
DEPENDABLE SECURITY BY TWISTED
SECRET SHARING

Semir Daskapan
Faculty ofTBM. Delft University ofTechnology

Abstract: Large scale networked infonnation systems are referred to as critical
infonnation infrastructures when they provide critical services to the critical
physical infrastructures. Critical infonnation infrastructures contain specific
nodes that provide security services, like authentication servers; those are
calIed security or trust centres. The goal of this research is to fmd an algorithm
for enabling those centres to become sustainable by sharing their (superfluous)
security resources and to resist Byzantine failures. The proposed secret sharing
algorithm takes care of alIocating in advance the secret content ofthe suffering
centre to other healthy centres, so that only an arbitrary majority of them can
reconstruct the content. This perfect t.n- threshold scheme is suitable in
dynamic networks as it has an adaptive access structure. It is compared to
existing schemes rather simple as it is purely based on permutations. It is
efficient, i.e, favourable information rate, as all shares are much shorter than
the secret itself. Secondarily, each secret share is even additionally protected
(encrypted) against the holder as weil against any outsider.

Key words: Trust, dependability, critical infrastructures, secret sharing, threshold
cryptography

1. INTRODUCTION

An infrastructure consists of many dependent components, which enable
together a service as a carrier. However, a dependable infrastructure contains
usually one or more centralized nodes for certain control functions, like a
centralized repository of metadata or an authentication server. Here the focus
is on security distribution centers (SDCs) . Any configuration that exhibits
(multiple) single point of failures (SPF's) is avoided as much as possible. In

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
© IFIP International Federation for Information Processing 2004

194 Semir Daskapan

order to resist failures, that cause discontinuity, those centralized nodes are
set up in redundancy. The traditiona1 approach of investing in redundancy by
dedicated hardware has its limitation in scalability and costs.

Complementary to these traditional approaches, where each weak node
is enriched with a few identical nodes, a resource sharing approach between
all the critica1 nodes is already introduced in [1]. The objective of that is
autonomous collaboration of all the nodes to back up each other when
failures occur by offering their resources as temporary hosts . Destitute nodes
will send their valuab1e secret assets to the allied nodes (pool members) with
healthy and free redundant resources. However, whether this resource­
sharing concept will also work in critical information infrastructures (i.e,
distributed information systems) depends on the additional requirements of
forward and backward confidentiality, but most on the timing of releasing
the secret assets and their keys to the allied pool members. By applying a
secret sharing algorithm it should be possible to distribute the secret assets
without revealing the content prematurely. The reason is that no member
will receive the complete secret asset, but only a fragment. Even if he
manages to get all the fragments he will not have aII the keys to decrypt the
fragments , because of the uncorresponding fragments and keys. It was
therefore baptised as twisted secret sharing. Only by collaborating with a
majority of pool members the secret asset can be reconstructed.

In the second section other works are discussed. In the third seetion a
guiding case is presented for the problem, by which a pattern is sought for
the algorithm. This pattern is then introduced and discussed in the fourth
section . Finally, in section 5 the paper is fmalized by a conclusion.

2. OTHER WORKS

Survivability is traditionally enhanced by means of redundancy [2,3,4].
Redundancy means that in parallel similar systems are ready to rep1ace the
main system. From a security point of view, redundancy seems to decrease
the vulnerability as it avoids (multiple) single points of failure (MSPFs).
With many of such replicas, the system can withstand (number of replicas ­
1) failures. However, with the increasing number of redundant systems, the
number of targets and thus the possibility of confiscation increases. A typical
form of that is the Byzantine failure [5] that occurs due to corrupted
processors. As more systems provide the same functionality the danger is
that the redundant systems suffer from asynchrony and unequal information,
due to technical implementations.

Dependable security by twisted secret sharing 195

Survivability is regarded as one of the attributes of dependability next to
other aspects like reliability, availability and safety [6]. Critical information
infrastructures (CIS) are designed according to high availability and
reliability requirements. Ideally, this means that critical infrastructures
should be available, even when the supporting hardware of the CIS is failing.
Survivability of the core functionality of a system is often the main focus of
research and the survivability of other dependency attributes are not
considered. Although those services appear to decrease the vulnerability of
the system, they are themselves not survivable and could therefore
jeopardize the whole system when they fail. Therefore additional measures
are taken for those overall services. Usually this is realized by applying in
parallel redundant hardware, which will catch up the breakdown of the
primary CIS. Besides that it is not very cost-effective, as redundancy is in
economical terms an indispensable overhead, it is also insufficient due to the
limited dedicated hardware.

One of the earliest works on survivable SDC's is the work of Gong [7],
although specific for authentication servers. Here fault tolerance is achieved
by collaboration ofmany SDC's in a group. Also the RAMPART system [8]
provides secure communication in the presence of actively malicious
processes and Byzantine failures for SDC's (authentication services)
specific. Here, with the assumption of an asynchronous network up to a third
of the members in a Rampart group may behave in Byzantine manner yet the
group would still provide reliable multicast facilities. The system uses secure
channels between two members of the protocol to provide authenticity.
Protocols depend greatly on the consensus of processors to reach agreement
on the course of action. Other works in this specific field are [9,10,11],
which all deploy static redundancy with replicated services (srrs).

MAFTIA [12], SINTRA [13], COCA [14] and Ensemble [15] provide
approaches for tolerating both accidental (Byzantine) faults and malicious
attacks in large-scale distributed systems like on the Internet. This enables
them to remain operational during attack, without requiring time-consurning
and potentially error-prone human intervention. They assume asynchronous
networks and use many updated techniques like, randomization by coin­
tossing scheme [16] to overcome the impossible existence of a deterministic
protocol [17]. The resilience is guaranteed for t > n/3 dependable members
[18].

Those works also apply somehow (combinatorial) secret sharing [19,20]
or threshold cryptography [21,22]. In distributed systems secrets play a
special role, as they can bind the scattered components. A secret means
some piece of information, be it a password, the private key of a public key
cryptosystem, a solution to some mathematical problem or a set of

196 Semir Daskapan

credentials. With secret sharing, a single secret is divided into w parts and
distributed across n nodes. To reconstruct the whole secret, one node must
be able to collect or derive all the w pieces of the secret. The so-called t.n­
threshold schemes have a specific access structure, i.e. the specification of
participants which are authorized to reconstruct the secret. In that case at
least t<n are able together to reconstruct the secret, where t<n is the
threshold. Usually t is larger than nl2 without gossip or larger than 2nl3 with
gossip among the total nodes.

The twisted secret sharing algorithm that is proposed in this paper has a
unique combination of characteristics, which have not been found in other
works [19,23,24,25]. The perject t,n- threshold scheme is suitable in
dynamic networks as it has an adaptive access structure. It is compared to
existing schemes rather simple as it is purely based on transpositions. It is
efficient as all shares are much shorter than the secret itself and have thus a
favorable information rate [26]. Each secret share is additionally protected
(encrypted) against the holder as well against any outsider. Furthermore,
whereas other works require numerical values this algorithm also applies
easily for alphanumerical values. Due to proactive refreshing of keys and
shares it is unpredictable.

3. TWISTED SECRET SHARING

In this section we will describe some seenarios to explain the problem
and provide a corresponding solution to each scenario. This section
describes as such the inductive phase to the general solution as is proposed
in the next section 4.

3.1 The guiding case

Assurne that in a pool of pleaders one leader suddenly collapses.
Consider also the possibility that other arbitrary pool members (i.e,
remaining minority) are also malicious. Each pool member has to decide on
how to distribute his secret asset (token) and the belonging secret keys
contrarily, such that his assets can be resurrected safely by the honest
majority, despite the malicious minority in the pool.

The strategy of the survivability concept is to update replicas of the token
frequently and to send them precautionary encrypted to other well
functioning pool members without the decryption keys. After that the
destitute SDC collapses one of those trust pool members receives the
decryption keys and recovers the token so that he can continue the service.

Dependable security by twisted secret sharing 197

The token has to be sent separately from the keys to uncorresponding
locations before the collapse.

After the collapse the individual pool members sense the disability ofthe
one particular SDC. They send subsequently their keys to exactly one
predefined successor among them, so that he can recover the token. With the
containing secrets he can prove to the clients to be the trusted leader. The
clients will probably not notice the change of leadership because of this
smooth masking. Those steps will be explained as folIows.
Let T be a set oft tokens, with T = {tlh ...,tJ and

K a set ofk keys, with K =(kI,k2, .. . ,kk) and
La set ofl pool members , with L ={IJ, 12, ••• , Id

Let TL denote the allocation ofT to L, with
TL = {(tI,lI),...c, Ix,}) and
KL denote the allocation ofK to L, with
KL = {(kI,lIJ,..,(kk, Iy)) and
TKL = TL u KL and (t,k,l,x,y) EN with (x,y) Si

Stepl. The destitute SDC sends frequently the encrypted tokens and the
belonging keys before the collapse to many pool SDCs, such that the
destination of the tokens does not correspond with the one of the keys.

TKL = (.,(t/,lx; kk,ly)), with x .ry.

Step 2. The receiving many pool SDCs send subsequently the tokens and
the keys after the collapse to exactly one predefined healthy pool SDC.

TKL = {., (t/,lx; kk,ly}d, with x = y = successor

The result of this strategy is that each receiving pool member has a
token, which he hirnself cannot open with the received key, so that no pool
member can act malicious individually before the collapse. He has to find
another pool member who has the key that belongs to his encrypted token.
This third member should then also be corrupted to betray the destitute SDC.
An additional requirement is therefore that up to a minority of the pool
members should not be able to recover the token and is thus allowed to be
corrupted.

Any majority is then able to recover the token and is thus assumed to be
trusted. Why not to construct a strategy where exactly all the members are
required to reconstruct the token. The reason for not requiring all the pool
members (i.e. consensus) to cooperate in the recovery process is the
increased power of the (corrupted) individual. If there is just one malicious
member, he can block the recovery by not sending the token before and the
key after the collapse. If that is the case the successor receives all the keys
from the pool members, except from the malicious member with the

198 Semir Daskapan

corresponding key. The resurrection will not be completed and the clients of
the collapsed SDC will become orphans.

3.2 An analogy: the siek old fatber

The question is how to achieve an allocation of pieces among the many
pool members that meets the majority/minority and the uncorrsponding
secret/key requirement in a most efficient way. With efficiency a minimum
in the amount of interactions between the members and the minimum load
per sent package is aimed. In order to explain this confusion by diffusion
secret sharing algorithrns an analogous example is worked out. From this an
allocation matrix is derived that contains the keys and the destinations of the
loads (secrets). The depicted pattern of the matrices of different seenarios
will help to derive a general approach by induction.

Assume a siek old father who trusts nobody but hirnself and some of his
sons. He has a treasure to leave behind and 3 sons (pl,p2,p3) waiting for his
death and their inheritance. He has buried previously the treasure somewhere
in the woods and drawn a map of the location . As he has not seen his sons
for a long time, his problem is that he does not know which son(s) to trust.
He cannot believe that all his descendants turned out to be bad and as such
he is sure that the majority of them can be trusted. If he entrusts the map to
one of his sons, he might risk that this particular son appears to be
unreliable. This son might thus run away with the treasure before the father
dies or even after he dies, so that the other (good?) sons inherit nothing. The
same could happen when he entrusts his greedy wife, which he already put
out ofhis testament.

Therefore he decides to tear the map in 3 fragments (v1,v2, v3) and to
put each piece in a locked case (c1,c2,c3) . To confuse his sons, copies of
some fragments (v1',v2') are also put in the locked cases. Now we have
more pieces ofthe fragments (c1(v2), c2(v3), c3(v1), c1(v1 '), c3(v2'». Each
son is respectively given one or more cases and exactly one uncorresponding
distinguished key «k1,k2,..», which cannot open the cases the particular son
has been given. The old man has thought this out weIl, but now he is
wondering how many pieces to cut, which piece to put in each case and how
to distribute the cases among all the sons so that exactly the minimum
majority of the sons (i.e, the trusted ones = 2) would be able to reconstruct
the map when they share cases and keys after his death?

To phrase it more formally: What is the optimal relation (with minimal
cases, fragments and copies) between v, k and p if a minimum minority will
be able to recover the map? Lets workout some cases.

The case with p =3

Dependable security by twisted secret sharing 199

With p = 3 sons the minimum majority is (min(q >3/2)=) 2. When
applying the splitting method the secret T should be split in v pieces and
distributed among the three, such that at least any two sons are required to
reconstruct the secret. To phrase it otherwise, no maximum minority (i.e. 1
son) should be able to recover the secret T.

To solve v an inductive approach with increased efforts can be used
starting with v =1. If v =1, then T is not split. The question is now how to
distribute the one secret, such that no single son but at least two of them can
recover it? If the father makes three copies (i.e. for each son one) of the
secret and puts each of them in three different cases (with three different
keys), then each son receives exactly one case and one key that does not
correspond with the case. So each son has one decision variable to disturb:
either one secret piece (per case) or one key to exchange. In this situation
exactly at least two cooperating sons only can reconstruct the secret, so that
for p = 3 the right v =1.

The case with p =4
With P = 4 sons the minimum majority is (i.e. min(q > 4/2)=) 3. When

applying the splitting method the secret T should be split in v pieces and
distributed among the 4 sons such that at least any 3 sons are required to
reconstruct the secret. To phrase it other wisely, no maximum minority (i.e.
.:::: 2 sons) should be able to recover the secret T.

If v =1, then T is not split. The question is again how to distribute the one
secret, such that at least three of them can recover it? This is not possible, as
has been shown already in previous case that two sons are already able to
recover a secret if not split.

If v =2, then T is split in two pieces. The question is now how to
distribute the two pieces, such that at least three sons are needed to recover
the main secret? Assume that the father shares a distinguished symmetrie
key with each son. The father has 2 decision variables for each son now: the
two pieces. A brute force approach, in which all combinations are
subsequently tried, results in tables 1 to 4.

All the corresponding options of symmetrie keys {Ko,! ••KO,4 } between
father Loand p sons {LI ,.L2 } and pieces (Tl ,T2) are first depicted in table 1.
A random search has been conducted and in table 2 the options are given to
allocate those 2 pieces (in locked cases) to the p uncorresponding sons. In
table 3 a configuration is given in which a minimal number of cases is
distributed to achieve the requirements. It is obvious from table 3 that by one
or by cooperation of two sons the main secret cannot be recovered.
Reconstruction by any three sons is however possible. Thus for this case p =
4 and v = 2 meets the requirements. A solution with p = 4 and v>2 is also

200 Semir Daskapan

possible, but as then more pieces have to be distributed, it id considered less
efficient and as such it is not preferred above v = 2. In table 4 only the
distinct indexes are shown providing clearness. Testing whether the
allocation meets the requirements is easy by hiding any minority of columns
and then to check whether the rest will be able to reconstruct T.

Table 1

La Kol Koz Ko.J Ko4
Tl KohTl Ko2,Tl Ko3,Tl Ko4,Tl
T2 Ko hT2 Ko2,T2 K03,T2 Ko4,T2

3

La Ll; Kol Lz; Ko.z LJ; Ko.J L4; Ko4
Tl Ko2,Tl KohTl Ko4,Tl Ko3,Tl
T2 Ko4,T2 Ko3,T2 Ko2,T2 KohT2

La Ll; Kol ~;Ko.z LJj Ko.J L4; Ko4
Tl Ko2,Tl Ko4,Tl
T2 Ko3,T2 Ko hT2

Table 2

Table3

)
)

Table4)

I ~ I~--+----"---t-------"---I

The case with p = 5
For p = 5 solutions with v < 3 are neglected, because those do not meet

the majority requirement as in the previous sections is discussed. However,
applying the above described approach leads to an exponential search
algorithm, which is computationally not achievable (NP). Considering that
the keys and secrets frequently have to be refreshed and that each
refreshment of the pieces requires a reallocation of them, it would make the
application practically infeasible. Therefore this approach is facilitated by
identifying and adopting a pattern of sequences in v, k and p, by which a
polynomial solution domain is achieved.

4. THE PROPOSAL

In the previous section it was shown how to achieve the right distribution
of secret shares by random searching, which is computationally infeasible
with large p. In this section a random search is avoided by adopting a
distribution pattern for the shares, which depicts the relation between p,k and

Dependable security by twisted secret sharing 201

v. A sequence of key numbers is assumed from the upper left corner to the
under right corner ofthe table as is depicted in table 5.

4.1 Tbe pattern

Consider again p =3 and v =1 in tabel 5a, with CEo as the suffering
father. The sequence starts with (LI,Tl) = 2 or any other number which is
not equal to 1 (due to the uncorrespondingness criterium). For frequent
refreshment, each time the keys have to be (re)allocated the row rotates so
that 231 becomes 123 and then 312 etc. Note that 123 will not be suitable
due to the uncorrespondingness criterium. Each son (L) now needs to
cooperate with another son to get his key, which results in this case in a
majority of2 (see for one example the shadowed column).

With 4 sons the majority is 3. This number excludes the option of not
splitting the token (v =1), as is shown that an unsplit token can be
reconstructed by a minority of two sons. So, for this reason the token is split
in two pieces Tl and T2 and two rows will fill in the table. The horizontal
sequence of the first row (T1) again starts with (L1,Tl) = 2 and increases
further. The horizontal sequence ofthe second share T2 (row) starts exactly
with the next number of the vertical sequence of column LI (L1,T2) = 3 and
increases further by one. This double sequence (horizontal and vertical) can
be extended for any n. In table 5 this linear approach is depicted for p =
3,5,7. Refreshment is achieved by rotating the table (both rows) horizontally.

Table 5 v = p/2 -112

TIL LI LI LJ

Tl 2 3 1

T2

T3
a.p=3,v=1

LI LI LJ L4 Ls

2 3 4 5 1

3 4 5 1 2

b.p=5,v=2

LI LI LJ L4 Ls 4 L,
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3

c. p=7, v=3

This approach is computationally feasible, but is not optimal for even p
numbers, as can be seen in the next tables 6 where for the cases p = 4,6,8 the
same goal is achieved but with less pieces to distribute. For even numbers p
a different pattern is adopted. The saving compared to the odd numbers is
(p*v)/2 = (2v*v)/2 = v2 so that for p = 4 and v = 2 not 8 pieces are
distributed, like in table 4, but 22 = 4 pieces. This counts not only for p =
4,6,8, but for all even numbers. The explanation for this saving is that for
even numbers a roundup by 1 is done to achieve majority (p/2+ 1), whereas a
majority is already achieved by the first rational number larger than p/2. The

202 Semir Daskapan

smuggle of +1 leads to redundancy in the number of distributed pieces. The
odd numbers also smuggle, but up (+1/2) and down (-1/2), so that the net
result is zero (honest).

Table 6. v= p/2

LI Lz L3 L4 Ls L6 LI Lz L3 L4 Ls L6 L, La
2 4 6 2 4 6 8

5 1 3 5 7 I 3

6 2 .•.. 4 6 8 2 4

1 3 5 7

TIL LI Lz L3 L4

Tl 2 4

T2 1 3

T3

T4
a. p=4, v=2 b. p= 6, v= 3 c. p= 8, v=4

4.2 The algorithm in pseudo code

The next list in pseudo code shows how to make such allocation tables.
The pseudo code comprehends two main parts: for an even and for an odd
number of pool members. They manage the key allocation according to the
pattern of the previous tables 5 and 6. The even part resolves three
contentious issues: 1) the hop from row to row of the sequence of keys, 2)
the increase of sequential key number due to that hop and 3) continuously
resetting the limited sequence. The odd part adds a fourth issue: alternation
ofblank spaces except for the first cell in a row.

, Initialisation of the shifts

' p = number ofpool members (sons)

, setting an example timer to refill the allocation tables

, fill in rows from left to right
, jump two numbers when a new row starts

, key = allocated key = content ofcell in table
, v = number of pieces

ShiftO = 0
ShiftE =-1
Period = 600 sec
Do each Period

Blank = false
Count(p, mypool)
Ifp = Odd then

key = ShiftO
v = n/2 -1/2
AllocateKeyPiece = ARRAY[l..v,l..p]
For a = 1 to v do

key = key + 2
For b = 1 to P do

If b=! 1 then key = key + 1 ' setting the content of a cell
Ifkey > p then key = key-p , reset key sequence
AlIocateKeyPiece[a,b] = key

EndFor

Dependable security by twisted secret sharing 203

EndFor
ShiftO = ShiftO +1 'counter for rotating the rows each period

Else
key = ShiftE
v=nJ2
AllocateKeyPiece = ARRAY [l..v,l..p]
For a =1 to v do ' when a new row starts:

key = key +3 ' jump three numbers
For b = 1 to P do

Ifb=! 1 then key = key + 1 ' setting a key
If key > p then key = key-p , reset key counter when all keys are set
IfBlank = false then 'altemating blank cells

AllocateKeyPiece [a,b] = key 'allocate key to cell= piece and location
Ifb=! p then Blank = true 'block altemation when new row starts

Else
Ifb=! p then Blank = false

Endif
End For

End For
ShiftE = ShiftE +1

Endif
Enddo

With the allocation table aleader can determine by which keys to encrypt
the pieces and where to sent them. In order to commit the logistical
operation efficiently the pieces with the same destination have to be
clustered and sent together. The tables with indexes ofkey numbers are used
to encrypt the shares first. This happens by sequentially reading the records
from the table and replacing the indexes with the encrypted piece (eventually
in a new table) .

AllocateEncrPiece = ARRAY [l..v,l..p]
AllocateKeyPiece = ARRAY [l..v,I..p]
AllocateEncrPiece [] = 0

For a =1 to v do

For b =1 to P do
IfIsNotEmpty(AllocateKeyPiece [a,b]) then

AllocateEncrPiece [a,b]) = E(k",,; tl,b)
Else

AllocateEncrPiece [a,b]) = Empty

204 Semir Daskapan

Endif
End For

EndFor

The logistical preparation proeedure will be eompleted by paekaging
eaeh eolumn as one message to one destination (pool member).

Package = Arraylid, ..idpl
Package[] =0
For a =1 to p do

Packagejid.] = ''''

For b =1 to v do
If IsNotEmpty(AllocateKeyPiece [a,b]) then

Packagelid.] = Packagejidg] + ";"+AllocateEncrPiece[a,b])

Endif
End For
Procsendü'ackagelidg]; idb)

EndFor

The refreshment oeeurs usually by subsequently rotating the rows by one
eolumn as is shown in table 7 for n = 5. An exeeption oeeurs, when the keys
in the first shift would eorrespond with the key owner. The rotation shifts
then two eolumns at onee.

Table 7. Refreshing by rotation

ft=3

..
c:

~

LI L2 LJ L4 Ls
2 4 5 1 2 3 Shi

5 1 2 3 4

Shift=

.. -c: ...
LI L2 LJ L4 Ls

3 4 5 1 2

4 5 1 2 3

.... - ..~ ...
LI L2 LJ L4 Ls

2 3 4 5 1 Shift=l

3 4 5 1 2

5. DISCUSSION

This paper proposes a sealable and efficient deeentralized seeret sharing
algorithrn (i.e, with no premature eentral faeilitator) in order to avoid
multiple single points of failures before and after a failure. It prevents
premature exposition of the individual shares by the partieipants as they all
host a deerypted share with a key of the others. The algorithm requires an

Dependable security by twisted secret sharing 205

arbitrary majority ofparticipants to reconstruct the total secret and prescribes
the exact keys for encryption and distribution of shares. The proposed
algorithm has been adopted in a framework called Medusa that is meant to
enhance autonomous survivability of security distribution centers in large­
scale distributed information systems, like grid systems. The Medusa
protocol set is subsequently added to an arbitrary authentication server and
tested in a simulated environment by a discrete event network simulator NS+
with C++/TCL on Linux. The test case was a basic failure test in which
randomly one of the joint authentication servers deliberately was stopped to
assess how the secret sharing algorithm performed. It was obvious that the
larger the allied pool was the more survivable the authentication service was,
due to many shares. The extra performance overhead due to increasing
numbers of participants and thus the increased number of shares was
acceptable in comparison to the survivability increase. The complexity ofthe
secret sharing algorithm is O(n2

) , due to the double loops of I to vand 1 to p.
As such they were computable in polynomial time. However, there is a trade
off between survivability and processing time. With a growing number of
participants in the pool survivability increases at the expense of the
increasing processing time for secret sharing. As such medium sized pools
are aimed and by connecting them via one or more pool members this trade
off can be avoided. The secret sharing algorithm is performed for the limited
number of pool members in each pool, whereas survivability is determined
by the range of all the interconnected pools .

A second test is intended where a distributed denial of service attack
(ping-of-death) in which random adversaries send en masse ping messages to
the authentication server.

REFERENCES

[I] S. Daskapan, W.G. Vree, A Ali Eldin, "Trust metrics for survivable
security systems", Proc. 0/ the IEEE International Conference on
Systems, Man & Cybernetics, Washington, 2003.

[2] AE. Barbour, AS. Wojcik, "A General Constructive Approach to Fault­
Tolerant Design Using Redundancy", IEEE Transactions on Computers,
pp. 15-29,1989.

[3] Matti A Hiltunen, Richard D. Schlichting, Carlos A. Ugarte, "Enhancing
Survivability of Security Services Using Redundancy", The International
Conference on Dependable Systems and Networks, Sweden, 2001.

[4] Bruno Dutertre, Valentin Crettaz, Victoria Stavridou, "Intrusion-Tolerant
Enclaves", IEEE Symposium on Security and Privacy, Califomia, 2002.

206 Semir Daskapan

[5] L. Lamport, R. Shostak, M. Pease, "The Byzantine Generals Problem",
ACM Transactions on Programming Languages and Systems, voI.4(3),
pp.382-401, July 1982.

[6] Jean-Claude Laprie, "Dependable Computing and Fault Tolerance:
Concepts and Tenninology," 15th International Symposium on Fault­
Tolerant Computing, pp. 2-11, 1985.

[7] L. Gong, "Increasing Availability and Security of an Authentication
Service", IEEE Journal on Selected Areas in Communications, Vol 11(5),
pp.657-662, 1993.

[8] M. Reiter, "Secure Agreement Protocols: Reliable and Atomic Group
Multicast in Rampart", Proc. of2nd ACM Conference on Computer and
Communications Security, pp. 68-80, 1994.

[9] Thomas Hardjono, Jennifer Seberry, "Replicating the Kuperee
authentication server for increased security and reliability", Australasian
Conference on Information Security and Privacy, pp.14-26, 1996.

[10] Matti A. Hiltunen, Richard D. Schlichting, Carlos A. Ugarte, "Building
Survivable Services Using Redundancy and Adaptation", IEEE
Transactions on Computers, Vol. 52(2), pp. 181-194,2003.

[11] Vivek Pathak, Liviu 1ftode, "Byzantine Fault Tolerant Authentication",
Rutgers University, Department of Computer Science Technical Report,
DCS-TR-492, June 2002.

[12] P. Verissimo, NF Neves, M. Correia, "The middleware architecture of
MAFTIA: A Blueprint", Proc. of the IEEE Third Information
Survivability Workshop, Boston, pp. 24-26, 2000.

[13] C.Cachin, J. Poritz, "Secure Intrusion Tolerant Replication on the
Internet", Proc. of the 2002 International Conference on Dependable
Systems and Networks, Washington, pp. 167-176,2002.

[14] Lidong Zhou, Fred B. Schneider, Robbert van Renesse, "COCA: A
Secure Distributed On-line Certification Authority", Technical Report
TR2000-1828,2000.

[15] Ohad Rodeh, Kenneth P. Binnan, Danny Dolev ,"The architecture and
perfonnance of security protocols in the ensemble group communication
system: Using diamonds to guard the castle", ACM Transactions on
Information and System Security, Vol. 4(3), pp.289 - 319, 2001.

[16] R. Canetti and T. Rabin, "Fast asynchronous Byzantine agreement with
optimal resilience", Proc. 25th Annual ACM Symposium on Theory of
Computing, pp. 42-51,1993.

[17] M. J. Fischer, N. A. Lynch, M. S. Paterson, "Impossibility of distributed
consensus with one faulty process", Journal of the ACM, Vol. 32(2),
pp.374-382, 1985.

[18] G. Bracha. "An asynchronous [(n -1)/3]-resilient consensus protocol",
Proc. of 3rd ACM Symposium on Principles of Distributed Computing,
pp. 154-162, 1984.

[19] A. Shamir, "How to Share a Secret", Communications ofthe ACM, Vol
22(11) , pp.612-613, 1979.

[20] K. Kurosawa, K. Okada , H. Saido , D. Stinson , "New combinatorial
bounds for authentication codes and key predistribution schemes",
Designs, Codes and Cryptography, Vol 15(1), pp.87-100, 1998.

Dependable security by twisted secret sharing 207

[21] Y. Desmedt, "Threshold cryptography", European Transactions on
Telecommunications, Vol 5(4), pp. 449-457, 1994.

[22] J. Seberry, C. Chames, J. Pieprzyk and R. Safavi-Naini, "Crypto Topics
And Applications 11", Algorithms and Theory ofComputation Handbook,
CRC Press, 1999.

[23] G. J. Simmons, "An Introduction to Shared Secret and/or Shared
Control Schemes and their Application", Contemporary Cryptology: The
Science of Information Integrity , G. J. Simmons (Ed.), IEEE Press,
pp.441-497,1991.

[24] G. R. Blakley, "Safeguarding cryptographic keys", Proc. ofAmerican
Federation ofInformation Processing Societies 1979 National Computer
Conference , Vo1.48, pp. 313-3I7, 1979.

[25] C. Cachin, On-line secret sharing, in "Cryptography and Coding V", C.
Boyd (ed.), Lecture Notes in Computer Science, Vol. 1025, pp. 190-198,
1996.

[26] E.F. Brickell, D.R. Stinson, "Some improved bounds on the information
rate ofperfect secret sharing schemes", Journal ofCryptology, Vol. 5(3),
pp. 153-166, 1992.

