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Abstract Pure Pattern Type Systems combine in a unified setting the capabili-
ties of rewriting and Their type systems, adapted from Barendregt’s

are especially interesting from a logical point of view. Strong normal-
ization, an essential property for logical soundness, had only been conjectured
so far: in this paper, we give a positive answer for the simply-typed system.

The proof is based on a translation of terms and types from into the
First, we deal with untyped terms, ensuring that reductions are faith-

fully mimicked in the For this, we rely on an original encoding of
the pattern matching capability of  into the

Then we show how to translate types: the expressive power of System is
needed in order to fully reproduce the original typing judgments of We
prove that the encoding is correct with respect to reductions and typing, and we
conclude with the strong normalization of simply-typed terms.

1 Introduction

The and term rewriting provide two fundamental computational para-
digms that had a deep influence on the development of programming and specification
languages, and on proof environments. The idea that having computational power at
hand makes deduction significantly easier and safer is widely acknowledged (Dowek
et al., 2003; Werner, 1994). Many frameworks have been designed with a view to
integrate these two formalisms: either by enriching first-order rewriting with higher-
order capabilities (Klop et al., 1993) or by adding algebraic features to the
(case expressions with dependent types (Coquand, 1992), a typed pattern calculus
(Kesner et al., 1996) and calculi of algebraic constructions (Blanqui, 2001)).

The rewriting calculus, or by unifying the and the rewriting,
makes all the basic ingredients of rewriting explicit objects, in particular the notions
of rule application and result. A rewrite rule becomes a first-class object which can
be created and manipulated in the calculus, whereas in works like (Blanqui, 2001), the
rewriting remains a bit external to the calculus.

In (Cirstea et al., 2001), a collection of type systems for the was pre-
sented, extending Barendregt’s to a Later, these type systems have
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been studied deeper for the similar formalism of (Barthe et al., 2003). Yet,
the rewriting calculus has also been assigned some type systems that do not prevent
infinite reductions (Cirstea et al., 2004). Thus, strong normalization did remain an
open problem for In this paper, we give a first positive answer to this problem.
Since consistency is related to termination, this result makes a good candidate
for a proof-term language integrating deduction and computation at the same level.

The main contributions of this paper are:

a more recent version of enhanced with a signature for the types of con-
stants and some corrections on the product rules;

a concise encoding of pattern matching in the which has other po-
tential applications for the encoding of term rewriting systems;

a translation of the simply-typed system of into System emphasizing
some particular typing mechanisms of

a proof of strong normalization for simply-typed terms.

This paper is organized as follows. In Section 2, we recall the syntax and the small-
step semantics of In Section 3, we give an untyped version of the translation,
showing how pattern matching is encoded. In Sections 4 and 5, we present the type
systems of and System In Sections 6 and 7, we give the fully typed trans-
lation and we outline a proof of correctness for three important elements of the typed
translation: variables, constants and delayed matching constraints. In Section 8, we
state the key lemmas used in the full strong normalization proof.

We assume the reader is reasonably familiar with the notations and results of typed
(Barendregt, 1992), of the (Cirstea et al., 2004) and of

(Barthe et al., 2003).

Conventions and notations Generally, the reader can assume that every capital
letter denotes an object belonging to and every small letter denotes an object
belonging to the (except for constants and their arity). For instance, in

X, Y, Z are variables; A, B, C are terms; P, Q are patterns; are con-
stants; are types; is an atomic type. In System are variables;

are terms; are type variables; are types; is a kind. Moreover, we will
use the notations: for an arity; for a substitution; for contexts (mainly in

for a signature.
Syntactic equivalence of terms will be denoted by If a substitution has domain

and we will also write it We
assume that the signature of constants that can be used in is finite, which is
legitimate since a given (finite) term only uses a finite number of constants. Therefore,
we will number the constants where S is the cardinal of To denote a
tuple of terms we will use the vector notation or simply when

and are obvious from the context. This notation will be used in combination
with operators according to their default associativity: for instance, in System

and To avoid confusion between sym-
bols, we will use bold and for and roman and for System
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2 dynamic semantics
In this section, we recall the syntax of and their evaluation rules. The syntax

of extends that of the typed with structures and patterns (Barthe
et al., 2003). Several choices can be made for the set of patterns P: in this paper,
we only consider algebraic patterns, whose shape is defined below. The main reason
for this restriction is that patterns containing symbols such as require higher-order
matching, which seems difficult to encode in a typed

A term with shape is an abstraction with pattern P, body A and con-
text The term is a delayed matching constraint with pattern P,
body A, argument B and context A term is a dependent prod-
uct, and will be used as a type; finally, (A; B) is a structure and is an appli-
cation. The application of a constant symbol, say to a term A will be denoted
by too; it follows that the usual algebraic notation of a term is currified, e.g.

DEFINITION 1 (FREE VARIABLES OF A TERM)

In this paper, extending Church’s notation, the context in
or contains the type declarations of the free variables

appearing in the pattern P, i.e. These variables are bound in
the abstraction. The context will be omitted when we consider untyped terms. As
usual, we work modulo and we use Barendregt’s “hygiene-convention”
(Barendregt, 1992), i.e. free and bound variables have different names.

For the purpose of this paper, we consider only syntactic pattern matching; a syn-
tactic matching equation has either no solution or a unique solution noted

In fact, it seems difficult to encode more elaborated matching theories: for
instance, associative matching can generate an arbitrary high number of distinct solu-
tions. Thus, to give a faithful account of all matching solutions in the one
would probably need a fixed point.

The top-level rules are presented in Fig. 1. By the rule, the application of a term
to a term B reduces to the delayed matching constraint the
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application of the rule consists in solving the matching equation and
applying the obtained substitution (if it exists) to the the term A. If no solution exists,
the rule is not fired and the term is not reduced. As usual,
denotes the congruent closure of and is defined as
the reflexive and transitive (resp. reflexive, symmetric and transitive) closure of

3 Untyped encoding
In this section we translate the untyped with algebraic patterns. The process

of syntactic pattern matching consists in discriminating whether the argument begins
with the expected constant, and recursively use pattern matching on subterms. It is
this (quite simple) algorithm that we encode in the We use the following
notations: S is the number of symbols appearing in the signature. The symbol of

is denoted by
To build the encoding of pattern matching, we need three conditions:

each constant has a “maximal” arity in the sense that is never applied
to more than arguments;
in every matching equation we have
each term (A; B) has a maximal arity

1

2
3

In particular, when the second condition reduces to which is an essential
condition for resolving this matching equation.

In this section, we assume these properties. In Section 4, we will see that typing
enforces the three conditions. They remain true in some untyped situations too: for
instance, if we were to encode a Term Rewriting System, the arity of the constants
would be given, and partial application of a constant would be forbidden, ensuring
that in every matching equation

The translation is given in Fig. 2, by a recursive function mapping terms
to We use a fresh variable if a closed term is needed, we add an abstrac-
tion once the whole term is translated.

Let us briefly explain this translation:
In the variables will be instantiated by the arguments of
(which explains why we had to bound the arity of Then, among the vari-
ables the one corresponding to the head constant of P is selected.

is translated into the usual pair encoding of the and the ab-
stractions distribute the arguments to both elements of the pair.
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In the abstraction over a single variable is straightforwardly translated
into a

In the variable will be instantiated by the argument of

this function (for instance If necessary, the  first occurrences
of the variable instantiate the remaining variables which can
appear in this is where we use the condition Then,

if the select and the encoding of
pattern matching can then go on (pointwise) with the sub-patterns and

LEMMA 1 (CLOSURE BY SUBSTITUTION)
For any terms A and for any variables

THEOREM 1 (F AITHFUL REDUCTIONS)
For any terms A and B, if then in at least one step.

EXAMPLE 1 (TRANSLATION OF A SUCCESSFUL DELAYED MATCHING)

The inner delayed matching constraint is essential here because it has to “wait ”for
the instantiation of Y before performing matching. For the translation, we consider

with and The reductions are shown on Fig. 3. The
selected and its argument are underlined.

4 The typed static semantics
This section presents a version of the type systems of with some minor

adaptations. The inference rules are given in Fig. 4. For a detailed explanation of
these rules, the reader can refer to (Barthe et al., 2003); here, we will only discuss
some differences with regard to previous type systems for the and

In (Cirstea and Kirchner, 2000), a first strongly normalizing type system for the
was introduced; however, the proof of normalization is mainly based

on a heavy restriction over the types of constants.

the subterms if matching fails, is selected, witnessing the failure.
The fresh variables will be instantiated by but they do not
appear in If a variable X has multiple occurrences in the pattern, by

only one of the subpatterns will get the “original” variable, and
the other X’s are renamed to fresh variables not occurring in (so matching
failures due to non-linearity are not detected by the encoding).

is translated into standard application.

is where has been instantiated by
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In (Cirstea et al., 2004), we studied a more permissive type system, still en-
forcing subject reduction, but allowing to typecheck some terms with infinite
reductions. Therefore, this type system was not fit for using the as a
proof-term language.

The type systems of (Cirstea et al., 2001; Barthe et al., 2003) were designed in
order to provide a strongly normalizing calculus where there was no restriction
on the type of the constants (apart those imposed by the type system). Until now,
strong normalization was an open problem for these systems. Here, we show
this property for a slight variation of (Barthe et al., 2003). We have introduced
a signature which prevents the type of a constant to depend on free variables.

In rules (MSORT) and (PROD), the first premise avoids a collapse of the
cube. If we had just taken with the pattern
would have sort * but could be used to instantiate the type variable enabling
polymorphism in the simply-typed system.
In the rule (Var), we use to avoid free
term variables occuring in the type of a variable. It is mainly because we want
to keep the system “simply-typed”, in the sense that matching constraints oc-
curring in types do not yield types depending on terms. For the type systems
allowing terms depending on types, this restriction will have to be relaxed.
Finally, the rule (STRUCT) can seem quite restrictive, since case-dependent
expressions such as are forbidden. How-
ever, it is non-trivial to weaken this rule. For example, if we had typed

with we could have built a typed
term with infinite reductions as in (Cirstea et al., 2004).

The notion of arity we have assumed in the untyped encoding can be properly
defined here using types: if has type then is defined as
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One is easily convinced that a term where contains more than elements
can not be correctly typed. Similarly, in a term A and B have a common
type so can not contain more than elements.

The second condition on arities is enforced too: in a given matching equation
typing enforces that and have the

same type, which immediately imposes
Some properties of these calculi, proved in (Barthe et al., 2003), are:

LEMMA 2 (SUBSTITUTION) If and
then

THEOREM 2 (SUBJECT REDUCTION)
If and then

LEMMA 3 (UNIQUENESS OF TYPES UP TO SECOND ORDER)
If if and then

In this paper, we only treat the case of the simply typed calculus, corresponding to
In particular, this implies uniqueness of types.



640

As a conclusion to this section, let us briefly explain why usual reducibility tech-
niques seem to fail for this typed calculus. Roughly speaking, the interpretation of a
type should be a function space whose domain is defined not only as
the interpretation of the type of P but also as terms matching with P and whose suit-
able subterms belong to the interpretations of the types appearing in Quickly, this
imbrication of interpretations leads to circularities in the definition of interpretations.
Thus, it seems really tricky to obtain a proper definition of the reducibility candidates.

5 The System
In this section, we shortly recall the type system  first introduced and studied in

(Girard, 1972). The formalism and its properties have been generalized to the Calculus
of Constructions (Coquand and Huet, 1988), and later on to Pure Type Systems. Here,
we follow the generic presentation of (Barendregt, 1992). The inference rules are
given in Fig. 5. Here, the possible product rules are

In all the remaining, for a type we will use the usual type arrow abbre-
viation whenever  i.e. for terms depending on terms (product rule
(*, *)) and for types depending on types (product rule

Some well-known properties of this calculus are (Girard, 1972; Barendregt, 1992):

LEMMA 4 (SUBSTITUTION) If and
then

THEOREM 3 (SUBJECT REDUCTION)
If and then

LEMMA 5 (UNIQUENESS OF TYPES)
If and then

THEOREM 4 (STRONG NORMALIZATION)
If then is strongly normalizing.

6 The typed translation algorithm
Here, instead of translating a term to a term, we translate a typed term into a (ty-

pable) term. For simplicity of presentation, we still write but, as one can see on
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Fig. 6, the translation of a term A is generally based on the fact that A is typable. Sup-
posing we are given a type derivation for a judgment we recursively
build a term typable in There is no translation for since, as we will see
in Section 7, the context is sufficient to type for any constant

For the rest of the paper, we adopt the following abbreviations, for any types
in The third definition is a special case of the second one with

For each variable X appearing in a term, we add in the corresponding
a type variable which appears in the type of This variable is common to
every occurrence of X in the term, and if X is bound, we bind at the same point
as X in the translation. If X is free, then in the translation of the context, the type
variable appears just before X. The need for is explained in Section 7.

First we define the translation of types (i.e. terms such that by four
mutually dependent definitions:

translates the type supposing it is the type of the variable X depending on
the list of type variables The free type variable (univocally correspond-
ing to X) appears in this translation.

translates the type supposing it is the type of the constant depending on
the list of types

The only free variable appearing in is and the arguments of
are the bound variables whose scope extends to this subterm of the type.

Similarly, in no variable is free, and all the bound variables whose scope
extends to the subterm are represented in this subterm.
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flattens a pattern P with Since patterns appear in the
types, the translation at the type level must be accurate.

computes the kind of if X has type

We can extend this translation to contexts, the base case being given by

Finally, we can translate typed terms. The translation is given in two distinct parts:
in Fig. 6, we give all the cases that are simply adapted from the untyped case. In Fig. 7,
we deal with the trickiest situations: matching constraints and conversion in the types.
These last cases are further explained in Section 7.

7 Rationale of the typed translation
In this section we treat three key constructs of the typed translation:

the type of a translated constant (accounting for the use of System F);
the type of a variable (requiring types depending on types);

the translation of matching constraints appearing in the types.

1

2

3

Typing the translation of a constant
First, let us study how constants and their translation affect typing. In order to

get a typed translation, in the previous section, we have added to the untyped term
some type abstractions. The type abstractions are needed for

correctly typing the variables, as we will see in the next subsection. Here, we are
interested in the type abstraction appearing in

To explain the modifications we made, let us start from the untyped translation. We
suppose where is an atomic type, and we assume that each

is translated to a certain type Then we have:

What remains unclear is the meaning of The type of a translated abstraction is:
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Therefore, the has a valid type only
if i.e. and

The types and should be replaced by the return type
of the function which is applied to Since one can not guess what function

will be applied to a given term, we introduce the polymorphism of Girard’s System F
in the target language. The resulting modification can be seen on Fig. 6: in we
abstract over the type variable which is instantiated with by

Thanks to polymorphism, the variable can get type which is usually
noted Then, if we need an arbitrary term with type we use This means that
all the we build are typable in a context containing again, we can add
an abstraction to get a closed term.

Typing a variable
In this subsection, we explain why we need a new type variable for each vari-

able X appearing in a term (including bound variables appearing in a type).

a term with type The types extend this notion to nested pat-
terns: for instance will have type This flattening process
keeps the shape of the pattern but forgets the constants used.

The types have been built to fit with the new translation of constants: a trans-
lated constant with arity takes arguments with types and returns
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Consider the following examples:

Both terms and can instantiate X since they have the same type. However,
the typed translation gives (in the context

The type variable which appears in allows us
to treat both cases: an abstraction is translated into   so we can
give the expected type to X if we instantiate with the correct term:

The need for types depending on types appears here: must be able to build a
new type where some type variables, like may appear whereas they are bound in
the type of X. The function computes a suitable kind for according to the
kinds of the arguments of Here, we have

Translating matching constraints appearing in types
The part of the typed translation shown in Fig. 6 mainly consists in correctly com-

bining information obtained by the translation of smaller terms. However, for applica-
tion (and matching constraints), the argument of a function must transmit it some type

(Constraint postponement): if

where

and

(Constraint resolution) : For a postponement variable
appearing in a term whenever a subsequent instantiation of some free
type variables (in ) enforces:



645

information. In this process is initiated by the matching constraints appearing
in types, and carried on by the conversion rule.

In System we can not encode pattern matching in the types, so matching con-
straints must be treated at the meta-level, i.e. during the translation. Let us study the
two kinds of matching constraints appearing in the types:

with By successive application of Lemmas 2, 1 and 4,
we can prove that the same equality holds for the types in System if
has type then where The
proof of Theorem 5 is constructive: it gives an algorithm for computing the

with In this case, a new postponement variable is
created with type where is the type of The type of

appears in accounting for the delayed matching constraint
in the type. The term is used so that the is well-typed, since

expects a term of type Suppose some subsequent
applications instantiate some free variables in B (replacing it with a term
such that Then, we should instantiate the free type variables

of with suitable types and instantiate with the identity since
we had translated B into
From a typing point of view, it is sound: because of the substitutions and
the type of is now and the equality
ensures that which means has a suitable type
for identity. The subtle point is that can be located quite deep in the term
we are considering: this is why we use the function solve(·,·) given in Fig. 7,
which performs a kind of  to instantiate

8 Strong normalization
In this section, we give the properties of our typed encoding.

PROPOSITION 1 (FAITHFUL REDUCTIONS) Lemma 1 and Theorem 1 are still
valid with the typed translation: each can be mimicked by at least one

(and the postponement variables only prevent unsuccessful matchings).

LEMMA 6  (WELL-KINDEDNESS)

THEOREM 5 (WELL-TYPED TRANSLATION) A, if
then, for afresh variable Z,

THEOREM 6 (STRONG NORMALIZATION OF TYPABLE TERMS)
A, if then A is strongly normalizing.

Proof: A term A is translated into an term which has
no infinite reduction, so by Proposition 1, A is strongly normalizing.

9 Conclusion and perspectives
We have proved strong normalization of the simply-typed by translating

it into System First, we have shown how to encode untyped syntactic pattern
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matching in the Introducing types in the translation then proved an in-
teresting challenge. One difficulty comes from the pattern matching occuring in the

types, which calls for accurate adjustments in the translation. Another remark-
able point is that the typing mechanisms of can be expressed only with the
expressive power of System which is rather surprising since we only deal with the
simply-typed This fact leads us to think that, with the same product rules, the
expressive power of is greater than the one of the

An interesting development of this work would be to adapt the proof for the other
type systems of In the long term, we expect to use as the base language
for a powerful proof assistant combining the logical soundness of the and
the computational power of the rewriting. This proof of strong normalization is a main
stepstone for this research direction, since logical soundness is deeply related to strong
normalization.
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