Figure 1.a. A process is either the inert process 0‚ the
asynchronous emission of message on port the process def D in P
equipped with local ports defined by D‚ or a parallel composition of processes

A definition is a conjunction of elementary reactions that associate
join-patterns J with guarded processes P. Names defined by D in def D in P
are bound in P and in all the guarded processes contained in D. The sets of
defined names received names and free names are defined asusual.

The semantics of the Join calculus relies on the reflexive CHAM. It is called
reflexive because active reaction rules are represented by molecules present in
solutions‚ which are activated dynamically. Molecules correspond to terms of
the Join calculus denoting processes or definitions. The chemical rules are
shown in Figure 1.b. Rule STR-NULL states that 0 can be added or removed
from any solution. Rules STR-JOIN and STR-AND stand for the associativity and
commutativity of and because is such. STR-DEF denotes the activation

566

of a local definition, which implements a static scoping discipline by properly
renaming defined ports by globally fresh names. A name is fresh w.r.t. a
process P (resp. a definition D) if (resp. Moreover,
is fresh w.r.t. a solution if it is fresh w.r.t. every term in A set of names X is
fresh if every name in X is such. We write the substitution of names
by names as with and

We indicate with an injective substitution
such that We require names to be globally fresh, i.e. fresh w.r.t
the implicit context in which the rule is applied.

Consider, for instance, whose sec-
ond molecule contains a definition of a local port different from the homonym
free port in the first molecule. When STR-DEF is applied, the local definition
of is renamed by using a fresh name, obtaining, for instance, the solution

Finally, RED describes the use of an active reaction rule to consume
messages forming an instance of J (for a suitable substitution with

and produce a new instance of its guarded process P. By applying
RED to for we get
Note that the local port has been extruded on the free channel

3. Committed Join

Syntax. We extend the syntax of Join as in Figure 2. A negotiation is
represented by [P:Q]‚ where P is the normal activity and Q is its compensation.
The normal activity P is intended to execute in isolation until reaching either
a commit or an abort decision. If P commits‚ the obtained result is delivered
to the outside of the negotiation. Instead‚ Q is activated when P aborts. The
abort decision is signaled with the special process abort.

A new kind of definitions called merge definitions‚ is introduced
to describe the interactions among negotiations. Merge definitions allow the

567

consumption of messages produced in the scope of different contracts by joining
all participants in a unique larger negotiation. Moreover‚ usual definitions can
be used to create negotiations dynamically. For instance‚ by firing
a new instance of the negotiation P with compensation Q is activated.

For convenience we introduce the syntactical category M of processes with-
out definitions‚ i.e. a parallel composition of messages.

The definition of is extended with
and For a definition D‚ we

redefine where denotes the defined ordinary
names and the defined merge names (Figure 3). We assume

for every definition D.

Operational Semantics. The operational semantics of cJoin is defined in
the reflexive CHAM style. Molecules and solutions S are defined below.

As in ordinary Join‚ processes and definitions are molecules. Additionally‚
a molecule denotes a compensation that is frozen inside a solution. The
chemical rules are in Figure 4. The first five rules are the ordinary ones for Join.
Rule STR-CONT describes how a negotiation corresponds to a sub-solution of
two molecules: the process P and its compensation Q‚ which is frozen (because
the operator forbids the enclosed process to react).

COMMIT can be executed only when all participants have done their tasks
reaching a (local) state that does not contain locally defined names. This way‚
a commit means clean termination where all names denoting internal states of
contracts have been consumed. Note that all definitions belonging to a contract
are discarded at commit time because the messages that are being released do
not contain those names (we recall that local names cannot be extruded). Simi-
larly‚ the compensation is discarded at commit. Moreover‚ a negotiation cannot

568

commit when abort is within the solution because abort is not a message. The
abort is handled by rule ABORT‚ which activates the compensation procedure
while discarding all terms in the solution. Compensations are not predefined to
execute atomically‚ but they can be explicitly programmed as negotiations.

Interactions among contracts are specified by rule MERGE‚ which consumes
messages from different contracts and creates a new larger negotiation by
combining the existing contracts together with the new instance where

The compensation for the joint negotiation is the paral-
lel composition of all the original compensations. When merging negotiations‚
clashes of locally defined names should be avoided by imposing the side condi-
tion for However‚ if we are guaranteed
that STR-DEF generates globally fresh names (and not just locally fresh names)
then this side condition can be safely omitted‚ as it is trivially satisfied.

PROPOSITION 1 cJoin is a conservative extension of Join.

Discussion. Sibling contracts can be merged only by using merge definitions
introduced by their parent. In practice‚ it might be useful to apply a merge
definition provided by any ancestor. To this aim‚ the rule STR-MOVE below
might be added‚ so that merge definitions could float across contract boundaries.

Regarding deadlocks‚ note that stall negotiations are not discarded. For
instance‚ the process cannot compute. Neither it
can commit‚ because there is a message on the local port In this situation
the contract is blocked and should be aborted. Some of these situations can
be recognized and handled locally to promote the abort (i.e.‚ when no local
rules can be applied). These situations can be represented by ad hoc rules
or by a general rule to generate nondeterministically the abort (situations that
real implementations typically handle with timeouts). Nevertheless‚ we cannot
expect to axiomatize stall situations because it would mean to write axioms
recognizing non-termination‚ which is an undecidable problem. On the other
hand‚ we do not want to limit the expressiveness of the language.

With respect to the requirements discussed in the Introduction‚ we have that‚
membranes are exploited to define the boundaries of negotiations. Process like

straightforwardly model sub-negotiations. The
decisions taken internally by can influence only if some merge definition
is available at the level of In absence of merge definitions‚ global and local
resources are kept separate in each sub-negotiation. The commit of can only
happen when the internal state contains only global resources. At commit time‚
the result of the negotiation is made available to An abort generated in
activates the compensation at the level of neither forcing the abort of

569

any other sub-negotiations nor the abort of the main contract Note
that if was the result of the merging of several negotiations‚ then
is the union of all the compensations of the participants.

An important restriction is that local resources can neither cross negotiations
boundaries nor be extruded to siblings negotiations. The only way to exchange
information between siblings negotiations is by merging all participants into a
unique negotiation that must then commit‚ or abort‚ or diverge as such.

4. Examples

Trip booking. Figure 5 shows the encoding of the application Trip that
allows a user to book flights and accommodations. Trip is defined in term of
three components: the hotel H‚ the airline A and the customer C. The compo-
nent H is a process that activates (by firing the definition for WaitBooking) a
negotiation to serve customer requests. Such negotiation starts by publishing
on the merge port offerRoom (defined in Trip) the names of the services a
client should use to reserve a room: request to ask for a quote; and confirm to
accept an offer. The component A (omitted in Figure 5) is defined analogously‚
but it publishes services on port offerFlight instead of offerRoom.

The component C defines two rules for creating negotiations: one for booking
rooms and the other for buying flight tickets. Both contracts are quite similar. In
particular‚ the negotiation for booking a room starts by sending a message to the
merge port searchRoom (defined in Trip) to obtain the names for interacting

570

with a hotel. The first merge rule in Trip will associate an offer from a hotel with
a request from a client by sending the names and to the corresponding port hm.
Once received and on HotelMsg‚ C uses to send a message to H for asking
for a quote. Then‚ the hotel will answer with an offer on port offer. Whether the
customer accepts or not a particular quote is modeled by the multiple definitions
for the pattern in C. If the offer is not adequate then C can abort the
negotiation‚ which will activate the compensation (analogously for H
and A). C can accept the offer by sending a confirmation message on port
In this case‚ C also generates a message to the local port hotelOK
This message will be managed by the local merge rule defined by C. The
contract will be blocked until a running negotiation for buying flight tickets
generates a message on flightOK. At this time‚ the local merge definition can
be fired and both contracts merged. Eventually the negotiation will commit by
releasing the messages on HotelFound and FlightFound. Moreover‚ messages
BookedRoom and SoldFlight generated by H and A to change their local
states are released only at this time‚ when all participants have committed.

Andorra Kernel Language. As a second example‚ we sketch how merge
definitions and nesting can be used to model some features of AKL [13]‚ a
concurrent logic programming language. We consider guarded rules
where the head A is an atom‚ the guard G and the body B are (possibly empty)
conjunction of atoms‚ and is the commit operator. An AKL program is a list
of guarded rules. An execution of is initiated by providing a goal which
is a conjunction of atoms. A cJoin process that simulates queried with is:

The definitions in D are needed to promote constraints computed locally.
The rules in are translated separately by grouping all rules defining the same
atom A. Such partition is denoted by while denotes all
atoms in without defining rules‚ i.e.‚ atoms whose proofs will always fail.
Constraints are encoded conveniently as cJoin processes (tt is the empty
constraint). In general‚ the term unif stores the computed constraints
of a running proof. At the end‚ a message on either port trueG or falseG will
inform the environment about the outcome of the computation. The encoding
of clauses and goals is in Figure 6.

An atom A is encoded as a merge rule that substitutes a message by
the proof of its defining rules (rule DEF). An undefined atom is encoded as a
rule that always fails (UNDEF). A conjunction (AND) corresponds to a process
that activates a new negotiation containing the atoms to be proved and
the initial local constraints Every sub-proof initiated by
will notify its termination by using ports (success) and (failure). If all sub-
proofs end successfully‚ the second definition in the negotiation can be fired
producing (i.e.‚ the signal of the successful proof of the conjunction) and

571

that activates the promotion of computed constraints managed by D
(omitted for space limitation). Note that will be released outside only at
commit‚ after constraints have been promoted. Instead‚ if a sub-atom fails‚ all
running sub-contracts are aborted and the contract commits by releasing the
activation of a new proof.

Rule CHOICE opens a negotiation for proving one of the guards of a multiple
choice goal. When a guard is successful the negotiation can commit by releasing
the message which activates the body of the chosen goal.

If there is an AKL refutation for the goal with computed constraints
and then the messages and can be released. On the
other hand‚ is generated only if cannot be proved.

5. Encoding Zero-Safe nets
Zero-safe nets (ZS nets) [8] extends Place/Transition Petri nets (PT nets) with

a mechanism for expressing concurrent transactions. Recently‚ they have been
used in [7] to encode short-running transactions of Biztalk‚ a commercial work-
flow management system [16]. ZS nets additionally provides a “dynamic” spec-
ification of transactions boundaries supporting multiway transactions‚ which
retain several entry and exit points‚ and admit a number of participants which
is statically unknown. However‚ ZS nets are not suitable to express some inter-
esting aspects‚ such as mobility‚ programmable compensations and nesting.

In this section we show that ZS nets can be straightforwardly encoded in
cJoin. A distributed implementation of ZS nets in Join has been presented
in [7]‚ but there the encoding is complicated by the need of attaching a local
transaction manager to each transition.

We recall that‚ in Petri nets‚ places are repositories of tokens and transitions
fetch and produce tokens. Net configurations‚ called markings‚ are multisets
of tokens. The places of ZS nets are partitioned into ordinary and transactional

572

ones‚ called stable and zero‚ respectively. Correspondingly‚ markings U can
be seen as pairs (S‚ Z) with U = S + Z‚ where S and Z are the multisets
of stable and zero resources‚ respectively. Transitions are written A
transaction goes from a multiset of stable places (stable marking) to another
stable marking. The key point is that stable tokens produced during a transaction
are made available only at commit time‚ when no zero tokens are left. We write
(T‚ S) for a ZS net with set of transitions T and initial stable marking S.

The operational semantics of ZS nets is defined by the two relations
and in Figure 7. Rules FIRING and STEP are the ordinary ones for Petri
nets‚ for the execution of one/many transition(s). However‚ sequences of steps
differ from the ordinary transitive closure of The rule CONCATENATION

composes zero tokens in series but stable tokens in parallel‚ hence stable tokens
produced by the first step cannot be consumed by the second step. CLOSE

selects the moves which defines the transactions of the net.
As done in [7]‚ and without loss of generality‚ we restrict to ZS nets whose

transitions have the basic shapes in Figure 8.a‚ for E any stable place and
any zero places. The translation in Figure 8.b associates a cJoin definition to
each basic shape. Places are seen as ports and tokens as messages. Tokens
in stable places carry no value‚ while tokens in zero places carry the identifier
of the transaction they belong to. The cJoin process associated to the ZS net
(T‚ S) is where

573

A transaction can be opened by firing a transition of the form E open In
cJoin‚ this means opening a new negotiation whose internal state contains the
definition of a fresh name the message and whose compensation‚ by
default‚ gives back the stable resources The dummy definition is
the cJoin way of declaring a fresh identifier for the transaction. When two
transactions are merged by applying e.g. then and
become equivalent identifiers for the same larger negotiation. When computing
inside a negotiation‚ each zero token carries one of the possibly many equivalent
identifiers for that negotiation (e.g.‚ If stable messages are released
inside the negotiation‚ e.g.‚ by firing close E‚ then they are frozen until
commit‚ because the only rules that can fetch them are outside the negotiation
boundaries‚ in the top chemical soup. The commit can happen if and only
if the negotiation reaches a local state containing only stable messages (and
dummy definitions). Then‚ the reaction COMMIT can close the negotiations
and release all stable tokens to the environment. The following result assures
the correctness and completeness of

THEOREM 2

The main behavioral difference between the cJoin encoding in Figure 8 and
the Join encoding in [7] relies on the treatment of failures‚ as here no abort can
be generated (and consequently compensations cannot be activated). A possible
solution would be to add a timeout component each time a new negotiation is
open‚ which is able to produce the abort via the rule In
this case‚ we should let
and encode the net N = (T‚ S) as

6. Serializability and Big-Step Semantics

The semantics of cJoin given in Figure 4 allows the cooperation among
several negotiations. Nevertheless‚ we would like to reason about a process by
analyzing interacting negotiations independently from the rest of the system.
A concurrent execution of several transactions is said serializable
if there exists a sequence that executes all transactions one
at a time (without interleaving their steps) and produces the same result [2].
Serializability is important because it allows to reason about the behavior of
a system by considering one transaction at a time. In this section we intro-
duce a syntactical restriction on processes‚ called shallowness‚ and show that it
guarantees serializability.

The idea is to describe multi-party negotiations as abstract transitions that
fetch the messages needed to initiate all sub-negotiations separately and pro-
duce the processes released at commit or abort. Consequently‚ serializable
negotiations can postpone the activation of each sub-negotiation until all other
cooperating sub-negotiations needed to commit can be activated.

574

DEFINITION 3 (SHALLOWNESS) The nesting nest(P) of P is defined by:

P is shallow if any basic definition D in P satisfies one of the two conditions:
1.
2.

where nest(P) = 0
and nest(P) = 0

or and

We refer definitions in shallow processes as shallow definitions. Moreover‚
we call a process P stable iff P is shallow and nest(P) = 0. The shallow prop-
erty imposes a discipline for activating negotiations. In particular‚ condition 1
assures that the firing of an ordinary rule increases the height of the nesting by
at most one level (i.e.‚ a definition produces either a stable process or one nego-
tiation without nested sub-contracts). Condition 2 forbids the creation of sub-
negotiations while merging. The absence of condition 2 would prevent the pos-
sibility of postponing the activation of some negotiations until all cooperating
negotiations can be activated. Shallowness forbids rules such as
and which however can be encoded as shallow definitions
by using new local ports‚ e.g. as and

respectively. Moreover
reduces in two steps to
which has nested negotiations.

In the following and will denote shallow processes‚ a shallow def-
inition‚ a stable process‚ and a shallow definition containing just merge
rules. We abbreviate as and as Terms are consid-
ered up-to structural equivalence generated by closure w.r.t the equations for
the associativity and commutativity of and 0 the unit for and

We characterize serializability by the big-step reduction relation between
shallow processes presented in Figure 9.

575

Steps can be composed in parallel (PAR) and sequentially (SEQ)‚ even with
idle transitions (IDLE). Rule GLOBAL FIRING corresponds to the firing of
an ordinary definition in a top-level process. Instead LOCAL FIRING states
possible internal transitions of a running contract. LOCAL FIRING represents
suitable sub-negotiations as ordinary transitions at an abstract level. In fact‚
the computations occurring at a lower level in the nesting hierarchy (premise of
LOCAL FIRING) that are relevant to its containing negotiation are those relating
stable processes‚ i.e.‚ and A negotiation has available‚ in addition to its
own definitions‚ the merge definitions introduced by its parent. In fact‚ a merge
definition applied on a single contract behaves as an ordinary rule but defined
in a global scope. The operator transforms merge definitions in ordinary ones:

and If the rule STR-MOVE is also considered
for cJoin‚ then the premise of LOCAL FIRING must be

Rules LOCAL COMMIT and ABORT handle the termination of a negotiation‚
whereas MERGE describes the interaction among sibling negotiations. This
time‚ negotiations can be joined only if they do not contain running contracts.

The big-step relation enforces serializability. In fact‚ the completed negoti-
ations at a particular level become ordinary transitions at the upper level and
all interacting transactions can be analyzed independently from the rest of the
system. The following result states the correspondence between both semantics
for shallow processes‚ proving that shallow processes are serializable.

THEOREM 4 Let be stable processes. Then

7. Concluding remarks

We have proposed cJoin as a linguistic extension of Join with natural prim-
itives for modeling nested negotiations. The expressiveness of cJoin has been
demonstrated by means of an informal discussion about the satisfaction of the
general requirements enumerated in the Introduction and three sample applica-
tions (trip booking and the encodings of AKL and ZS nets). Additionally‚ we
have defined a syntactical restriction of processes that assures serializability.

Unlike workflow systems‚ cJoin does not fix a set of constructors to describe
dependencies in the style of ConTracts [15]. The actual dependencies of a
negotiation are known at execution time and are consequence of its interaction
with other contracts. This feature distinguishes cJoin from [4]‚ where processes
running as transactions can interact freely with the environment. On the other
hand‚ cJoin is aimed at providing a way to model multi-party transactions by
describing their interacting agents and not their global structure‚ such as [6‚ 9].
Nevertheless‚ our language does not provide default mechanisms for undoing
pre-committed activities of aborted transactions‚ differently from [9]. We leave
as a future work the comparison with other calculi that models ACID transac-
tions [17]‚ long-running negotiations [4‚11]‚ and exception handling [14].

576

Negotiations in cJoin have the flavour of multiway transactions in zs nets‚
where participants are not statically fixed. We plan to reuse or to extend the
D2PC proposed in [7] to have a full encoding of cJoin in Join itself. This would
allow us to extend implementations of Join‚ such as Jocaml or Polyphonic
by providing primitives for handling distributed negotiations. As a preliminary
result‚ the encoding for the subcalculus of flat processes is in [5].

Acknowledgments. We thank Nick Benton‚ Luca Cardelli‚ Cédric Fournet and
Cosimo Laneve with whom we discussed preliminary versions of cJoin.

References

N. Benton‚ L. Cardelli‚ and C. Fournet. Modern concurrency abstractions for Proc.
of ECOOP 2002‚ LNCS 2374‚ pp. 415–440. Springer Verlag‚ 2002.

P.A. Bernstein‚ V. Hadzilacos‚ and N. Goodman. Concurrency, Control and Recovery in
Database Systems. Addison-Wesley Longman‚ 1987.

G. Berry and G. Boudol. The chemical abstract machine. TCS‚ 96(1):217–248‚ 1992.

L. Bocchi‚ C. Laneve‚ and G. Zavattaro. A calculus for long-running transactions. Proc.
of FMOODS’03‚ LNCS 2884‚ pp. 194–208. Springer Verlag‚ 2003.

R. Bruni‚ H. Melgratti‚ and U. Montanari. Flat Committed Join in Join. Proc. of COMETA
2003‚ ENTCS. To appear.

BPEL Specification‚ May 2003. http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/.

R. Bruni‚ C. Laneve‚ and U. Montanari. Orchestrating transactions in join calculus. Proc.
of CONCUR 2002‚ LNCS 2421‚ pp. 321–336. Springer Verlag‚ 2002.

R‚ Bruni and U. Montanari. Zero-safe nets: Comparing the collective and individual token
approaches. Inform. and Comput.‚ 156(1-2):46–89‚ 2000.

M. Butler‚ M. Chessell‚ C. Ferreira‚ C. Griffin‚ P. Henderson‚ and D. Vines. Extending
the concept of transaction compensation. IBM Systems Journal‚ 41(4):743–758‚ 2002.

S. Conchon and F. Le Fessant. Jocaml: Mobile agents for Objective-Caml. Proc. of
ASA’99/MA’99‚ 1999.

D. Duggan. Abstractions for Fault-Tolerant Global Computing. TCS. To appear.

C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the Join calculus.
Proc. of POPL’96‚ pp. 372–385. ACM Press‚ 1996.

S. Haridi‚ S. Janson‚ and C. Palamidessi. Structural operational semantics of AKL. Journal
of Future Generation Computer Systems‚ 8:409–421‚ 1992.

M. Mazzara and R. Lucchi. A framework for generic error handling in business processes.
Proc. of WS-FM’04‚ ENTCS. To appear.

A. Reuter and H. Wächter. The contract model. Transaction Models for Advanced
Applications. Morgan Kaufmann‚ 1992.

U. Roxburgh. Biztalk orchestration: transactions‚ exceptions‚ and debugging‚ 2001. http:
//msdn.microsoft.com/library/en-us/dnbiz/html/btsorch.asp.

J.Vitek‚ S. Jagannathan‚ A. Welc‚ and A. L. Hosking. A Semantic Framework for Designer
Transactions. Proc. of ESOP’04‚ LNCS 2986‚ pp. 249–263. Springer Verlag‚ 2004.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

